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ABSTRACT 

Various properties of the group weight of 

Feynman graphs in non-Abelian gauge theories are 

discussed. Infinitely many skeleton graphs with 

vanishing weight are exhibited for every compact 

Lie group. The l/N2 dependence of the topological 

expansion is related to an l/NZ expansion in some 

channels with the exchange of definite quantum 

numbers. 
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1. Introduction 

In the perturbative analysis of gauge theories it is convenient to 

represent every Feynman graph G as the product of a weight factor WG 

depending on the gauge group, times a momentum integral. An efficient 

graphic method to compute WG for most simple Lie groups has been 

described. ' We make use of that method to discuss further properties of 

the weight factor.2 

In Section II we show that the weight factors of a SU(N) gauge 

theory are polynomials inN2(apart possibly from a factor N) and we 

relate this property to the topological expansion of the scattering 

amplitude in the channels where definite quantum numbers are exchanged. 

In Section III we observe that, at first sight surprisingly, infinitely 

many skeleton graphs have vanishing weight in every non-Abelian gauge 

theory. This feature is typical of non-Abelian gauge theories and may 

be of help in the analysis of perturbation theory although a rough 

estimate suggests that the number of non-vanishing graphs grows with the 

perturbative order much faster than the number of the vanishing ones. 

In Section IV we derive the projection operators corresponding 

to exchanged states with definite quantum numbers in gluon-gluon elastic 

scattering in SU(N) gauge theory. 

II. Planarity and Topological Expansion 

In this section we discuss the dependence on N of the weight WG of 

an arbitrary graph in the SU(N) gauge theory.3-8 

At order v in the coupling constant g, the graph has v trilinear 

vertices (in the usual way the four-gluon vertex is replaced by couples 

of three-gluon vertices)l some of which being three-gluon vertices v Et' 
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the others being quark-quark-gluon v 
4' 

v=vg+v . 
4 

The Feynman graph has 

p= pg+pq propagators (we do not count the external lines), that is 

pg gluon and pq quark propagators. If the graph has n external lines, 

n= 3v- 2p, the group factor WG is a tensor of rank n. The graphical method 

described by Cvitanovic is an efficient way to express the generic tensor 

WG as a linear combination of a complete set of independent tensors - 

having the same rank, the basis tensors, which are associated to graphs 

without internal g1uons.l 

In the SU(N) gauge theory the evaluation of the group factor WG for 

any graph only involves the two steps: (a) to re-express the three-gluon 

vertices in terms of the fundamental representation (see Fig. 1): 

if = ijk 2 Tr ( TiTjTk - TkTjTi ) (2 l 1) 

(b) to replace all internal gluon lines with gluon projection operators 

(see Fig. 2): 

(2.2) 

WG is then expressed as the sum of 2 vpg "double line" graphs. 

As an example, Fig. 3(a) shows a graph at order g 10 in perturbation 

theory, with six three-gluon vertices and nine internal gluon propagators. 

In Fig. 3(b) there is one of the 2 15 "double line" graphs obtained after 

steps (a) and (b). In the "double line" graphs may appear index loops, 

. i.e., fermion loops unconnected to the rest of the graph and to external 

lines, each contributing a factor N, which are called windows. There 

are also index paths called boundaries which are attached to the external 

lines. There are no boundaries for graphs where the external sources are 
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all color singlets. Each boundary represents a tensor with rank equal to 

the number of external lines attached to the index path. For example, 

the "double line" configuration in Fig. 3(b) has one window and one 

boundary, as shown in Fig. 3(c). 

Basic notions are those of planarity and degree of non-planarity. 

It is very convenient to "complete" the graph G by adding one more vertex, 

called PW,- where all external lines of G are incident (see Fig. 4). One 

can now "draw" the completed graph on a sphere with h handles so that 

lines intersect only at vertices (embedding). The minimum hm for which 

the embedding is possible is a characterization of the degree of non- 

planarity of the graph. The graph is planar iff hm= 0. g The graph in 

Fig. 3(a) has h, =l, that is it may be embedded on a torus. The completed 

graph embedded on a sphere with h m handles may be regarded as a polyhedron 

whose edges are the lines of the graph. Then the Euler formula relating 

the number of vertices V, of edges P and faces F holds: 

V- P+F= 2-2h m (2.3) 

which in terms of the original graph, is: 

(v+l)- (p+n)+ (f+n-l>= 2-2hm (2.4) 

where f Z F-n+l. 

The multitude of "double line" graphs originating from a Feynman 

graph has a different number of faces and handles but the same number 

of 

f+2h = p-v+2 = t-f+2 (2.5) 

Indeed the number of faces ranges between the maximum 

fM = 2-v+ p- 2hm and the minimum f = 0 (if fM is even) or fm = 1 m 

(if fM is odd). 
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The quark loops in the original graph do not contribute to the number 

of faces of the "double line" graph. Then 

f-q = b+w (2.6) 

where q, b, w represent the number of quark loops, boundaries and 

windows. 

The group theoretic weight WG can then be expressed: 

V 
WG = g c 

NW c Tcm) m 

where T(m) is one of the basis tensor, the summation extends over all 

the "double line" graphs and the coefficient cm counts the multiplicity 

of the configuration with w windows and the factors of 2 and (-l/N) 

arising from steps (a) and (b). 

By use of (2.5) and (2.6) the power NW can be‘rewritten: 

V 
'G = g 

c ., 'rn N 
f-q-b ,(m) 

The coefficient cw may contain a 

line" configurations which arise 

step (b): 

(2.7) 

dependence on N only for those "double 

from the singlet subtraction term in 

2 (Ti); (Ti);-- + 6; 6; 

For the first such replacement, the "double line" configuration has 

v-2 vertices and p-3 propagators, then its invariant f+ 2h is a positive 

integer with different parity from the original graph or any configuration 
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where instead the replacement 

(2.8) 

has been made. 

Therefore (l/N) times the value of the double line configuration 

where the singlet subtraction term has been used, has the same parity of 

the power of N as the graph with the replacement (2.8) everywhere and - 

both can be written in the form (2.7) with coefficients cm now independent 

on N. The same argument holds for multiple use of the singlet subtraction 

terms and Eq. (2.7) holds for the general graph, with coefficient cm 

independent on N. 

It is then clear that if one is interested in processes with fixed 

number of boundaries, for instance processes with color singlet sources 

only (b= 0) then Eq. (2.7)‘ arranges the contribution of each graph in 

decreasing powers of N2. Or one may sum over the perturbation series and 

take the limit N-tm with g2N=y2 fixed and one would obtain that the 

contribution to amplitudes with fixed number of boundaries and quark loops 
n 

are arranged in decreasing powers of NL and are associated with increasing 
4-0 

degree of non-planarity. 

A simple remark may shorten the computation of WC. Step (b) 

(Eq. (2.2)) may be substituted by the simpler replacement (2.8) when 

i) the gluon connects two three-gluon vertices or ii) the gluon connects 

one three-gluon vertex with one quark-quark-gluon vertex. 
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Proofs are straightforward: 

(i)2f jikfklm = -4Tr(TjTiTk- TkTiTj) Tr(TkTITm- TmTITk) 

= -2TrlT.T.T T - TjTiTmTl- TiTjTITm+TiTjTmTl) 
J ilm (2.9) 

For the point (ii) we have: 

* 

i( fkij = 2i (Tk]i Tr(TkTiTj - TjTiTk) 

= 1 * CT,,T~$ (2.10) 

Therefore, in all Feynman graphs where there are no gluons which directly 

connect quark lines, the number of "double line" graphs originating from a 

vg a simple graph is reduced to 2 . Of course this happens in a pure SLJ(N) 

gauge theory (without quarks). Then one finds that for two-point functions 

and three-point functions, where there is just one basic tensor C respective- 

ly 6ab and fabc) , the group weight WG of the generic Feynman graph is 

generic Feynman graph is 

WG = 6ab (Ng2)' '2' 

P=O 

cp (N2),-' at order g 2s (2.11) 

[s/21 

WG = fabc g(Ng2)' c cp(N2)-Pat order g2'+l (2.12) 

P=O 

where the leading coefficient c o is different from zero if and only if 

the graph is planar. lo 

As it is shown in Section IV, for the 4-point function one has six 

basic tensors, three of which (A,B,C) have one boundary and three (D,E,F) 
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have two boundaries. At order g 
2&2 

one finds 

t 

Cd21 [s/21 

wG = g2(g2N)' A c a,(N')-'+D c 

Es/21 

bp(N2)-P+G c cp (N2)-' 

0 0 0 

dp(N2)-'+E 'r ep(N2)-'+F '2 fp(N2)-' II (2.13) 

0 0 

higher n-point functions have weights WG expressed in the same form after 

one has taken care of the N factors associated with the number 'of 

boundaries of the basic tensors. 

As one can see from (4.3)-(4.8) in Section IV, the first four pro- 

jection operators do not mix basis tensors with different boundaries or 

they mix them with the proper pure factor N. Therefore the gluon-gluon 

elastic scattering amplitude in those channels will be a polynomial in N2, 

apart from an overall normalization independent on the order in perturba- 

tion theory, while the scattering amplitude in the channels associated 

with the last two projectors loses the simpler dependence on N2. 

III. Vanishing Graphs 

It is easy to show that in non-Abelian gauge theories there are in- 

finitely many skeleton graphs with vanishing weight. They are identified 

in an obvious way by only using the anitsymmetry property of the three- 

gluon vertex so that the results of this section hold for any compact 

Lie group. It is convenient to restrict first to a pure gauge non-Abelian 

theory. From the graphical rules1 it is obvious that a graph containing 

a subgraph with vanishing weight will also have vanishing weight. 
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Furthermore, since there is a single independent tensor of rank two and a 

single one of rank three, we may restrict to skeleton graphs with vanishing 

weight. In fact each such skeleton will produce vanishing graphs if arbi- 

trary self-energy or vertex insertions are made. While it may be difficult 

to give necessary and sufficient conditions for the vanishing of the weight 

of a skeleton graph in a general non-Abelian theory, our remarks select a 

large class of vanishing graphs. 

Let us consider the weight TG 
al . ..Uk Tl...Tm of a graph G(see Fig. 5). 

It may be obtained by partial saturation of the weights of the subgraphs 

Gl and G2 

TG =T G1 TG2 
5 . ..Uk Tl.e.Tm O1 o--Ok alaeean alme.an Tl...Tm 

A simple sufficient condition for the vanishing of TG is that T 
G1 

and 

TG2 are respectively symmetric and antisymmetric in two corresponding 

saturated a indices. In particular a vanishing weight is obtained for any 

three-gluon diagram which is the product of a three-gluon vertex times a 

four-gluon tensor symmetric in the two saturated indices. Because of the 

nature of the three-gluon vertex every planar, or non-planar, four-leg 

graph with a plane of symmetry through two of the external lines, is 

associated with a tensor WG symmetric in the couple of indices (say a,B) 

of the external gluons not lying in the symmetry plane. The lowest orderll 

examples of such symmetric skeleton graphs are shown in Fig. 6a-9a. 

By convolution with the bare three-gluon vertex f -caB 
(or equiva- 

lently with any three-gluon Green function I' Tc-6 
) one obtains a vanishing 

graph (see Figs. 6b-9b). 
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This procedure suggests a very rough estimate of the number of such 

symmetric four-leg skeletons. At large order n in the coupling constant, 

the number of symmetric skeletons with only the two external vertices 

lying in the symmetry plane is roughly x[F), where x(m) N m! is the 

number of skeletons (which in this level of estimate are as many as the 

generic graphs)12 at order m. Therefore the ratio R of the vanishing 

skeletons-versus the non-vanishing ones, for the three-point function, 

would be, at order n 

This estimate neglects the facts that: a) there are symmetric skeletons 

with vertices on the symmetry plane, b) not all symmetric four-point 

skeletons lead to three-point skeletons (see for example Fig. 7b or 9b), 

c) depending on the specific gauge group of the theory, there are non- 

symmetric four-point skeletons having a symmetric tensor.13 While (a) and 

(c) would increase the estimated ratio R, (b) would decrease it. It seems 

however that none of these points can substantially change the very rough 

previous estimate. 

We can now consider a non-Abelian gauge theory with a multiplet of 

fermions transforming as the fundamental representation of the group. 

Again one may look for four-point gluon graphs with a symmetry plane, as 

in Fig. 10a. When convoluted with the three-gluon vertex, they originate 

vanishing graphs, as in Fig. lob. Since the reflection around the 

symmetry plane must preserve also the direction in the fermion path, one 

expects that only special ways of replacing a gluon path with a fermion 

path in the vanishing gluon graphs will still give a vanishing graph. 
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One may note however that even in some cases where the reflection 

around the, symmetry plane does not preserve the direction of the loop, 

one may still produce a vanishing graph because of additional properties 

of weights depending on the gauge group. For instance in the SU(N) case, 

it is easy to check that the tensor T ayB6 which is the weight of the 

graph in Fig. lla is a symmetric tensor in (a,B), although the graph has 

no symmetry plane through (~,a). Therefore the three-point graph in 

Fig. llb has vanishing weight.14 

We also remark that for any given graph with three external lines 

and vanishing weight one can obtain a vanishing “vacuum" graph by 

"completing" the former with one more coupling of the type fabc or (ha]:. 

Next by stereographic projection (as it was mentioned in the definition 

of planarity in Section II) from another inequivalent vertex of the 

"vacuum" graph, one may obtain a new vanishing three-point graph. For 

instance, in this way one shows that the vanishing graph in Fig. 12 is 

related to that in Fig. llb. 

We finally mention that the study of graphs with definite symmetry 

properties can be pursued in an algebraic way15 through the study of the 

spectral properties of the adjacency matrix. It is amusing to notice that 

the two lowest order vanishing graphs, already exhibited in Ref. 1, when 

completed by one more trigluon vertex, are just the first representatives 

of a peculiar class of graphs, sometimes calles cages.16 We checked that 

all the five cages with trilinear vertices, exhibited in Ref. 16, have 

vanishing weight due to the mechanism previously described. 
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IV. Basis Tensors and Projectors 

In order to discuss the cases where the l/N expansion is actually a 

l/N2 expansion (see Section II) and for completeness reasons, we write 

here the SU(N) tensor basis for processes with r= 4 external gluons (no 

external quarks) and the linear combinations of the basis tensors which 

are associated to the exchange of definite quantum numbers. The set of 
- 

all distinct traces over r Ti matrices form a natural tensor basis, but 

the tensors of rank r, r 2 N so obtained are not linearly independent.17 

Actually in a pure SU(N) gauge theory by the rules (2.1) and (2.2) complete 

and independent bases are obtained by symmetrizing (or antisymmetrizing) 

traces of products of Ti matrices, which are graphically fermion loops of 

even (odd) length. By Furry theorem, this is also true if the Lagrangian 

contains fermion fields.18 Therefore, for r= 4 .one has six instead of 

nine basis tensors, i.e.: 

A+ [Tr(TaTdTcTb) f Tr(TaTbTcTd) 1 

B = + [T~(T,T~T~T~] + T~(T,T~T~T~)I 

(4.1) 

C = i CTr(TaTdTbTc) + Tr(TaTcTbTd)l 

D = bab ‘&j’ E = 6ac 6bd’ F = 6ad %c 

They are shown in Fig. 13. 

One may define a product of basis tensors as a convolution in the 

"vertical" channel (that is KL= H means Hacbd=KactuL tubd 1. Since the 

fermion loop is symmetrized, this product is commutative, D acts as the 
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identity and one easily finds: 

A2 = & (D+F) - & (B+C) -I- 1 E 
16N2 

AB = AC = $(B+C)+ LE 
16N2 

AF = A, BF = C, CF = B 

BE = CE = $ (N-i) E 

(4.2) 

AE =GE, FE = E, F2 = D 

B2 = c2 = - + (B+C) -I- (3 + i) I31 

BC = ; [NC - $ (B+C) + ($++)El 

E2 = (N2 - 1) E 

The linear combinations of the basis tensors that are mutually 

orthogonal projection operators and that represent the exchange of a state 

with definite quantum numbers in the "vertical" channel are here labelled 

with the dimension of the irreducible representations in the decomposLtion 

of the product (N2- 1) 8 (N2- 1) and by the symmetry (or antisymmetry) 

property in the exchange of the indices a and c (or b and d).lg 

E (pomeron channel) (4.3) 

'N2-l A 4 (B -C) 
, = N (antisymm. adjoint channel) (4.4) 
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p&1,3 = w-%-- 
N2-4 CB + c 

(symm. adjoint channel) (4.5) 

'(N2-4)(N2-1)+ (N2-4)(N2-1) ,A = 
+ (B-C) ++ (D-F) (4 -6) 

4 4 

= 2A-& (B+C) i-i (D+F) + 
1 

'N2(N-l)(N+3) , s 2(N+ l)(N+ 2) E 
-4 

(4.7) 

=-2A-&(B+C)+$ 
1 

'N2(N-3)(N+l) , s (D+F)+2(N- l)(N- 2) E 
4 

(4.8) 

for N= 3 the representation 
N2(N-3)(N+l) 

4 is not present and indeed 

the last projection operator vanishes because of the relation20 ( valid 

only in SU(3)) 

8(A+B+C) = D+E+F 

In N- 2, more relations exist (see for instance Ref. 1) and one is left 

with only three channels associated with P1 s, P3 A, , , 
P5 s. 

, 
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Figure Captions 

Graphical representation of Eq. (2.1). 

Graphical representation of Eq. (2.2). 

(a) A graph at order gl' in perturbation theory. 

(b) One of the 215,'1double line" contributions to the group 

weight of the graph in Fig. 3(a). 

(c) The same contribution as in Fig. 3(b), now exhibiting 

boundaries and windows. 

The graph of Fig. 3(a) is here completed by adding one more 

vertex P m in order to exhibit its degree of non-planarity. 

A generic graph G whose weight is considered as a convolution 

of the weights of the subgraphs G1 and G2. 

6(a), 7(a), 8(a), 9(a). The lowest order graphs with four external 

lines that have a symmetry plane through the external lines (y,6). 

6(b), 7(b), 8(b), 9(b). The corresponding vanishing graphs obtained 

by convolution of the graphs in Figs. 6(a), 7(a), 8(a) and 9(a) 

with a three-gluon vertex f Tab' 

10. (a) A graph with four external gluons and one fermion loop, 

which has a symmetry plane through the lines (y,6). 

(b) A vanishing graph obtained by convolution of the graph in 

Fig. 10(a) with the three-gluon vertex. 

11. (a) A graph which does not have a symmetry plane through the 

lines (y,6) but whose weight is a tensor symmetric in the 

indices (cc,@). 

(b) A vanishing graph obtained by convolution of the graph in 

Fig. 11(a) with the three-gluon vertex. 
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the vanishing graph of Fig. 11(b) and next by "stereographic 
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13. Basis tensors for gluon-gluon scattering in SU(N). 
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