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ABSTRACT 

A method of calculating the radiation characteristics 

for the motion in an arbitrary one-dimensional potential is 

developed. Expressions for channelling radiation frequencies, 

polarization angles, and the number of emitted photons as 

functions of quanta angles, particle energy, amplitude of 

oscillations, and divergence in a plane parallel to the 

trapping crystal planes for any given harmonic number are found. 

The problem is treated in the classical approximation. 

Numerical examples of the application of the derived formulae 

for channelling in the (l,l,O) direction of a Silicon crystal 

are given. The results are presented both for electrons and 

positrons. Comparison of the calculation results for two 

choices of continuum potential for positrons is also given. 
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1. Introduction 

Radiation of channelled particles trapped between planes of a 

crystal is a powerful tunable source of polarized radiation in an 

interesting range of frequencies. It can also be used to study the 

properties and characteristics of the crystal itself. For both 
- 

applications of the phenomena, one needs knowledge of the radiation 

spectra and angular distribution of emitted quanta. All the known theoret- 

ical resultslS5 for these radiation characteristics are obtained in the 

linear approximation, where only the first (quadratic in coordinate) term 

of the power series expansion of the potential in which the particle moves 

is retained and considered. In the work of Pantell and Alguard the next 

term (proportional to the fourth power of coordinate) is also taken into 

account using first order perturbation theory to get anharmonic corrections. 

In this way the authors were able to find the satellite lines (due to small 

anharmonicity) accompanying the main one and also to estimate the rate of 

radiation on the third harmonic. This rate appears to be very small as a 
I 

direct consequence of the assumption of anharmonicity smallness. 

In our own work7 a method was developed which permits one to calculate 

the average radiation intensity for general nonlinear motion. This approach 

is extended now in this work to allow us to find radiation characteristics 

for the motion in an arbitrary one-dimensional potential. By using this 

method one can calculate all the characteristics of the channeling radia- 

tion without any assumption on the value of anharmonicity. In particular, 

expressions for radiation frequencies, polarization angles, and the number 

of emitted photons as functions of quanta angles, particle energy, 
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amplitude of oscillations, and divergence in a plane parallel to the 

trapping crystal planes for any given harmonic number are found. For 

planar channeling, the motion of the particle is essentially two- 

dimensional. Hence, it is possible to simplify the calculations by 

choosing the appropriate coordinate frame. That, however, will make 

the effective potential different for different motion planes. To avoid 

this and keeping in mind the necessity to average the radiation over the 

divergence in the particle beam, we tie our coordinate frame to the axes 

of the crystal rather than to the particle trajectory. 

The problem is treated in the classical approximation, the validity 

of which can be found elsewhere.8 In Section II we solve the equations 

of motion in a given potential. Section III is devoted to calculations 

of intensity of radiation and number of emitted photons per interval of 

solid angle. In Section IV we apply our results to the parabolic poten- 

tial to show how the derived formulae turn into known ones in this case. 

In Section V one can find a useful formula for the polarization angle of 

the emitted photon. Numerical results for electrons and positrons as well 

as comparison of results for different potentials for positrons can be 

found in Section VI. 

II. Motion of Channelled Particle 

Let a relativistic particle with energy E be trapped between the 

planes of a crystal. We choose a coordinate frame in which the crystal 

planes are parallel to the yz plane. The particle is assumed to have 

large relative velocity component 6, along the z axis, (Bzwl),the other 
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two components being small: 

BX 
<< 1 (2.1) 

B << 1 
Y 

(2.2) 

The length of one "oscillation" of the relativistic channelled 

particle, as we shall show, is much longer than any lattice periods. 

Consequently, the force exerted on the channelled particle can be 

derived from a time independent one-dimensional potential V(x) (for the 

"oscillations" occurring in the x-z plane) which is the planar average 

(over y and z) of the true electrostatic potential V(x,y,z) within the 

lattice. We choose further for convenience V(O)= 0. 

The equations of motion in this case: 

dpx / dt = - dV / dx , 

dpy / dt = 0 , 

dps/ dt = 0 , 

(2.3) 

(2.4) 

(2.5) 

give immediately py = constant, p, = constant. After neglecting terms of 

the order of magnitude (V/E) 3/2 , the first integral of equation (2.3) 

gives 

i3, = 2 [Vbm) - V(x)] /E' , (2.6) 

where x m is the value of x at the point $,= 0. xm is the maximum excursion 

of the particle from the plane x= 0 and we call this quantity the "ampli- 

tude" of (nonlinear) oscillations. 
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From Equation (2.4) we get B = py(c/E)(l+ (V/E)) or, since B is 
y Y 

small, approximately 

const. (2.7) 

with the same accuracy (y = E/mc2) 

B z = 'iiz + '(V,-V,)/E' - (V,-V,,/E , 

i, = 1 - 4y2 <(V m-Vx) E> 
I , 

(2.8) 

(2.9) 

where brackets <> mean taking the average over time. To make the formulae 

less cumbersome we use the following abbreviations here and for the rest 

of the paper: 

vX 
= v(x), v m = vex,> 

It is easy to verify that the full energy of the particle 

E = mc2/dw) + V(x) (2.10) 

is constant with accuracy V2/~2 for B,, $x and 8, from (2.6- 2.9). 

From (2.6- 2.9) we find the following solution for the particle 

trajectory: 
X 

ct = ct + 
0 -VW)/" , (2.11) 

<vm-vx> x 

z = z. + ctBz + 

fi E / $+$ [ W dW;2.12) 

Y = y. + Byct , (2.13) 

where z o9 y. and to are the initial arbitrary constants. 
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From (2.11) we can define the "frequency" of oscillations 

D = 2n/$ dw/,/w, where the sign f means integration over the 

full period of oscillation. For the case of potential symmetric 

x(v-x = Vx) we get: 

s2 = ITc 

I 

2 Tdx/dw. 

0 -._ 
- 

III. Radiation Characteristics 

We start the calculation of the intensity of radiation with 

in 

(2.14) 

the 

expression for the Fourier harmonic of the vector-potential of the 

radiation field:g 

m 
s dt f(t) exp(iCwt-E*;(t)]) (3.1) 

-co 

Here 2 is the wave vector of radiation, R is the distance to the observa- 

tion point, If(t) and s(t) are the relative velocity and radius vector of 

the particle with a charge e at time t. Calling (3 the azimuthal angle 

of the radiation direction with the z axis and cp the polar angle between 

its projection on the x-y plane and the x axis, the vector "K has the 

following components: 

K = K n = F (sin 6 cos cp, sin 8 sin (p, COS 8) (3.2) 
X,YYZ X,Y,Z 

Now we substitute J(t) and :(t) f rom (2.6-2.9) and (2.11-2.13) into (3.1); 

i:R 00 

L*=e%j--g-- 
/ 

dts(t) exp Ciw(l-Ezcos6-f3 sinOcoscp)tl, (3.3) 
Y 

-co 



I 

-7- 

where inside the crystal with thickness L, the function z(t) is periodic 

with period 2n/Q and zero elsewhere: 

1 

Z(t) exp i 
-if [x(t) sin8 coscp + 62(t) c0sel , 

i 
if ItI hL/2Bzc 

g(t) = 

0 , if [tl >L/2ijzc (3.4) 

Here we denote 

x(t) 
< vm-vx> ’ 

&z(t) = 
GE I o &$- 

1 

z 

x(t) 

I dq3-p dw . 
0 

(3.5) 

Let us now expand z(t) in a Fourier series on the-interval ItI <L/2izc: lo 

m 
c 

2Tr/R 

Z(t) = < exp(-ikfit), zk=& 
s 

dt z(t) exp(ikQt) 
k= -co 0 

(3.6) 

Using this expansion we take the integral in (3.3) to find the spectral 

distribution of the energy radiated by the particle in a given direction 

(O,(p) in an interval of solid angle do : 

dE R2U2 
dwdo = c 

where 

'k = $ (1 - Bz cos e - By sin 8 sin cp) - k (3.8) 

and N=RL/2~ri~c is the number of oscillations over the length L. It is 

seen from (3.7) that for N>> 1 the radiation occurs in the form of a line 

spectrum. 
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The center of the line is positioned at the frequency: 

kS2 Wk = l- 8, cos6- By sine sincp l 

(3.9) 

Its half-width is 

Puk/ uk * l/Nk (3.10) 

-~ 

With increasing N, more energy is radiated in decreasing frequency interval, 

so as N+m we get the line spectrum with the line frequencies tik and the 

spectral intensity of the radiation: 

---de= n O3 dIk 

2nN dwdo c 
- w-Jk) , do 

k=l 

where the intensity of the radiation of the k th harmonic is: 

dIk e2w3 
k 2 -= 

do 2mcQk 
;x (iLdk) . 

(3.11) 

(3.12) 

To evaluate 2 k we change the integration over t in (3.5) to integration 

over x: 

akx = g { pxsin[r Qcw)dw) exp(-ix F sine coscp) 

(3.13) 

- (-l)k ldxsin [ 1 Qcw)dw] exp(-ix f sin0 coscp) 1 , 

m m 
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i k+ln 

- $Y 
dx 

sky= ITC 
'k cos 

4 / (2 E) ‘V,-v,> 

exp - ix_csine coscp) ( 

0 

+ (-l>k 
J 

dx Ok 

-X mv' 
-72 E)(V,-Vx) 

cos ( -ixcsinf3 coscp > . 

(3.14) 

The following notation is used in these formulae: 

Q(w) = 
kc2 - Wk c0se <(v,-v,> /E> (3.15) 

The expression for akz is the same as for a 
kY 

with the change of 6 to 
Y 

B * 
Z 

The formulae for zk simplify for a symmetric potential V 
-X 

=vx. 

In this case: 

akx= 2:&Q $ dx sin[jh Q(w)dw) { -isincx;sine coscp) 1 if k=2p 
cos (x c sine coscp) if k= 2p+l , 

(3.16) 

2ik+lCl 
X 

m 

sky= ITC 'y 
dx cos 

$2/E’ <v,-v,) 

"k cos (x -y- sine cost) if k= 2$ 

*k -i sin (x c sine coscp) if k=2p+l * 
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We now use conditions (2.1, 2.2) and consider the angular range 8 << 1, 

into which the main part of the radiation of the ultrarelativistic 
\ 

particle (y >> 1) goes. Equation (3.9) in this case gives: 

ncykB 

Wk = xmTl(l+rB2+D2+Q2 
, 

- 20D sincp) 

where we introduce the following useful variables: 

Bpdv , (3.19) 

(3.18) 

D = Byy , (3.20) 

o= ey , 

and the notation 

(3.21) 

r = S1/T1 . (3.22) 

The radiation frequency mk (3.18) appears to be proportional to y3'2 for 

B << 1 and proportional to y 112 for B >> 1. 

The definitions of T1 and S1 are shown below; see Equations (3.30) and 

(3.31), where one should substitute w= 1. In these variables the number of 

photons emitted on the k th harmonic from the crystal length L equals: 

dNk kLBFk 
- = 
OdOdq 137yxmT~(1+rB2+D2+02- 20D sintp)2 ' 

(3.23) 

We neglect here all the terms proportional to the small factor 1 I y2. 

In expression (3.23) the following notation is used: 

Fk 
= B202 

kx 
+ (Q2+D2 - 2OD sincp) a2 

kY 
- 2BOQ @ h ky cosp 3 (3.24) 
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where 

ipkx = / dw f 1;: (knRw/2) x 1;: (krrflw/PT1) ) 1: :: :yl 

1 

‘ky = I 
dw 

0 dl-Vwxm/Vm 

Rw = 

fl = 

f2 = 

Tw = 

and 

(l-f2) TWIT1 + f2 SW/S1 , 

2BO coscp I (1+rB2~D2+02- 2C9D sincp) 

rB2/(1+ rB2+D2+02- 2OD sincp) , 

In the forward direction (O= 0) fl= 0, 

(3.26) 

(3.27) 

, (3.28) 

(3.29) 

(3.30) 

(3.31) 

Hence, in this case 

G 2px=0, and a particle moving in the x- z plane (D= 0) radiates only 

odd harmonics. 

IV. Parabolic Potential 

It is useful to see how our results turn into the known ones 

for the particular case of the potential function: 

vX 
= kl x2/2 (4.1) 
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In this case a particle executes linear oscillations along the x- and 

z-axes. From (2.11) and (2.12) we have: 

x = x m sinS2 t (4.2) 

6z = - (Qx; /W sin 2Cl t (4,3) 

Formula (2.12) gives 

* 
(4.4) 

Since the maximum value of xm for a channeling particle is of the 

order of the distance between crystal planes, we see that the wave length 

of particle oscillations is much longer than the characteristic spatial 

periods of the crystal itself. 

Formulae (3.30) and (3.31) give: 

Tw = arcsin w , (4.5) 

SW = %(arcsin w+wm) . (4.6) 

and in particular T 1 = a/2, S1= n/4 (r=l/Z). For the values Gkx and @ 
ky 

after some algebra one gets 

JQ(kf2/2) Jk+2a(kfl> , 

g,= - Co 

a 
ky = s c 

JaW2 h Jk+2k(kfl) , 
p,= z* m 

(4.7) 

(4.8) 

Jk being the Bessel function of the first kind. 
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The spectral intensity and frequency of the k th harmonic of 

radiation in the case of linear oscillations coincides with the results 

of the work of Alferov, Bashmakov and Bessonov lo if we put D=O 

(the case considered in that paper). 

For numerical calculations of the radiation our formulae (3.25,3.26) 

have an advantage over formulae (4.7, 4.8) even for linear oscillations, 
- 

since the computation by means o f integrations in the first ones is much 

more accurate and faster than that by means of summations of the Bessel 

functions of high order. 

V. Polarization of the Radiation 

To determine the polarization of the radiation of the k th harmonic, 

we define two auxiliary complex quantities: 

(5.1) 

(5.2) 

where z and z are unit vectors along the z-axis and the radiation 

direction respectively. The polarization ellipse is definedI' by its 

semiaxes 
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and by the angle J/ between the axis q1 and the vector zxz: 

tan 21l~ = (5.4) 

Angle 6 is the phase difference between a kS and akp 
and is determined by 

the following expression: 

exp (i6) = (5.5) 

For planar channeling 6= O.and the radiation is linearly polarized (q2= 0). 

The angle CX~ between the direction of polarization and the x axis can be 

found from the following expression: 

tan 2a = 
2PQ cos 29 + (P2 -Q2) sin 2~ 

2P Q sin 2~ - (P2-Q2) cos 2~ 

where (for the range 8 << 1): 

P = B akx sin cp - D Qky cos cp , (5.7) 

Q = BQkx cos p -I- (D sin cp - 0) Qky . 

(5.6) 

(5.8) 

VI. Numerical Examples and Comparison of Different Potentials 

We give here examples of the application of the derived formulae for 

channeling in the (l,l,O) direction of a Silicon (Si) crystal. The results 
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are presented for both electrons and positrons. The comparison of the 

calculated results for two choices of continuum potential V(x) for 

positrons is also given. 

Summing up the contributions of adjacent crystal planes, we get the 

following expressions for the continuum potential of Lindhard12 or 

Moli&e13 at the distance x from the crystal plane: 

P+a (6.1) 

3 a 
v;(u) =vo c * 

sinh (6,~) sinh (2Bi- Biu) 

, 

i=l sinh (2Bi) 
(6.2) 

where u= 2x/d, Vo= nZe2nd2, b= 2fia/d,ai= (0.1, 0.55, 0.35), 

'i = (14.82, 2.964, 0.741); n is the number of atoms with atomic number 

2 per unit volume, d is the distance between crystal planes and a is the 

screening length of the electron-atom interaction for the. Thomas-Fermi 

atom model. Expressions (6.1) and (6.2) are valid in the region O< u< 1. 

For other values of u, one can use the relations V(-u)=V(u) and V(u+2p)= 

v(u), p=o, +I, +2, . . . . For the (l,l,O) direction in Si these constants 

have the following values: Vo=117 eV (Z=14, a=0.194 8, d=1.920 8, 

n= 4.994x 1O22 cmD3, b= 0.350). Practically speaking, only the first few 

terms of the sum in expression (6.1) contribute for any given value of u. 

In Figure 1 we present the functions V:(u) V. and V;(u) V. for 
I I 

p=5 (that corresponds to summing over eleven nearest crystal planes). 
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Figures 2 and 3 present as functions of u the frequency n (2.14) of 

channelled electron oscillations and the maximum angle B= Bmy (3.19) of 

the electron trajectory with z-axis for y= 4.5 x 103. 

All the functions were recalculated also with P= 10 with practically 

identical results. All the following calculations are performed with 

P=5. 

Formulae analogous to (6.1) and (6.2) for a positron are the 

following: 

vpu> = v. Q@zTa + $sFTGm - 2\li;m], 
p=l 

P+aJ , (6.3) 

and 
3 

v$d = v. 
c 

ai sinh2(Biu) 

i=l Bi sinh-(2Bi) ' 
(6.4) 

with the same constants as in (6.1) and (6.2). 

In Figure 1 the potentials V:(u) 
I 

V. and V;(u) 
/ V. are also plotted. 

The oscillation frequency Cl and the maximum trajectory angle B with the 

z-axis of a channelled positron are drawn in Figures 2 and 3, respectively. 

Figures 4(7) give the angular dependence of several first harmonics 

of radiation spectra for an electron (positron). Plotted is the number 

of emitted quanta per interval of solid angle dNk 
I 

OdOd cp (3.23) as a 

function of the emission angle O= By (3.21). The crystal thickness L 

was assumed to be equal to 0.1 cm in all the calculations. In Figure 7 

we also present comparison of the spectra for two choices of continuum 

potential. Figures 5 (8) and 6(g) give the spectra of the first harmonic 

for different values of the oscillation amplitude u, divergence angle 
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D= gyy (3.20) of the electron (positron), polar angle cp of the radiation 

and Lorentz factor y of the particle. 

It is interesting to note that the angular spectra for the directions 

near the x- z plane (cp= 0 and cp= TI) go to zero at the values of 0 defined 

by equation Fk(B,9, cp>= 0 (cf*, (3.24)}. 

VIII. Conclusion 

The method of calculating the frequency and angular spectra of 

channelling radiation developed here gives us the possibility of finding 

all the characteristics of the phenomenon for any single particle and 

quanta parameters. These results can further be used to obtain spectra 

averaged over the particle distribution in transverse phase space of a 

beam for any given geometry of experiment. 
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Figure Captions 

1. Continuum potential of the Si crystal for a channelled particle as 

a function of u= h,,+(o,<us 1): l(2) - Lindhard (Moliere) potential 

for electron (right scale): 3(4) - Lindhard (Moli$re) potential for 

positron (left scale). 

2. Oscillation frequency D (2.14) of a channelled motion in units 

1o15 fn/sec. Notations are the same as in Figure 1. y~4.5~ 103. 

3. Maximum oscillation angle B (3.19). Notations are the same as in 

Figure 1. y= 4.5X 103. 

4. Angular (O= ey) dependence of several first harmonics of the radia- 

tion of electron with amplitude u= 0.1 in (l,l,O) direction of Si 

crystal 0.1 cm thick. y=4.5x 103; (1) k=l, (2) k-2, (3) k=3, 

et cetera. 

5. The angular dependence of the first harmonic (k= 1) of electron 

radiation for amplitude u= 0.1 and different divergence angle D 

(3.20) and polar angle cp: 

(1) D= 0.0, cp= Oandr 

(21 D- 0.0, cp=1~/2 and 31~12 

(3) De0.5, cp= 0 and n 

(4) D=O.5, cp=1~/2 

(5) D= 0.5, cp= 31~12 

(6) D=l.O, cp= 0 and r 

(7) D= 1.0, cp=rr/2 

(8) D= 1.0, cp= 3a/2 

Lindhard potential, y= 4.5 X103 
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6. The dependence of the first harmonic (k=l) of the channelled 

radiation on the emission angle 0 for different amplitudes u of 

the electron trajectory and different Lorentz factors y for q=O: 

(1) u=O.l, y=4.5x102 

(2) u= 0.1, y=4.5>: lo3 

(3) U" 0.1, y=4.5x lo4 
* 

(4) u= 0.5, y=4.5x102 

(5) u= 0.5, y=4.5x103 

(6) U'O.5, y=4.5x104 

Lindhard potential. 

7. Angular (O= 0y) dependence of several first harmonics of the radia- 

tion of positron with amplitude u= 019 in (l,l,O) direction of Si 

crystal 0.1 cm thick. y=4.5x103; (1) k=l, (2) k=2, (3) k=3, 

et cetera. Also presented is the comparison of radiation spectra 

calculated for Moli&e (solid lines) and Lindhard (dashed lines) 

potentials. 

8. The angular dependence of the first harmonic (k=l) of positron 

radiation for amplitude u= 0.9 and different divergence angle D 

(3.20) and polar angle cp: 

(1) D= 0.0, 

(2) D= 0.0, 

(3) D= 0.5, 

(-4) D= 0.5, 

(5) D= 0.5, 

(6) D=l.O, 

(7) D=l.O, 

(8) D=l.O, 

cp=O and IT 

cp= 1~12 and 31~12 

cp=O and IT 

cp=r/2 

cp=3~~/2 

cp=O and n 

cp=n/2 

cp=3~/2 

Moliere potential. 
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9. The dependence of the first harmonic (.k= 1) of the channelled 

radiation on 

the positron 

the emission angle 0 for different amplitudes u of 

trajectory and different Loretz factors y for cp= 0: 

(1) u= 0.9, y=4.5x102 

(2) u= 0.9, y=4.5x103 

(3) U" 0.9, y=4.5x104 

(4) u= 0.5, y=4.5x102 

(5) u= 0.5, y=4.5x103 

C-6) u10.5, y=4.5x104 

Moliere potential. 
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