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1. INTRODUCTION 

Quantum chromodynamics should need little introduction, since it 

already permeates almost all descriptions of strong interaction phenomena 

nowadays. We recount here very briefly the basic motivation, beginning 

with some factual evidence: 

1. Quarks of fractional charge and three colors seem to be required 

as constituents of hadrons in order to understand the spectrum of hadrons 

and their resonances. 

2. The ratio of electron-quark to neutrino-quark deep inelastic 

scattering argues strongly for fractional charge of the quarks. 

3. In addition to the spectroscopic evidence, the observed width 

of'the decay IT' + 2y and the large cross section for e+e- + hadrons is 

successfully understood provided there are 3 colors of quarks. 

4. The color-symmetry should be exact (or very nearly so); other- 

wise we would expect additional low-lying color non-singlet hadron states, 

states for which there is no empirical evidence. 

Based on this evidence, an analogy between color and charge is an 

attractive one. Just as the conserved charge is closely related to the 

electromagnetic force, one may search for a strong force related in a 

similar way to the conserved color quantum-numbers. The most immediate 

answer to this, and the one most similar to quantum electrodynamics (QED) 

is quantum chromodynamics (QCD). The beginning of the analogy between 

QED and QCD is exhibited in Table 1. 

In that table the bold-faced quantities are 3 x 3 matrices acting 

on column vectors,of quark fields 
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TABLE1 

Conserved quantum 
numbers 

Symmetry group 

Transformation 
property of source 
(electron or quark) 

Current density 

Quanta of force 
coupled to currents 

Field-variables 
(potentials) 

Gauge invariant 
substitution (when 
acting on quarks) 

QED 

charge 

u(1) 

e -t eiQ8e 

G Y, e 

massless photon 

Au 64 

QCD 

3 colors 

SU(3) 

qi + 
( 

e(i/2)L*w_ 

1 

. 

ij 4j ) 
i,j =1,2,3 

3s Yu p q ; A= 1,2,...,8 

eight massless gluons 

8 

c 1. X AA(x) 
A=12NA p 

a a -j-- axll axp ieAu(x) & +$- - ie&u(x> 
lJ P 

91(x) 
q(x) = 

i ! 
92 (x) 
q3(x) (1.1) 

The matrices h 
--A are the 8 independent 3 x 3 hermitian traceless matrices 

of Gell-Mann, and are exhibited in Section 3. 

The comparison in Table 1 could go on and on. That in fact will be 

the case throughout these lectures. For now it suffices to say that QCD 

in the weak coupling limit can be formulated in a way very similar to 

QED. We may ask whether, once having that formulation in hand, it pro- 

duces any useful results. The answer is yes; it appears to provide a 
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consistent description of those hadron processes that depend on short 

distances only, as well as provide some justification for the applicability 

of parton-model ideas to hadron processes. The list of these includes 

the value of R(e+e- + hadrons) and the approximate scaling behavior of 

deep-inelastic lepton-nucleon structure functions. In addition the 

deviations from scaling exhibit the qualitative behavior expected from 

the theory. Some claim the significance is precise and quantitative, 

but we shall not raise that question here. 

An important property of QCD that distinguishes it from QED is 

"asymptotic freedom." In QED, the effective charge at short distances 

becomes larger as a consequence of vacuum polarization. If for QED we 

write in momentum space the force between static charges as 

2 
V(q2) =: 4=a(2q ) 

Q 
(1.2) 

then 

Thus at sufficiently short distances (but in practice ridiculously short), 

QED becomes a strong-coupling theory. As we shall discuss in more 

detail later, in QCD the vacuum-polarization has the opposite sign; the 

corresponding equation is 

1 l + 
(33- 2Nf) 

-=- 
a(q2> a(M2> 

(1.4) 
12lr 

where Nf (-3 or 4) is the relevant number of quark flavors. Thus at 

sufficiently large distances (large compared to 10 -14 cm) QCD becomes 

a strong-coupling theory. This is both good and bad news: good news 
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because something non-perturbative is needed at large distances to pro- 

vide a mechanism for confinement of color: neither the gluons nor quarks 

which appear in the field equations appear in the spectrum of hadrons. 

What exists is only a hypothesis that only color singlet combinations 

of quarks and gluons can exist as isolated particles. The bad news is 

just that we don't know how to calculate with - and even to formulate - 
c. 

the theory on a large distance scale. 

It is therefore a serious question whether QCD is a theory at all. 

Let us compare the situation with QED. There one can follow textbook 

approaches to the subject - specifically two particular textbooks,l 

hereafter to be known as Book I and Book II. The Book I approach uses 

the classical equations of motion and common sense to motivate rules for 

Feynman-diagrams. The emphasis is on learn-by-doing and intuition, with 

a relatively casual attitude toward a strict systematic logical develop- 

ment. I think most of contemporary perturbative QCD does not get far 

beyond this level. Beyond the relatively rock-solid predictions to which 

we already alluded, there do not exist clear rules which divide phenomena 

dependent on the non-perturbative, confining part of the theory from 

phenomena dependent on the purely perturbative aspect. 

In QED, the Book II approach is the strict logical one of canonical 

quantization of a classical field theory. In the presence of interactions, 

but in the weak-coupling regime, the LSZ formalism can be used to relate 

asymptotic states of physical, isolated electrons and photons to the 

field variables. However, the formalism relies rather heavily on these 

asymptotic scattering states - in other words, on large distances. There- 
. 

fore this approach appears to be closed in QCD. Actually as we shall 
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see, the situation is not quite that bad. However, I think perturbative 

QCD is much more restricted than QED, for reasons that hopefully become 

clearer as we proceed. 

These lectures will concentrate for the most part on the Book II 

approach. This is not meant to imply disparagement of the Book I method; 

Stan Brodsky will most ably cover that.2 Nor is it meant to downgrade 

other approaches, in particular those based on path-integral formulations.3 

Indeed, use of path-integral techniques has thus far been the most success- 

ful mode of attack on the difficult mathematical problems posed by QCD. 

The rules for. diagrams are most efficiently derived in that way (especially 

in correctly accounting for the subtleties associated with Faddeev-Popov 

ghosts). Also the demonstration of confinement in strong-coupling lattice 

QCD and the studies of instantons are best done within the path-integral 

formalism. Our rationale for avoiding it here is simply to look at the 

subject in a slightly different way [after all, some problems, such as 

the hydrogen atom, are more difficult using path-integrals], as well as 

to spare the less theoretically oriented reader the unavoidable preliminary 

technology.needed to set up the path-integral formalism. In any case, 

the problem confronting everyone is difficult; all attacks should be brought 

to bear. 

We shall classify the subject-matter into three stages of increasing 

complexity. In the first we consider "pure" QCD in the absence of any 

fermions or other sources. The QED analogue is the (trivial) theory of 

free non-interacting photons. For QCD this is presumably the (nontrivial) 

theory of interacting gluonium (color-singlet bound glue) states. The 
. 

second stage allows the introduction only of superheavy quarks in addition 



I 

-9- 

to the pure glue, with emphasis on the non-relativistic limit of the 

quark motion. In QED this is not much more than the theory of the Coulomb 

interaction - in other words, nothing but all of chemistry. In QCD, 

this much should already allow study of basic questions of confinement; 

e.g., the nature of the static potential between heavy quarks at large 

distances. Only in the third stage will we introduce the light quarks 

u, d, s. The presence of copious vacuum polarization and pair creation 

should modify the structure of the theory in a major way. Nevertheless 

it can be hoped that these modifications have less to do with the exist- 

ence of confinement, and more to do with the nature of the spectrum of 

confined hadrons. 

These lectures will be organized as follows. In Section 2, after 

making some assumptions about the nature of QCD, we shall describe what 

we think the solution of the theory looks like, first for Stage I, and 

then for Stages II and III. This will not even be at Book I level - call 

it Book Zero. For the most part we will not question whether it is the 

solution; that problem is too hard. But if it weren't, it isn't clear 

we would ever be very interested in QCD as a theory to be applied to the 

real world. 

In Section 3, we discuss canonical quantization of QCD with use 

of a Hamiltonian formulation (in A0 = 0 gauge). We shall encounter formal 

problems such as gauge-ambiguities and topological classifications of the 

states (0-vacuua, instantons, and all that) not met in QED. This will be 

attempted at a descriptive, relatively painless level, details being left 

as an appendix to.these lectures. Sections 5, 6, and 7 describe in more 

detail the properties of Stages I, II, and III of QCD as we sketched 
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above. In Section 8 we briefly sketch and compare various approaches to 

the confinement problem. In Section 9 we very briefly discuss more 

radical alternatives to QCD, such as the string model or the Pati-Salam 

program. Section 10 is devoted to conclusions and to an assessment of 

the experimental situation. Two appendices are devoted to a more technical 

exposition. We urge that it be studied in parallel with the main text. 

2. THE SOLUTION TO QCD 

In this section we shall be optimists and look through rose-colored 

glasses at what the solution to the theory should qualitatively look like 

if all goes well. In doing this we make the following set of assumptions. 

1. At distances small compared to 10 -14 cm, the theory is just that 

of unconfined gluons and quarks interacting with each other via a coupling 

a strong of small strength: a 2 0.2. strong 

2. Only color-singlet particle states exist in isolation and none 

of them are massless at any stage.4 

3. All confinement effects are "soft," i.e., characterized by a 

momentum scale 2 1 GeV. 

4. "Naive" parton-model ideas may be used to connect what goes on 

at short distances to hadron structure. 

Now let us advance to Stage I and ask what the theory is like. At 

short distances the only quanta are color-octet spin-l gluons. At large 

distances we must form composites of these quanta to form color singlets. 

The details of how to do this depend upon questions of confinement. 

Nevertheless we can make some educated guesses, based upon what happens 

to up and down quarks. At short distances these quarks have color and 
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negligible mass (a few MeV, according to current-algebra ideas5). But 

in a hadron the quarks can be considered to have a nonvanishing mass 

(-300 MeV) and to move non-relativistically. If this is also so for 

gluons,6 then the S-wave states can be classified rather easily;, their 

wave functions must be gauge-invariant and color-singlet. The simplest 

are two-gluon bound states. They are all SU(3) singlet and C-even states. 
C. 

C-odd states can be formed from 3 gluons (decay products of $J and T 

are a familiar example) as well as C-even. 

Two color-electric fields might bind to J = O+ and 2+ states, while 

two color-magnetic fields might bind to another distinct 0 + and 2+ hyper- 

fine multiplet. An electric gluon also might bind to a magnetic gluon; 

in this case the parity is reversed and the triplet is O-, l+, 2-. (The 

O- state may be regarded as suspect inasmuch as the.operator which creates 

it is Tr 3; $, which is a total divergence and which plays an important 

role in instanton phenomena and the U(1) problem;7 see Section 6 and 

Appendix G.) 

Just as for ordinary hadrons, these states should possess a composite 

structure and have a rich spectrum of excited states. They should scatter 

from each other like hadrons generally do. The big question is evidently 

their typical mass. The only mass in the theory is the mass scale at 

which perturbation theory breaks down; by hypothesis -1 GeV. Estimates 

from the MIT bag model have given masses of 1.0-1.5 GeV for the lowest 

lying gluonium states. But, to say the least, this is an uncertain 

business.* There is a school of thought (which I don't understand) that 

puts gluonium masses considerably higher. We shall return to the 
. 
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phenomenology of such objects in Section 4, but now choose to quickly 

move on to Stage II. 

In Stage II, we introduce heavy color-triplet quarks such as charm 

or bottom quarks. Actually for this idealization superheavy quarks Q 

with mass 2100 GeV would serve the purpose best, so that the size of their 

bound-state wave functions would clearly be small compared to the con- 

finement radius. The properties of such superheavy quarkonium would be 

expected to be well-calculated perturbatively. The "binding energy" 

calculated from perturbation theory would be hydrogenic, -a' stM C-1 GeV) , 

and the size (astM-') - lo-l5 cm. 

Now let us imagine scattering an electron from this heavy quarkonium 

system at very large momentum transfer - say, Q2 - lo4 GeV2. The struck 

quark will move semi-relativistically (v - 2) away from its partner. 

Because of its large inertia, nothing to do with the confinement mechanism 

can immediately stop it. By hypothesis (specifically, assumption 3 made 

in the beginning of this section) the rate of momentum transfer to gluon 

degrees of freedom, potential energy, etc. cannot exceed a few GeV per 

fermi of travel. Thus after some time (say 10 -22 sec., which is a long 

time), the heavy quark and antiquark will be separated by a large distance 

(say, >lO-11 cm). However by hypothesis (assumption 2) the quarks are 

not themselves free because they are color triplets, not color singlets. 

Nor will any finite number of (octet) gluons locally dressing or screening 

the struck quark do any good.g Pair-creation of superheavy quarks might 

be invoked, but this is a very unlikely process because of the large 

rest mass of the quarks Q. Indeed if somehow a virtual Qq pair could be 

created the final state would consist of two heavy quarkonia. But the 
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total mass would have to be 2 4M 
Q' 

and the total energy of the system 

need not be that large. 

We are thus unable to avoid the conclusion that during the separation 

of Q and 3 some spoor of gluon degrees of freedom were left behind in the 

space between them. The QG system is only able to be considered as one 

complex extended (color-singlet) system and not two isolated ones. What 

region of space is likely to be affected? We may consider three possi- 

bilities: (a) very big, (b) string like, and (c) minimal, as shown in 

Figure-l. The very big system looks inefficient (too much stored energy) 

and also appears to depend upon degrees of freedom of long wavelength. 

By hypothesis (assumption 2) there are no massless color-singlet modes, 

and configurations of such large spatial extension (even though they are 

not in isolation) make more serious the problem of absence of massless 

modes. While this is rather feeble hand waving, we are led to consider 

more favorably case (b). Here a string of fixed thickness connects the 

Q and q. Evidently the diameter of the string should be related to the 

confining scale and be between 10 -13 and lo-l4 cm. The energy per unit 

length should be constant, and can be estimated from "old" hadron 

spectroscopy or from the charmonium potential. In either case an energy 

per unit length of 1 GeV per fermi is a reasonable guess. 

The minimal case (c) also supposes a string configuration, but 

allows increasing constriction as the string gets longer and longer. 

But such a constriction seems to violate our starting hypothesis. Given 

a constriction of size small compared to the confining radius, momenta 

large compared to the confinement scale will be involved in the confine- 

ment mechanism. This violates our assumption 3. 

- : 
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- 
8 Q------f----Q 0 - 

(0) 

(b) 

a- 79 (cl 3662Al 

Fig. 1. Three views of the color field between widely separated 
heavy quarks. 



- 15 - 

Therefore we find solution (b) the preferred one and infer that (in 

Stage II) a string composed of gluon degrees of freedom with characteristic 

thickness of order the confinement scale and an energy per unit length 

-1 GeV/f connects widely separated superheavy quarks. Furthermore this 

string is universal; it depends only on the color triality of the quark 

source and not on specific color representations (e.g., 5, l-5, 24, etc.) 

of the sources. To see this, first suppose that the superheavy quark 

were a color octet. Then upon separation of Q and qthere will be no - 

string at all: the color of the quark can be locally screened by an 

octet gluon. In other words there should be color-singlet states of Q 
- 

(or Q) bound to a gluon. Now consider a quark in a different representa- 

tion of nonvanishing triality such as 5. A string connecting a 6 and 7; 

would apriori be expected to have a different energy per unit length 

than for a string connected 3 and y- probably larger, because there is - 

more color-flux. If the energy per unit length is larger, then it is 

. 

energetically favorable for the sources to be partially screened by 

gluons to form an effective source which is 3 or 7 - -0 For example 3 is 

contained in 6 @I 8. In a similar way, any color representation can be 

reduced to 1, 2, or 7 by multiplication by a suitable number of 8's. - - 

Thus either there is no string or else it is coupled to an effective 

source made of 3 and 3. - - 

Now let us return to the original problem of dynamics of the QG 

system. Evidently, the first approximation is that they move semi- 

classically in a confining linear potential. But how does the system 

decay? The two mechanisms available are radiation of gluonium and, for 
. 

E > 4M 
Q' 

dissociation into two quarkonium states. Each of these 
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processes can be further subdivided into soft and hard processes. We 

discuss the hard processes first. The Q and q are in a bound state with 

very little damping and therefore pass by each other twice each period 

of the motion. At each passage they may, with finite but small probability, 

undergo a hard collision such as 

Q+t+Q+:+g 

Qf&Q+~+Q+< (2 -1) 

with g denoting a hard (pointlike) gluon with high pI. These being pro- 

cesses dependent on short distances only, they can in principle be calcu- 

lated via perturbative QCD. The first lowers the Qc subenergy by a large 

amount at the cost of production of a jet of gluonium quanta. The second 

leaves two lower-energy Qc quarkonium systems. Inasmuch as there is a 

finite probability 4 per period of revolution for such hard processes, 

the width for decay via them will be a finite fraction 4 of the level 

spacing. (In fact, in 1 + 1 dimensional QCD, decay into quarkonium pairs 

is the only mechanism available and specific calculations support this 

conclusion.lO) 

Turning to "soft" processes, we can imagine Qc pair creation by the 

string itself, provided it is long enough to contain internal energy 

greater than the rest mass of the pair; i.e., 

TL 2 2M 
Q 

where the string tension T is, again, the energy per unit length. The 

probability of such a long string breaking into a smallish Q< system 

would be expected a priori to be extremely small. The QED analogy is 

electron-positron*pair creation in a constant electric field %. This 

was calculated long ago by Heisenberg and Euler;'l the answer isl2 
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dP g v 
dt 

.-JI;j;;(M2/E) 

Converting to our units, the probability per unit time would be 

(2 02) 

r -LTe-" (2.3 

where A is the area of the string, and we have made the identification 

of E2 (energy density) with l'/A (string tension per unit area). Thus 

the probability of soft breaking of the string is exponentially small 

because of the large quark mass. Notice however that there is every 

reason to expect that when the light quarks are introduced this mechanism 

will be important. 

Finally we come to the most important mechanism - soft radiation 

of gluonium. By this we mean radiation of gluonium in the direction of 

motion of the 3: it is simply bremsstrahlung. Because gluonium has a 

non-perturbative, extended structure its coupling constant to heavy 

quarks is uncertain. But there is not much reason13 to expect it to be 

extremely small. It follows that as the Q moves away from q, the rate 

of conversion of quark energy into the gluonium radiation should be 

comparable to the rate of energy delivered into the lengthening string. 

Thus per period the energy lost to gluonium radiation is a finite frac- 

tion of the total excitation energy of the system. We conclude that the 

widths of the excited states are broad compared to the level spacings. 

The widths may even be a finite fraction of the mass of the system. 

Hence the discrete levels we maintained up to this point dissolve into 

a continuum. Actually the details are not too important, because there 

will clearly be quite a change when we go to Stage III. Suffice it to 
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say that in Stage II, heavy quark pair production is never of great 

importance and the central mechanism of energy storage in excited 

quarkonia is in the universal string, while the central mechanism of 

energy dissipation is in soft gluonium radiation. 

Before leaving Stage II, we should mention that the ground state 

quarkonia Qq can annihilate into 2 or 3 hard gluons, via a process ‘ 

calculable in perturbation theory. This, along with the hard-gluon 

bremsstrahlung in Qq collisions, provides us with an argument that 

gluonium states must exist. After all, one might try to entertain the 

idea that pure QCD is trivial; i.e., while pointlike gluons exist at 

short distances, all they do is make strings but no finite-mass (as 

opposed to infinite-mass) particles to populate an LSZ-type Hilbert- 

space. However, by the above hard processes the quark sources produce 

at short distances distinct gluon quanta carrying away energy and 

directed momenta. Energy conservation demands this be materialized into 

asymptotic states of finite energy. Given our assumption 3 of soft 

confining forces, it is hard to come up with a scenario of the dynamics 

which avoids these gluon jets being composed of a collection of gluonium 

states. 

The existence of strings in Stage II also has implications for 

Stage I: there should exist in pure QCD metastable closed strings of 

large circumference - a kind of soliton. Such strings will shrink as 

they emit gluonia, eventually merging into the quantum gluonium spectrum.14 

Finally we go to Stage III, where light quarks are introduced. A 

light quark q is one whose mass (as measured by short-distance probes) is 

small compared to the confinement scale. Thus u, d, s, may be considered 
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light, and charm is borderline, but probably better considered heavy: 

pair creation of cc in hadron processes is relatively rare. The new 

features emergent with inclusion of light quarks are of course the spectrum 

of ordinary hadrons, and the dissolution of the universal string. There 

is no longer any rationale for string production. The color of a heavy 

quark Q can be screened locally by production of qs pairs - a process 

which is energetically cheap. Furthermore even were a string to be 

made, it would rapidly break into many pieces through the Heisenberg- 

Euler pair-creation mechanism we already discussed. 

We may ask what happens to the gluonia. They can now decay into 

ordinary mesons made of qt (cf., Figure 2). There is an important issue 

of how much Zweig-rule suppression of these decays is operational here. 

If there is enough for the width to be small compared to 100 MeV, the 

gluonia should remain distinct members of the family of hadron resonances. 

Although the issue seems to involve a certain amount of witchcraft, 

consensus (but not unanimous) seems to be that in fact the states ought 

to be narrow. We return to this question again in Section 5. Finally, 

how light quarks effect confinement in collision processes - especially 

deep-inelastic processes - has been discussed in detail extensively in 

the past, and we shall not cover this ground again here.15 

We have given very little attention to Stage III, which is, after 

all, real life. Why should Stages I and II be relevant at all? The 

reason lies in the belief (!) that the phenomenon of color confinement 

is a universal one. Examination of the perhaps more limited and tractable 

issues embodied in Stages I and II might shed enough light on the nature 

of confinement so that, even though Stage III may be more complicated to 
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/h meson 
-- 

8 -79 
3662 A2 

-- 

eson 

Fig. 2. Mechanism for gluonium decay into ordinary mesons. 
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manage mathematically, the notion of color-confinement will no longer be 

an implausible or mysterious one. 

It may be that confinement is not universal, e.g., in Stages I and 

II gluons and heavy quarks are not confined, and only after light quarks 

are introduced does confinement emerge. This would entail a more specific 

view of confinement dynamics, and might well be an encouragement to 
c 

search for mechanisms of confinement which do not depend upon an under- 

lying non-Abelian gauge theory. 

3. QUANTIZATION: INTRODUCING THE FEMTOUNIVERSE 

We now turn to the formulation of the theory. [Those who are faint- 

hearted and frightened by simple equations are invited to rejoin us below 

Equation (3.43).] Up to a certain point, this is a parroting of the 

canonical quantization of QED. Whenever one is in doubt he should retreat 

to QED by replacing the triplet of quark fields 

(3.1) 

by a single electron field Q(x) and by replacing the octet of gluon 

fields, described by a 3 x 3 traceless matrix16 

8 

c 
A=1 

AA A; (3.2) 

by the electromagnetic field. The steps for constructing the theory are: 

1. Start with the free Dirac equation(s) for the 3 quarks 

' (it-m) q(x) = 
( 
iyu & -m q(x) = 0 

u 1 
(3.3) 
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2. Make the gauge invariant substitution 

which leads to 

CiP-4-m) q(x) Z (ig-m) q(x) = 0 (3.5) 

Here e will be a strong coupling constant es. (More about its normaliza- 

tion later.) 

3. Look at local gauge transformations, analogous to those in QED 

SW = gx> q'(x) (3.6) 

[z(x) is a unitary 3 x 3 matrix that depends upon space and time1 

and find out the transformation law that 4 must satisfy in order to keep 

the equation form-invariant. A few lines of algebra show that it is 

This may look a little unfamiliar; in QED 

S = e -ieA(x) 
(3.8) 

(3.7) 

and evidently commutes with A because the "matrices" are 1 x 1; hence in 

A =A'+ah 
u lJ axp 

(3.9) 

(In QCD there will be somewhat more emphasis on the actual gauge trans- 

formations g(x) and less on their generators h(x).) 

4. Build the gauge fields F,,v 

There are smooth ways and clumsy ways of doing this. A smooth way 

is to notice that in QED 
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[ 1 D P,Dv Q(x) = -ie FPV Q(x) 

for any function 4, and with the covariant derivative 

(3.10) 

(3.11) 

already defined in Equation (3.4). The same device works here, leading 

to the definition 

(3.12) 

The extra term quadratic in the b's coming from the non-commuting 3 x 3 

matrices causes all the extra grief in QCD. This will make the Maxwell 

equations nonlinear: the gauge fields, which carry color, couple to 

themselves as well as to matter fields. 

The fields F -uv ' unlike the A 9 do not both translate and rotate 
-1-I 

under a gauge-transformation, they only rotate. For example from 

Equation (3.12) it follows that 

(3.13) 

The easy way to check this is to notice that the covariant derivative 

also only rotates 

. I.e., for all functions a, 

ia - eA -1-I Q(X) = S(X) ia 
1-I u 

(3.14) 

(3.15) 

Then we can again use Equation (3.12) to establish Equation (3.13). 
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5. Write down the "Maxwell Equations“ 

TO do this, notice that in clear analogy with QED the interaction 

should be 

8 

Tr $ 4' 1 = &$q = 2 c (3.16) 
A-l 

whidh serves to define the 3 x 3 matrix J 
-u* 

Under the gauge transforma- 

tion, Equation (3.6), it is not hard to show17 that Ju will rotate 

(3.17) 

Thus, to be gauge-invariant, the Maxwell equations must behave in the 

same way. This is again ensured by constructing them via use of the 

covariant divergence: 

h, $‘] = [au + ie &,, guyI = ezv (3.18) 

These equations along with the Dirac equation can be derived from a 

Lagrangian, l8 but we bypass all that and take directly Equations (3.5), 

(3.12) and (3.18) to define the dynamics of the theory. 

So far, we have mainly seen similarities of QCD to QED. As we 

already noted, the big difference between QED and QCD is that there is 

a term quadratic in A in F 
"U --UV’ 

Along with the term in Du proportional 

to A 
7 

this means that the left-hand side of the Maxwell equations have 

terms quadratic and cubic in A . 
-1-I 

This causes all the headaches in QCD 

(but, one hopes, also the seeds of the confinement phenomenon). The 

physics of this is that the gluon fields themselves possess color and . 

therefore act as an additional source of color field. 
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We now must replace the classical variables with operators (in 

Heisenberg picture) and quantize. To implement this we will go to a 

Hamiltonian formalism. Before doing this, it is useful to 

6. Choose a gauge (for us, ho = 0) 

We do this with an eye toward the next steps, namely identifying 

canonical variables and carrying out a canonical quantization procedure. 

Before proceeding we remark,that this is not the only path to take at 

this point. For small e we may just follow Book I, identify Feynman 

rules, and start calculating. A more formal but very efficient way of 

doing that is to get the rules via the path-integral formalism. For 

covariant formalisms, one runs into technical complications - the so- 

called Faddeev-Popov ghosts.lg The canonical formalisms avoid these and 

amount to choosing one space-time component of the potentials &u to 

vanish. There are three basic choices: either .A0 = 0 (temporal or 

canonical gauge), h3 = 0 (axial gauge), orA + -A3 = 0 (null-plane or 

light-cone gauge). The latter two, which pick out a space axis, are 

convenient for collinear collision processes--namely, the parton-model 

type of QCD application. We shall not be so interested in that kind of 

thing at this point, but rather in large-distance questions associated 

with confinement in pure QCD, and then in the properties of the theory 

with additional heavy quark sources added. Therefore, A0 = 0 gauge is 

convenient, especially since this keeps D = a/at clean and helps to -0 

isolate the real dynamics from the phony dynamics of time-dependent 

gauge-transformations. 

To see that this choice is always possible, return to Equation (3.7) 

and set A' = 0. -0 This implies we must find an 2 such , ' 
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i a2 
- 2-1 ii ax0 

-ie A -05 (3.20) 

vanish at t = -=, this is a Schrodinger 

formally 

t 
i- 

-ie ko'x, t'> dt' (3.21) 
S = Te -m w 

with T the time-ordering symbol. (Remember A' is a 3 x 3 matrix; it -0 
doesn't commute with itself at different times.) Now 

7. Write out the equations of motion in A, = 0 gauge: " 
Dirac Equation 

i2Jl.c 2 
at 1 

l (G-e&) + Sm 
1 

q (3.22) 

"Ampere's Law": 

aEi 
N = (6 X %)i- eJi G ($ X $)i- iecijkp,Bk]- eJi at (3.23) 

Definition of B: 

+i . 
H =($x&l E 

. 
(? x i)" - ice [ Aj ,Ak] ijk N (3.24) 

Definition of E: 

"Gauss' Law": 

i = 
4 

-at (3.25) 

(3.26) 
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These look structurally like the QED Maxwell's equations, as written on 

countless T-shirts. There are only three distinctions (other than the 

ubiquitous 3 x 3 matrices). Two are the nonlinear terms in Ampere's 

Law and in the definition of II, and the third is the presence of the 
-t 

covariant divergence ,D in Gauss' law. Notice that Gauss' Law is an 

equation of constraint, not an equation of motion. This will be 

important in the subsequent interpretation of the theory. 

With such a similarity to QED it should be no surprise that the 

above equations of motion can be derived from a Hamiltonian which is 

essentially the same as in QED. This leads us to the next step: 

8. Construct a Hamiltonian and identify canonical coordinates: 

The result is an utterly unexceptional analogue of the QED 

Hamiltonian (in this gauge): 

H= I d3xX = Trld3x [g2(x)+g2(x)] + /d3x qt[Z* (G-ei)+sm)q 

8 

= i cjd3x [E:(x) +~i(x)] + /d3x qtiZ l ($- 4) +Brn/ q 
A=l 

(3.27) 

Just as in QED, the canonical coordinates are the A(x): (cf. Equation 

(3.2)), and the momenta conjugate to A(x): 
. 

are the E(x);. Because the 

magnetic field 

g(x) = E ijk ~j<X) , ok 1 (3.28) 

has a term quadratic in ,A, the Hamiltonian has terms cubic and quartic 

in & The Hamilton equations of motion are 



-- 
at 

aH ax aE; 
-=q)*- =-- = -<Tf x B) 

. aE; 

as at +i+eJi=-F (3.29) 

(This second equation requires a little care in the integrations. by 

parts; the covariant gradient $ can be integrated by parts, just like $.) UP 

Let us ignore for a while the Hamiltonian of the fermions. Let us 

furthermore temporarily imagine replacing the.integral -d3x by a sum J 
over a million coordinates x.. 1 (That should be fine-grained enough for 

a lot of purposes.) Then each At(x) is a canonical coordinate q" and 

a each E:(x) is its conjugate momentum p . The Hamiltonian of this some- 

what mutilated version of pure QCD is nothing more than a good old 

Schrodinger Hamiltonian 

24 x lo6 

H= c 
a= 1 

3 Pi + v(qlV*.'q 24 x 106) 
(3.30) 

of a particle in a 24-million dimensional space moving in a static 

potential. The potential (the E2 term) is non-negative and at most quartic 

in the coordinates. It is important not to forget this homely analogy, 

especially when the going gets rougher (as it regrettably will). Finally 

9. Impose canonical commutation relations on the conjugate variables 

s(x) and g(x). It is time (in fact somewhat overdue) to make clear our 

conventions of notation and normalization. The 3 x 3 matrices $(x>~ are 

expanded in terms of 8 independent canonical fields which are coefficient 

Of Gell-MSM'S A-nE&riCeS: 

E 
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where 

i1 = 

‘. 

&2 = 

a = 
-3 

Thus 

with 

8 

001 

A4 = ( 1 000 

100 

i 

0 0 -i 
a = 

-5 00 0 10 0 i 

i6 = 

[LA' iB] = 2ifABC & 

(3.31) 

00 0 
A7 = 

( i 
0 0 -i 

oi 0 

(3.32) 

(3.33) 

(3.34) 

defining the structure-constants of the SU(3) algebra. There is an 

analogous definition for g(x), and the canonical equal time commutation 

relations are taken to bezo 

, A;($& 1 = -i6 ij 
*AB 3-t 

6 (x-.3 (3.35) 

These give a consistent canonical formulation and lead with no difficulty 

to interpreting two out of our of the Maxwell-equations in terms of 

the Hamiltonian equations of motion 

-$ = -;k, A;(x)] = E; i[H, 4(x;l -3 (3.36) 
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Finally, before leaving this introduction to formal quantization of QCD, 

we should add one more item to the list: 

10. Check the consistency of the quantization procedure with Lorentz 

covariance 

We shall not do this here; the only substantive problem lies with 

Lorentz-boosts. There as in QED, the generator should include a gauge- 

transformation of the fields designed to restore .A0 = 0 gauge in the new 

frame. The formal covariance of temporal-gauge quantization has been 

checked,21 although I have not found a direct check along the lines used 

in Book II. 

The astute reader familiar with Chapter 14 of Book II will notice 

that we have not been very good parrots: there are some differences in 

what is done there and what we do here. In Book II, the longitudinal 

degrees of freedom of the electromagnetic potential x(x) are eliminated 

from the beginning by a choice of gauge, leaving only the transverse 

field to describe the two physical polarization states of the photon. 

In what is done above, longitudinal photons (or gluons) are quantized 

as well. What does this mean? It appears we have overachieved and 

introduced too many coordinates into the dynamics. The key to under- 

standing this lies in Gauss' law, which we here interpret as an equation 

of constraint on allowed solutions of the Great Big Schrodinger Equation. 

That is, not all solutions of 

HyE ql’ ( ““‘24 x 10 6) = Ey~ (q1s***yq24x~~6) 

are deemed physically acceptable-- only those for which 

‘(3.37) 

(3.38) 



- 31 - 

are allowed physical states. Note that (in QCD) this is a set of 8 x lo6 

equations; one for each color and coordinate x! The meaning of all this 

is somewhat clearer when one identifies (cf. Appendix A for details) the 

Gauss' law operator in the above equation as the generator of time- 

independent gauge-transformations. Equation (3.38) means that the Great 

Big Wave-function Ysiis required to be invariant under time-independent 
‘ 

gauge transformations. Not all solutions of the Great Big Schrodinger 

Equation will have this property. If we think of these gauge-transformations 

as "rotations" of the coordinates it meansYe must be "S-wave" in 8 x 10 6 

of the 24 x lo6 coordinates, if it is to be physically acceptable. Notice 

also that because H is invariant under time-independent gauge transforma- 

tions, it commutes with the Gauss' Law operator,22 so these 8 x lo6 

coordinates are symmetry degrees of freedom. 

What should one do about this? One way, appropriate to QED, is to 

identify the (in that case) 10 6 symmetry coordinates and their conjugate 

momenta and explicitly excise them from the Hamiltonian and therefore from 

the formalism. Because of the linearity of QED this 

breaks up the field into longitudinal and transverse 

;i=q+i$ 

2 = $ + gT 

and writes 

H = Id3x +;(x) + E;(x) + (? X q,'] 

is easy to do. One 

pieces 

(3.39) 

+ I 1-t I d3x et(XIIa* (:-eq- e&) + Bmje(x) (3.40) 

. 

P 
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Gauss' Law allows one to eliminate zL 

$,(x> = e$-$ Jo(x) = -e$xld3y 4r,i-y, Jo(y) (3.41) 

in favor of the instantaneous Coulomb-interaction 

+ J d3x E;(x) = -$ J d3x d3y J (x) 0 4.ia-,, Jo(y) (3.42) 

Then the only vestige of longitudinal degrees of freedom left is the 

:*< term in the Dirac Hamiltonian. A phase transformation on the 

Dirac field easily removes this as well. 

In QCD it is much more difficult to eliminate the "trivial" symmetry 

variables, because of the nonlinear terms in H which couple together 

longitudinal and transverse modes of the fields. Gribov23 has demonstrated 

specific difficulties which block a generalization of the QED Coulomb- 

gauge quantization procedure. These are sketched in Appendix A; suffice 

it to say that things go along reasonably in parallel with QED, until 

the point at which the inverse operation l/O2 (in other words, instantan- 

eous r -' potentials) appeared in the formalism. The corresponding 

operator emergent in QCD is l/G l 5. But Gribov showed that there exist 

gauge potentials H<,) for which homogenous solutions exist 

+ + 
v l E(A) O(x) = 0 (3.43) 

so that ';; l i is not invertible. This problem has deep ramifications and 

is difficult if not impossible to elude by alternative choices of gauge- 

fixing. At present there exists no fully satisfactory formulation of - 

QCD in terms of only physical degrees of freedom.24 

Given this situation, an alternative is just to leave in the extra 

degrees of freedom. After all, the quantization of the theory is 

_ -. - 
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satisfactory and the problem is only one of frustration in not properly 

coping with a gigantic residual symmetry. And it may be no worse to 

deal with 24 X lo6 coordinates then 16 x 106. The problem is that explicit 

invariance under time-independent gauge transformations must be maintained 

in every subsequent step in the development of the theory. Otherwise the 

unphysical solutions of the Great Big Schrodinger Equation will mix with 

the physical ones, and there is no assurance that this does not create 

some kind of nonsense in the resultant physics. 

We emphasize that this difficulty only occurs for sufficiently large 

gauge-fields, much larger (roughly by a factor a ii) than commonly found 

in the weak-coupling limit. Thus weak-coupling, short-distance applica- 

tions should hopefully not be affected by the gauge-fixing ambiguity. 

In particular it will not be seen in any finite order of perturbation 

theory. 

Let us now summarize where things stand. We have seen that it is 

possible to formulate (in ho = 0 gauge) a straightforward quantization of 

QGD in a way analogous to QED. Nevertheless there arose some problems, 

which we here enumerate: 

a. In the presence of strong fields the gauge cannot be completely 

fixed in a satisfactory manner: unphysical degrees of freedom are 

quantized and a careful selection of the physical subset of solutions 

to the Great Big Schrodinger Equation must be made, namely those con- 

sistent with Gauss' Law. 

b. Even assuming weak coupling, the basic quanta in the formalism 

are colored quarks and gluons, which do not (or at,least should not) , 

appear as asymptotic states in real life. Thus there is no obviously 

P 
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satisfactory way of introducing and constructing an S-matrix as done 

in QED,25 without first resolving the confinement question. It seems 

necessary to solve QCD in order to formulate it. 

c. Asymptotic freedom implies that although at short distances the 

coupling constant may be chosen (consistently) to be small, it becomes 

large at large distances. But then the nonlinearities of the theory 

become pernicious. 

In addition to the above three problems, which are no doubt inter- 

connected, there is a fourth which is to be discussed in Section 4 (in 

order to spare the reader too much of a dose of formalism all at one 

blow): 

d. The instanton phenomenon complicates the structure even of the 

QCD vacuum. Effects of small instantons can be controlled, but what 

happens at larger distances is not in good control. 

All the above complication is minimized if we could somehow restrict 

everything about the formulation to short-distances. It is possible to 

do this: we can just quantize the theory in a sufficiently tiny box. 

While this obviously leaves something to be desired, it does provide 

solutions to the above problems: perturbation-theory is universally 

applicable; the coupling-constant can be taken as always small, and the 

dangerous large instantons don't fit in the box. Quarks and gluons are 

the physical quanta and are unconfined, provided the confinement radius 

is large compared to the size of the box. Gauge-fixing ambiguities do 

not arise because the field strengths relevant to typical scattering 

processes are too small. 
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But is this really satisfactory? Have we destroyed QCD in order 

to save it? After all, we do not fit into such a box, and what is a - 

quantum theory if it does not include us as observers? 1 think this 

aspect can in principle be addressed in a reasonably satisfactory way. 

Let us imagine that there exists a world out there built out of super- 

heavy charged fermions which we call femtofermions and which interact 

with each other by exchange of a different octet of femtogluons carrying 

femtocolor. The mass-scale of this world is taken to be 10 15 times 

larger than our own; hence by dimensional analysis the distance-scale 

is -10-l' that of our own (hence the femto-prefix). The femtoquarks 

will bind into femtonucleons and femtomesons. If we give the femtoquarks 

electric charges +2/3, +1/3 in the usual way, and introduce a femtoelectron 

of mass 5 x 10 14 MeV, we can make femto-nuclei, femto-atoms, and so on, 

up to -you guessed it - femtophysicists. Femtophysicists will build 

accelerators, magnets (with field-integral / B dR - 10 15 times ours), and 

the like, and do experiments on not only the constituents of femtomatter, 

but also the constituents of ordinary matter. How? Figure 3 shows a 

way: build an accelerator (the one shown, a remarkable technical accom- 

plishment of the femtophysicists, is -.03 8 in length) which can create 

a photon beam: ordinary quarks and leptons can be pair-produced and then 

separated from femtomatter beams. Thus femtophysicists in principle 

could scatter ordinary quarks and gluons from each other and measure the 

relevant S-matrix elements. They could even communicate the results to 

us via electromagnetic radiation. (However femtophysicists would have 

to be patient souls: one bit of information transmitted per ten femtodays 

corresponds to - one bit per nanosecond to us.) 
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Could actually such a femtouniverse exist? If one were nearby we 

would certainly know it. Just the black-body radiation from a femto- 

earth would consist of 10 
53 

photons per second, each of energy -20 TeV. 

Be sure to avoid the femto-sun. However, none of this is realistic: we 

have ignored gravity. Gravity is not a scale invariant interaction; the 

gravitational force between a femtoproton and femtoelectron is -10 -9 the 

electromagnetic force. The gravitational force between "macroscopic" 

pieces of femtomatter will be crushingly large. 

But we digress. While our femtouniverse is not completely realistic, 

it should indicate that even with a tiny quantization-volume, we can 

think in reasonably physical terms about scattering processes, now 

involving quarks and gluons - and not gluonia, quarkonia, or hadrons. 

There is one major problem of principle: a typical beam pipe at femto- 

SLAC has a diameter 210 -14 cm . The beams will be even smaller; hence 

they have an unavoidably large cpl>, large compared to the confinement- 

scale of a few hundred MeV. Thus quarks and gluons in the beam will 

have large momentum uncertainty - we can consider them as virtual, or 

off-shell. There will also be infrared-divergence problems in calculation 

of S-matrix elements similar to those encountered in the QED of massless 

electrons. In that case Lee and Nauenberg26 showed that the conventionally 

defined S-matrix depends upon the quantization volume. Another way of 

saying this might be that the outcome of physical scattering experiments 

depends upon the details of the preparation of initial beams as well as 

the properties of the final-state detection apparatus. Kinoshita, 

as well as Lee and Nauenberg,26 have given formal recipes on how to 

avoid these infrared problems by summation over groups of initial as 
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well as final states. I am not sure these problems are fully under control 

in QCD. But here we shall assume they are. Specifically, we assume that 

in the femtouniverse 

a. Asymptotic fields and states of "physical" colored quarks and 

gluons exist in the way described by LSZ.25 

b. These fields can be formally related to the fields appearing 

in the equations of motion by a U-matrix (cf., Book II, Chapters 16-17) 

which can be calculated perturbatively by a diagrammatic expansion. 

While we have not explicity done all this, I am confident that the 

net result of such a program would be the rules for diagrams obtained by 

Book I or path-integral methods. 

What good is all this? Perhaps we can provide a satisfactory theory 

for femtophysicists, but does that help us directly? While I am not sure 

of the answer, I think it is yes. First of all, it should be the case 

that any process which in principle can be measured by femtophysicists 

as well as by us can be calculated perturbatively. Let us look at some 

good examples: 

a. (e+e- + hadrons). To lowest order in CL, this one is fine. 

Femtophysicists should be able to make femto PEP. R(e+e- + hadrons) 

appears to be a very clean QCD calculation. 

b. a(yy + hadrons). For this one we should restrict our attention 

to virtual photons. There may still be a problem because of presence 

of large longitudinal distances at high energies in this process (cf., 

Figure 4). The distance-scale is AZ N E /m2- where m 
y qq 

',p (>>l GeV2) is the 

mass of the virtual fermion pair created by the y-ray. 
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c. (e+q+e+q+gluons). For large x, this process depends on 

distances smaller than the size of the box. For small x, large longitu- 

dinal distances are again important, and infrared effects associated with 

the initial beams may need to be taken into account. 

d. (q + S + n+ + 1-I- + gluons). The Drell-Yan process27,28 appears to 

be applicable - at least for the total cross section (where one measures 

only the attenuation of the initial quark beams). The pI distribution of 

dileptons appears also to be an acceptable process, but only at large 

Processes involving hadrons must of course take into account the 

relationship (if any) between the quark and gluon beams of the femto- 

physicist and the equivalent quark and gluon beams of the parton model. 

For sufficiently coarse-grained measurements involving hadrons it is 

plausible that the two kinds of incident beams are equivalent. In the 

case of the deep-inelastic structure functions relevant to electro- 

production and neutrino interactions, one can go further and derive the 

Q2-dependence of the moments of the structure functions without introduc- 

ing the parton model. One need only rely on the Wilson operator-product 

expansion.2q However the basis of that expansion is in fact an analysis 

to aribtrary order of perturbation theory. We have only been able to 

control perturbation theory by restricting ourselves to life in the 

femtouniverse. But in the femtouniverse the Q2-dependence (at very large 

Q2) of electroproduction moments does not depend in any way on the com- 

position of the quark beam. Thus it is extremely reasonable to generalize 
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this behavior to the proton as well. Maybe it is even a rigorous state- 

ment, but I don't know enough about rigor to be able to tell. 

A somewhat stronger version of this idea is widely used in applying 

perturbative QCD to physical processes. As we already indicated, most 

perturbative calculations in QCD will run into difficulty with infrared 

divergences associated with collinear emission of gluons or quarks. This . 

is the kind of problem dealt with by Kinoshita and by Lee and 

Nauenberg26 for massless QED, and involve macroscopic distances (where 

confinement effects will creep in). However one can define quantities 

which are free of infrared singularities and which are calculable in 

QCD perturbation theory. A prototypical example is the angular distribu- 

tion and angular correlations of quark and gluon energy produced in 

e+e- annihilation.30 It is an observable in the femtouniverse which is 

independent of details of apparatus or beams. It is tempting (and 

probably correct) to assert that this prediction is also true for the 

hadrons measured by ordinary physicists as well. If our assumption that 

the confinement mechanism is "soft" is true, this result will follow. 

But there is an additional assumption involved, namely that between the 

scale of the femtouniverse and the scale of ordinary macroscopic measure- 

ments, the jet of quarks and gluons is not significantly defocused or 

self-focused. Nevertheless, this assumption is very reasonable. 

Generalizing, we may postulate that whenever one finds and calculates 

perturbatively a QCD process which is infrared finite, the answer is 

correct. In other words, if the calculation is not obviously wrong, 

it's right. But it is possible that this postulate, while not obviously , 

wrong, may not be right. 
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So far we have used the femtouniverse as a guide and criterion for 

the applicability of QCD perturbation theory ideas. In addition, the 

femtouniverse may be of use in attacking non-perturbative questions as 

well. Let us accept that we can understand in principle everything about 

the theory in a box of dimension 10 -14 cm . Now stack together a million 

such boxes, with the fields coupled at the boundaries in the way appro- 

priate for the full theory. Then the theory in the resulting cube of 

dimension 10 -12 cm should already provide a description of confinement: 

free gluons and quarks should begin to disappear as asymptotic states, 

and gluonia, quarkonia, and ordinary hadrons should appear: they easily 

fit into a box of that size. The problem is to identify and properly 

couple together the crucial degrees of freedom present in the small boxes. 

The spirit of such an approach is very close to lattice-calculations: 

we return to that approach in Section 8. 

A clue as to how one might proceed comes from closer study of the 

structure of the theory in the small box. This has been examined in some 

detail, although some points are not yet fully understood.31 Everything 

appears to be almost the same as in QED. Of course, it is important to 

use Fourier series, not Fourier integrals. With use of periodic boundary 

conditions, the gluon state of lowest non-vanishing momentum has momentum 

k= 2Tr/v1'3 >> 1 GeV. As in QED, longitudinal gluons of z # 0 can be 

eliminated by use of Coulomb-gauge. The only mode of the potential 

At(x) which seems to behave in a way different from QED is the constant 

iI = 0 mode, which we label as the vacuum mode. The Hamiltonian for this 

vacuum mode, ignoring couplings to degrees of freedom with k # 0, can 

be written 
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c 
2 

H= +cc 
i=1,2,3 2V ijkEimn fAbCfAMNQ;Q;<Q", 

A-l ,-•-, 8 (3.44) 

where 

A;(x) = $ Q; + c 
1 

k#O m 
a$k,c) e iZ*Z + h.c. 1 

with IT: and Q A 
i canonically conjugate pairs; i.e., 

i a BA = -i- 
aQ; 

(3.45) 

(3.46) 

The problem of finding the eigenvalues and eigenfunctions of the 

Hamiltonian is equivalent to solving the Schrodinger equation of a single 

non-relativistic particle moving in a (not very symmetric) quartic 

potential in a 24-dimensional space. It turns out that the "particle" is 

confined, i.e., the wave functions are normalizable. The Hamiltonian has 

an energy-spectrum with many low-lying levels. Properties of the solution 

are as follows: 

1. In low-lying states 

<A2> = + <Q2> = (Const) 
v-2/3 

(e2)1'3 

and the dispersion around the mean value appears to be small. 

(3.47) 

2. In general the level spacings of excited states are in propor- 

tion to (e2/V) . 113 This is to be compared with the lowest-lying gluon . 
modes, whose level spacings are-2r/V l/3 . Thus the energy-spacings are 
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small. By the uncertainty relation At AE 2 1, this means the period of 

the motion is large; the motion is slow. 

3. The lowest-lying set of levels appears to be a rotational band, 

i.e., the polarization-vector of the vacuum field tumbles in space. The 

energy should be given by 

1 J(J+l) 
EJ * V <A2> 

(3.48) 

The effect of these vacuum rotor-modes on the physics in the femto- 

universe is obscure but probably minimal. This is because of the dense 

level spacing.of the rotor-modes. Very little energy is needed to excite 

rotor states, and their motions should not interfere with the dynamics of 

the gluons and quarks occurring on a much higher energy scale. [For 

instance, we do not worry much about excitation of photon states during 

a hard collision of a high energy hadron with a piece of matter.] However, 

these vacuum modes may, upon coupling of a million femtouniverses 

together, contribute to the long-wavelength aspects of the physics at the 

larger distance scale. Hence it is possible that they may be of relevance 

to an understanding of the confinement issue. 

4: INSTANTONS 

There is yet another complication present in QCD not encountered in 

QED. The states of the theory may be classified according to the topo- 

logical structure of the gauge potentials. In our quantization procedure 

- especially in the femtouniverse - we considered only weak gauge-fields 

h 
- and only pure gauge transformations which can be reached from the 

identity transformation continuously, i.e., by a product of infinitesimal 
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transformations. However, there exist pure gauge potentials i(x) 

(potentials for which i = g = 0) which cannot be reached continuously 

from 2 = 0 without pulling the gauge potential in from the boundary of 

the quantization volume. An example of this is a spherical "gauge bubble" 

(Figure 5) given by 

e&x) N 
-1 =iU?U with U = e -i.z* Gf(r) ~ e-iz*ff(r)/r (4.1) N 

where z= ('c 1,'c2,'c3) E (X1,X2,X3), and with f(r) increasing from zero at 

r = 0 to a multiple of IT at r = ~0. If f(r) = 0, then g = 1 and if 

f(r) = na, g = (-l)n. Thus $ is nontrivial only in the region where 

af/ar is nonvanishing. This region can be taken as a shell of arbitrary 

radius R. Continuous gauge transformation can change the shape of f(r), 

modify R, and distort the bubble. But they cannot untangle the topological 

twists which come from coupling internal-symmetry generators ? to space 

coordinates g. 

It turns out= that the amount of topological twist in the gauge- 

bubble can be characterized by a "topological quantum number': 

3 
N=--2% 

24n2 
Tr J d3x c ijk A_i(X) ~j(X> I (4.2) 

This formula is valid if and only if i is "pure gauge." The quantity N 

is invariant under continuous time-independent gauge transformations 

which vanish at the boundary of the quantization volume. Furthermore 

for k's which vanish on the boundary, N can take only integer values. 

We have neither motivated this construction nor demonstrated these 

results; that is business relegated to Appendix B. Here it suffices to 
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Fig. 5. A gauge-bubble of pure gauge-potential @ = 6 = 0). 
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know that there is a way of characterizing and classifying the gauge- 

bubbles. If we start (perturbatively) from any weak-field configuration 

connected smoothly to A, = 0, the topological quantum number N is zero. 

Thus it would seem that we might be able to restrict our attention to 

those N = 0 configurations, since the only way to reach others is by 

bringing the gauge field in from the boundary of the quantization volume, 

and boundary-effects (for sufficiently large universes!) shouldn't matter. 

However, this is not the case; there exists a dynamical communication 

through quantum-mechanical tunneling which is a volume effect. To see 

how this comes about, it is necessary to again think of QCD in terms of 

the Great Big Schrodinger Equation with b(x) the coordinates and s(x) 

the momenta. (It is important to recall here Equation (3.30) and the 

accompanying admonition.) A gauge bubble with N # 0 is a configuration 

with classically zero energy since V(A) = $ 
$ 

B2d3x = 0 for a "pure gauge." 

If we go directly toward 4 = 0 by scaling down i, i.e., by letting 
+ 

h(x) + f(t)&(x), 0 s f s 1, the magnetic field no longer vanishes because 

the intermediate configurations are not "pure gauge." (This can be 

checked by direct calculation: Bi = ief(1 - f, ~j ,-4 ‘ijk’ [ 1 ) Hence there 

is a potential barrier between configurations with N # 0 and N = 0; the 

potential energy for all paths in A-space which smoothly connect ,A = 0 

with the gauge bubble is non-vanishing.33 

Now if we start with a (physical) solution Ye(A) of the Great Big 

Schrodinger Equation restricted to ,A's with N = 0, it would appear to be 

possible for the wave function to leak through the barrier. This turns 

out to be the case: the wave function Ye(A) can tunnel into N = +l con- 

figurations and onward. 
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Schematically, the situation looks like Figure 6; the potential is (in a 

sense) periodic. The important tunneling couplings will evidently be 

nearest-neighbor with IANI = 1. It should not be surprising to anyone 

slightly familiar with solid-state physics that the energy eigenfunctions 

will be Bloch-waves 
OD 

Ye(A) = c e 
N=-w 

(4.3) 

This is known as the B-basis. Physical observables will depend upon 8, 

but must depend on it only to the extent that the tunneling amplitudes 

are non-vanishing. Therefore, it is important to estimate the tunneling. 

For small e, one must tunnel through a thick barrier (cf., Equation (4.2) 

which implies le l x l LI 2 1, with L the size of the region in space in 

which A(x) is non-vanishing), and a semiclassical estimate is appropriate. 

The rule for obtaining this amplitude can be abstracted from experience 

with nonrelativistic quantum-mechanics, and some details of how to get 

it are in Appendix B. The recipe is as follows. To find the amplitude: 

1. Change t to it (i.e., go to Euclidean metric). 

2. Find a classical solution of the Euclidean equations of motion 

(the QCD version of Maxwell equations) which as t + -do reduces to 6 = 0 

and as t + +oo reduces to a gauge bubble. co 

3. Calculate the action S = J L dt of this classical solution. 

Then the tunneling amplitude is z e-S. 

The required classical solution was found by Belavin, Polyakov, 

Schwartz and Tyupkin.34 There are, in fact, a class of such solutions 

characterized by 
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Fig. 6. Effective potential energy in field space as a function 
of winding-number N. 
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a. Size. The fields F 
-vv 

are concentrated in a characteristic 

&dimensional volume of size A, where X can be chosen at will. For 

p = m>> X the fields F 
PV 

fall off as pm2, are proportional to 

e-l (recall leAAl - l), are self-dual (i = kg), and have a rather com- 

plicated angular dependence. 

c. bo Orientation in internal space: the ffs in the gauge bubble 

(and fields zuv) can be chosen from the 8, A-matrices in many ways. 

C. Location in space-time. The center of the configuration is 

arbitrary. These classical solutions are the instantons. The gauge- 

bubbles are not instantons. Instantons are in some sense a dynamical 

agent responsible for their creation. 

Because the field strengths F, from dimensional arguments, are 

-l/eA2 inside the instanton, and because the action S of QCD is 

d4x ' ' -N- 
e p= lx(5.h A4 e2 

(4.4) 

the tunneling amplitude is small. The correct numerical calculation 

gives 

Tunneling amplitude - e -8a2/e2 = e -2a/us 
(4.5) 

The effect is nonanalytic in os and could not be seen in an ordinary 

perturbation expansion. 

Because an instanton can be located anywhere in space-time, we can 

have gauge-bubbles continuously created and destroyed all over the place 

and all the time. This is what makes their effects relevant: the 

coupling of the NTvacuua is a volume, not a surface effect. For example, 
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not only does the energy <H> of a e-vacuum depend upon 0 but also the 

energy-density. The formula is35,36 

-8n2/e2( A) 
(4.6) 

The predominant exponential of the tunneling amplitude is embellished by 

various factors. The factor co& reflects the periodicity of the 8-vacuua; 

i.e., the conjugate operator N has integer eigenvalues (cf., Equation 

(4.3)). The factor (8r2/e2)6 arises because of the large number of 

degrees of freedom possible for an instanton (scale-size, group orienta- 

tion, location) and is a measure of the "entropy" of this gas of instantons 

in space-time. The weight factor X -5 for the integration over scale sizes 

X is determined by dimensional analysis. Finally, the value of e2 to be 

used should match the scale of the instanton - although already here the 

rigor of the analysis begins to unwind somewhat. 

If we restrict ourselves to the femtouniverse, it is easy to see that 

the most important instantons are those which fit snugly inside the box. 

This is because the running-coupling constant Equation (1.4) is 

81~ 2n y -=-- 
e2(X) 

2x + 33- 2Nf 

as(M2) 
log A2M2 

as(X) 6 (4.7) 

with M a very large mass scale (>> 1 GeV) where we normalize a 
S( 

<< 1). 

The coupling constant as increases as the scale X increases, and although 

the growth of as is only logarithmic, its effect is large because of its 

presence in the exponential. Thus the tunneling factor 

e-8n2/e2 ~ ll- $Nf . e 2n/a,(M2) (xM) (4.8) 
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depends like the 8th power of the scale-size and dominates over the 

dX AB5 factor. In a femtouniverse the vacuum energy is (disregarding 

numerical factors 510) from Equation (4.6) is then found to be 

1 2x [ 1 
6 

Em-- 
$/3 cose a (M2) 

S 

and also depends upon the distance scale V l/3 to a large power -8. The 

33- l- 2Nf 

12a 

as(M2) 1ogM 2 V 213 I 6 2 (vl/3M) 11-7Nf 

(4.9) 

onset of instanton-related effects is consequently extremely abrupt; in 

the perturbative regime an increase of distance scale by a factor 2 

increases the instanton effects by a factor -500. It is also regrettable 

but true that as the tunneling amplitude gets large, the semi-classical 

approximation used to compute it breaks down.37 Thus it is not much of 

an overstatement to say that whenever an instanton calculation can be 

believed, the result is physically unimportant. For example, there have 

been estimates of the QCD modification to the colliding-beam R coming 

from couplings of the quark pairs to instantons.38 They find a contri- 

-8 bution which behaves as s , with the crucial value of & occurring at 

about 1 GeV. A similar situation also exists for deep inelastic 

scattering. 

While the instanton does not upset in any way perturbative QCD, it 

does play an important role in two other areas. One has to do with CP 

violation in the strong interactions and another has to do with chiral 

symmetry breaking and the resolution of the "U(1) problem" - the problem 

of the origin of the large mass of the n and/or n' mesons. We shall 

return to these questions in Section 7. There is also the possibility 

that instantons play a significant role in the understanding of the con- 

finement question. This will be considered in Section 8. 
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5. PURE QCD: GLUONIUM PHENOMENOLOGY 

We have argued in Section 2 that pure QCD (i.e.,Stage I) is the 

theory of interactions of massive, color-singlet (and SU(3) flavor- 

singlet) bound states of gluons, and that it is unlikely that these 

states disappear when light quarks are introduced. Instead they decay 

(with not extraordinarily large width) into open channels of ordinary 

mesons. It is an important test of QCD to find decisive evidence for or 

against the existence of these states. In order to do that, some 

theoretical guidance is clearly of use. It is surprising to me, given 

the degree of'hubris extant that QCD is the correct theory of strong 

interactions, how little discussion3g,40,41 there has been of this 

problem. We approach the question in three stages: (a) the gluonium 

spectrum, (b) decay schemes, and (c) production mechanisms. 

a. Spectrum: Properties of bound states of two gluons--in particular 

their mass --can be motivated in several ways. First of a11,41 we can expect 

that local operators built of products of the gluon fields and having 

appropriate quantum numbers will create gluonium states, just as local 

products of quark fields (e.g., i y q l - i 5 j ~ SiyuQj, 
etc,) create meson states 

when applied to the vacuum. The simplest such operators are 

il FF13x)Fa:: (x), which should create gluonia of various spins and 

parities from the vacuum. Consider the spin-zero operator F2(x) 

= TrFVv(x)FpV(x) for simplicity and look at its two-point-function: 

D+(x) = 
/ 

d4xeiq ' x <OIF2(x)F2(0) IO> (5.1) 

(An object very similar to this measures a(v + 3 + hadrons) through single- 

graviton annihilation). 
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At short distances (large q2), QCD perturbation theory allows a 

computation: 

D+(q2) z (const) q4 0(q2> q2 + m (5.2) 

At some larger distance scale the perturbation expansion breaks down, 

and the spectrum cuts off among a presumably discrete collection of 

gluonium states (Figure 7). We have two choices: either the gluonium 

mass is "reasonable" (l-2 GeV, say) or else the gluonium mass is large 

and QCD perturbation theory breaks down at a surprisingly large momentum 

scale (>> 2 GeV). We shall concentrate our attention here on the first 

possibility. This option is somewhat reinforced by calculations by Jaffe 

and Johnson in the context of the MIT bag-model.42 In the bag model, the 

vacuum in the region occupied by quarks and gluons (the bag) is modified 

and has, by hypothesis, a different energy density. The kinetic energy 

of the quarks or gluons in the bag provides a pressure which balances the 

pressure created by the (true) vacuum at the walls of the bag. Jaffe and 

Johnson found masses -1-1.5 GeV, although nowadays they have less confidence 

in that estimate.43 Possible s-wave configurations of two and three 

gluons are exhibited in Table 5-1, along with local operators which create 

them. The I$ ijk(J,M> are the spin wave-functions which couple the fields 

into a state of definite J and M. This classification might be called 

the "naive gluonium model."40 It is at least as naive as the naive 

nonrelativistic quark spectroscopy, naive parton model, naive Drell-Yan 

formula, etc. 

There is nothing very definite that one can say regarding the masses- 

and especially level spacings-- of these candidate states (not all of which 
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Fig. 7. Schematic of gluonium spectral function, normalized to 
its high energy behavior. 
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TABLE 5-1 

JPC 

0* 
2* i 

O-+ 
l-+ 
2-+ I 
-l-t 

O* 2 t 

O-+ -- 
1 -- 
3 

I 

0* 
I++ 
2* I 

l+- 
2+ 
3+- I 

O4 
l4 
2 3 

I 

Field Operator 

E$+~~(J,M) 

E$p'(J,M) 

B$$~~(J,M) 

E% E f B CABC 
ijk cijk 

Es BECdABC@ ijk ijk’J,M) 

E~~~f% ijk(J,M) 

E$;B;dABCQ ijk( J,‘) 

E% B f B CABC 
ijk Qijk(J,M) 

-- 
1 -- 
2 -- 
3 I 

E$3;B;dABC@ ijk(J,M> 

B$3;B;fABCs ijk 

B$+;d~% ijk(J,M> 

need exist at narrow resonances). The question of hyperfine splittings 

is for example problematical. The splittings might be considerably larger 

than the typical few hundred MeV for hadrons, because of the larger con- 

stituent spin. 
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Another approach to gluonium properties is to try to connect them 

up to properties of the Pomeranchuk trajectory,44 inasmuch as two-gluon, 

t-channel exchange has vacuum quantum numbers and a "naive" intercept at 

.J= 1. Again, the recurrences of that trajectory would tend to lie in 

the l-2 GeV mass range. The spins and parities most naturally suggested 

are l--, 2 ++, 3--, etc. 

A somewhat related attack is to assume that OZI-violating processes 

are mediated by gluonia. The systematics of these processes (e.g., 

JI+hadrons, JI'-+$~?r-ir) might then provide some insight into masses or 

couplings of the gluonia. This has been studied rather extensively.45 

Nevertheless, while some progress is made in correlating the data, no 

clear picture of the gluonium spectra emerges. 

b. Decay modes: The decay modes of gluonia are of course sensitive 

to their mass. The masses are in turn sensitive to, among other things, 

the hyperfine splittings within a multiplet, which we emphasized might be 

largerthan for systems built from quarks, because of the larger spin of 

the gluon. QCD tends to put antiparallel spin alignment (in color singlet 

states) lowest in mass (e.g., mr < mp; % < mAy etc.) so we might expect 

the lowest J in a multiplet to lie lowest. We shall, however, remain un- 

prejudiced for awhile, and classify decays of gluonia into two-body 

channels of the s-wave and p-wave qzmeson states. This may be a credible 

guide for gluonium states with mass < 1.5-2 GeV. The final-state mesons 

we consider are the lSo pseudoscalar (P) and 3Sl vector (V) nonets, along 

with the (C-odd) 'Pl (A') and (C-even) 3Po 1 2(S,A, T) nonets. The only 
, , 

two-body channels we allow are those which contain no more than one P-wave 

meson. The two mesons in the final state must be coupled to an SU(3) 
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singlet. Table 5-2 gives a listing of the meson-states available which 

are consistent with SU(3) symmetry. (We assume no singlet-octet mixing 

for 'So and 'Pl mesons, and ideal mixing for 3 S and 3P mesons.) The 

resultant J PC of the final states are also recorded for R = 0 and some 

R = 1 configurations. These two tables can be used together to search 

out likely decay modes of the gluonium candidates we have identified. 

The reader is urged to do this for himself and in that way reach the 

proper state of enlightenment. This writer cannot claim to have reached 

that state himself, and offers here only a motley collection of 

observations: 

1. Phase-shift analysis in KIT and KK channels should be a good 

place to look for narrow 0 +I- and 2 ft low-mass gluonium channels. It was 

once argued that the S" is a gluonium state,42 and the 3Poqz state lies 

higher--perhaps to be identified with the very broad E 'resonance' at 

-1300 MeV. 

2. The 04i l ; state has the same quantum numbers as the n' and may 

be mixed with it. (The decay n' + yy, however, is well-accounted for in 

terms of just the q< component.) This gluonium channel may be especially 

tricky46 because this channel has the same quantum numbers as the divergence 

of that axial current which is nonvanishing because of instanton effects 

(cf. Section VII). However, other than n', the only other low-mass open 

channel is IT'S. 

3. Many of the states have the rather undistinguished HIT, HIT, HIT 

channels open to them; these offer relatively little hope for a novel 

search method. Among the (low-spin) gluonia we can put in this category 

are the 1 4, 2-+, 2*, o--, 1--, 1*, 1+- and 2+-. 
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TABLE 5-2 

Final Mesons 
- 

PP 

PV 

PA' 

L?S 

PA 

PT 

W 

VA' 

vs 

VA 

VT 

Notation: 

JPC(s-wave) 

O++ 

1+- 
-- 

1 

0’+ 

1" 

24 

0++,2* 

04,14, 24 
a- 

l 
-- 

0 , 1--, 2-- 
-- 

1 , 2--, 3-- 

P: so (03) 

A': lPl a+-) 

v: 3s1 (l--) 

s: 3Po d-5 

A: 3Pl d-5 

T: 3P2 c2*1 

JPC(p-wave) Components 

a- 
0 , 1--, 2-- 

o+-, 1+-, 2+- 

1* 

O++ ,lU,2++ 

l++ , 2++,3* 

etc. 

etc. 

o+-, l+-, 2+- 

etc. 

etc. 

R, K, n, n’ 

B, Q, ?, ? 

PY K*, w, 4~ 

6, K, s*, E 

fi, Q, ?, II 

A2, K**, f, f' 

rrp, m*, (n+rl, w+Q) 
nB, KQ, 

ITS, KK, (n+n', S*++E?) 

7TA 1, KQ, (n+n', D) 

IT%, KK**, (ll+Tl', f+f') 

PP, K*K*, m, 44 

PB, K*B, ? 

~6, K*K, (CO++, S*+s?) 

~p4, K*Q, (w+O, D?) 
* ** 

pA2, K K , uf, M-' 

4. The l-- states are candidates for resonance production in e+e- 

storage rings. However, the width into e+e- may be very small, and in 

any event hard to calculate. Furthermore, such states are rather far 

down the list (3 bound gluons) and may be fairly massive (or for that 
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matter nonexistent). The activity at DC1 and ADONE should evidently be 

watched with this in mind. 

5. Because the gluonia are SU(3) singlets, decays into mesons con- 

taining strange quarks may not be suppressed as much as is customary in 

"old" physics. 

6. The tabulation we have made allows decays for all gluonium 

candidates except for the last of the list--the 3 +- state of three magnetic 

gluons. Decay into p-wave Al or % channels are open in that case. 

Before moving onto questions of production-mechanisms, we reiterate 

that this catalogue is not a list of predicted gluonium states. Some, 

but not necessarily all of the channels listed should support discrete 

gluonium states. Were QCD to be a true theory, it could provide success- 

ful predictions of the spectrum of gluonia comparable to its successful 

postdictions of the spectrum of hadrons. 

c. Production mechanisms: Half the momentum of an energetic proton 

is not in quark-momentum and is presumably carried by gluon degrees of 

freedom. It follows that there ought to be a sizable production cross 

section for gluonia in hadron-hadron collisions. Why hasn't it been found? 

A possible answer is that there are so many different states of comparable 

mass and so many decay modes for each that for any given channel oB is 

very small. Another possible answer is that there hasn't been a sufficiently 

vigorous search. 

Beyond the self-evident searches in hadron collisions and in photo- 

production, other methods with more specificity would be especially 

useful. The physjcs of onia is an especially attractive possibility. 
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In the QCD framework, it is manifest that heavy onium only couples to 

ordinary hadrons via gluons.47 For example in the process e+e- +Y+X 

or e+e- + T + X (Figure 8a), the system X could be rich in gluonium states. 

A related idea uses diffractive electroproduction (Figure 8b) 

p + nucleus.+ u + Y + gluonium + nucleus (5.3) 

Neither of these processes is blessed with a big cross section. Probably 

the most attractive option is to resonantly produce Y (or perhaps T) and 

look at the radiative decay4* 

Y+y+X 

T+y+X (5.4) 

The principal decay mechanism for Y or T is supposed to be 3-gluon 

annihilation (Figure 9a) with subsequent materialization into hadrons. 

The radiative decay should therefore proceed via a virtual ygg channel 

(Figure 9b), ideal for formation of gluonium as the state X. Perturbative 

QCD (not to be trusted much4' at the Y mass-scale) predicts4* 

rcy + Ygg) 

NY -t ggg) 
N 10% (5.5) 

To good approximation the gluons (or y-rays) are uniformly distributed in 

the Dalitz triangle; this immediately leads to an energy spectrum of the 

y peaked (Figure 10a) at the high end (higher order radiative corrections 

round off the upper end; we don't worry about that here). Thus the mass 

spectrum of the recoiling system X --which hopefully contains the gluonia-- 

is peaked (Figure lob) at the low energy end. In this region we would 

expect the gluonium resonances to dominate and turn the spectrum into . 
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Fig. 8. Mechanisms for gluonium production: (a> e+e- -f $g, and 
(b) PN + PJlgN. 
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Fig. 9. Gluon (a) and gluonium (b) production in $ (or v) decays. 
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Fig. 10. Spectra in (a) y-ray energy and (b), (c), recoiling mass 
for the process 11, + y+x. 
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something like Figure 10~. There is not yet much known about the inclusive 

single y spectrum from Y-decays. The decays 

have been measured. If they dominate the mass spectrum ri! s 2 GeV' and 

are dual to the perturbative (parton) estimate they should account for 

-40% of the decays Y + y + X. The measured exclusive channels actually 

account for -l/2% of the Y-decays, implying by this bookkeeping a branching- 

ratio -1% for all the radiative decays. 

A study of these exclusive channels from a QCD viewpoint has been 

made by Krammer who looks in detail at the angular correlations in the yf 

channel.50 Assuming mediation by two transverse gluons (Figure 11) coupled 

to a 3P2 q: system, the helicity state of the J = 2 TIT system (it is 

predominately51 52) is 

angular correlations. 

nontrivial.52 

predicted and compared with the data on the ITIT 

The agreement with QCD is good and appears to be 

If these exclusive channels are really mediated by two gluons, then 

there should be other analogous channels which are reasonably well 

predicted by the quark-model. In particular, a brief look at Table 5-2 

lets one accumulate the following list. 

Y -t n'y Aly 

rlY EY 

6Y UY 

s*y f'y (5.6) 
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Fig. 11. Mechanism for the decay chain I/J + yf -+ ~ITTT. 
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But an even more interesting question is what lies beyond. If narrow 

gluonium states dominate in the region from M = 1.4 GeV to M = 2 GeV, they 

should provide -30% of all radiative decay modes. The y-ray energies are 

1 GeV, and probably badly buried in contamination from no decays. A 2% 

y-ray energy resolution corresponds to a resolution in gluonium mass of 

order 30 MeV. It may be unrealistic to try to resolve any gluonium 

lines by measurement of the recoil y-rays alone--even using Crystal Ball-- 

and reduction of background by looking for exclusive gluonium decay 

channels may be needed. Here one might try for some of those involving 

neutral decays, e.g. n. But it will be difficult. A scenario appropriate 

for the Crystal Ball might be 

I -t y + gluonium 112% 

I- n + rl 

Lyy Lyy :% x 38% = 14% (5.7) 

The net signal is -7 events/lo6 decays, even with a rather generous 

branching ratio assumed for the nn decay-channel. 

If the mass-scale for gluonia is "surprisingly" large, say -3 GeV, 

then it is necessary to utilize the T decays. For the T, the .QCD pre- 

diction is48 

l-CT + y + X) 
l'(T + all) -3% (5.8) 

with again the same spectral shape for the recoil-mass distribution. For 

a 3 GeV gluonium system recoiling against the y, the y-ray will have 90% 

of the endpoint energy, namely E - 4.3 GeV. 
Y 

A 2% y-ray energy-resolution 

now yields a 300 MeV mass-resolution. Again final-state information on 

E 
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the gluonium decay-products probably has to be invoked. Because of the 

large mass, this will,be even more difficult than in the previous case. 

Finally, if clean gluon-jets are isolated in T-decays, decays of even 

more massive onia, or in hard processes such as e+e- -t q + z + g, it is 

plausible that the "leading particle" in such a jet will often be 

gluonium. Thus in such kinematic regions it is especially appropriate 
‘. 

to search for the decay channels enumerated in Table 5-2. 

6. INCLUSION OF HEAVY SOURCES: ONIDM PHENOMENOLOGY 

In Stage II, we modify the pure QCD of gluonium by introduction of 

heavy-quark sources. In theory (cf. Section 2) a universal linear confin- 

ing potential is expected between such heavy sources, provided they have 

non-vanishing color-triality. But beyond this theoretical issue, Stage 11 

is of interest as a description of the phenomenology of charmonium, 

bottomonium, toponium, or any other even heavier onia which might eventually 

be observed. 

We start with the idealized situation of very heavy quarks, Q, whose 

binding can be described accurately in terms of the short distance r -1 

potential. The static interaction energy of Q and 5 in a color-singlet 

state can be read off from the expression for the quark-current source of 

the color field, Equation (3.16), inasmuch as the subsequent quantization 

procedure followed accurately (to lowest order in as> that of QED: 

4 as -- 
= 3 4nr (6.1) 
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where we have used the facts that ,(A1 + 1,2)2 = 0 in a color-singlet state, 

and that the 3 x 3 matrix C ($I2 is color-invariant, hence a multiple 
A 

of the unit matrix. Thus, using the normalization in Equation (3.33) 

(6.2) 

Just about everything about this system is analogous to QED. The binding- 

energy of superheavy onium of mass M - 2M 
Q 

is thus 

and the level-spacings are hydrogenic. Thus the 2s and 1s levels are 

spl;it by an amount 

AE2S 
3 L a2M 

-1s 6 s 

The Bohr-radius of the onium is 

3 14 3 rM-.-.-=- 
4 as M asM 

('6.3) 

(6.4) 

(6.5) 

Thus pure Coulombic "size" of bottomonium (taking a ,> 0.2) is 50.3f, not 

especially small. 
S 

The value of as , just as in QED, depends upon momentum transfer as a 

consequence of vacuum-polarization effects. The dependence on distance- 

scale has already been cited in Equation (1.4), and it is appropriate to 

here discuss this contribution in more detail. A diagrammatic analysis 

can be carried out;53 in Coulomb-gauge the vertex and self-energy inser- 

tions (Figure 12) are unimportant. All that happens is a cancellation 

of divergent renormalization constants Z 1 and Z2 just as in QED. The 

-. - .i~ .---- .._--- --_. --- -.-_ 
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Fig. 12. Vertex and self-energy insertions for the Coulomb energy. 
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corrections come from the three diagrams in Figure 13. Only the first 

(Figure 13a) coming from fen&on-loops, exists in QED. It tends to 

increase the charge at short distances because of vacuum polarizability. 

The calculation is just like QED vacuum polarization except for the group 

factors. Because the polarization loop is diagonal and independent of 

the color label A = 1, 2,...,8, we may choose A = 3, which measures the 
(. 

color-isospin of the quarks. Since the coupling of A3(x) to quark sources 

iS 

f- X3 = f ~~ = eT3 (6.6) 

the modification from QED is just to make the replacement 

3 2 
eQED -es c T:=e~[(~~+(-~)2+O]=$e: (6.7) 

colors 
of quarks 

In QED, we have 

2 e2 
ejo 1-E s2 q2 [ (a) (q2) 1 

s(a)(q2) 
a A2 = $ log 2 

q 

Thus in QCD we get from this contribution 

E(a) ao = G N, A2 log y 

or after renormalization and summation 

1 1 -=- 
a(q2> a(m2> 

(6 3) 

(6.9) 

(6.10) 

(6.11) 
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(0) 

12-79 

(b) 

Fig. 13. Vacuum polarization corrections to the Coulomb interaction: 
(a) quark pairs, (b) transverse gluon pairs, and (c) correc- 
tion to instantaneous interaction via coupling to transverse 
gluons. 
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The second contribution (Figure 13b) from pair production of transverse 

gluons by the Coulomb field is physically similar, and in fact has the 

same sign as the first contribution. The coupling of gluons to the 

Coulomb-field is through the convection-current, with polarization vectors 

z and z' dotted together (Figure 14a) 

Jscattering 
0 -(E -I- E') : l :' 

For the crossed process, there is a minus-sign (Figure 14b) 

JPair 
0 - (E - E') : . zr 

(6.12) 

showing that there is an explicit 1$12 

polarization. 

+ 
6 . zt (6.13) 

factor emerging in the vacuum 

Since the polarization vectors can be safely dotted together and do 

not enter the guts of the calculation, the structure of the vacuum 

polarization amplitude is the same as for a pair of spin-zero gluons, 

which in turn is l/4 of that for spin-l/2 quanta (given the same charge 

of the source). (Recall that R 
e+e- 

= l/4 for a pair of charged spinless 

point particles.) Hence there are only counting-factors to consider. 

From this source we therefore get 

r spin zero vs. spin l/2 

E(b) = (c T;) l 2 l 5 . Ezlog 5 

gluons t t 

(6.14) 

polarization sum --I L spin l/2 result 
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Fig. 14. Scattering (a> and pair-production (b) of transverse gluons 
by a Coulomb field. 
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The gluon isospin sum is 

c T; = (1)2 e 2($2 = 2 
pairs 2 2 

and upon again summing the geometric series, we get 

1 

a(s2) 
=-+Nf 1 

a(m2) ( ) G+k 
2 log % 

4 

(6.15) 

(6.16) 

again the "wrong" sign for asymptotic freedom. 

The third contribution (Figure 13~) does not exist in QED and comes 

from the coupling of the Coulomb field of the quarks to the vacuum fluctua- 

tions of the (transverse) gauge quanta. It has the important sign-change 

leading to asymptotic freedom, i.e. the decrease of the effective coupling 

at short distances. It is in fact much larger than the other two and 

dominates everything. The physics of the third term is not 100% trans- 

parent54 but is roughly as follows: the Coulomb field created by the 

quarks itself carries color and therefore interacts with the vacuum 

fluctuations of the (transverse) color fields. This jitters the Coulomb 

field and rounds off the short-distance singularity. 

of this hand-waving, the calculation follows directly 

for "Gauss' Law," 2 expanded out to order e . One gets 
+ + 

Whatever the validity 

from the formula 

(ignoring E ' & 

=& l gT term, which is already accounted for) from Equation (3.26) 

Upon inverting this for EL 

(6.17) 

Jo+iefd*?lJ +l 

v2 O 
-e2fL*V-ff v2 - ?-$ Jo + . . . (6.18) 
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Now we can put in plane waves for A and, in the last term, contract them 

together to obtain a vacuum-polarization contribution. After routine 

Fourier transformation (Figure 13~) the structure of the term is 

c 
A,B 

d3k : l (z - ;): l 5 

21k/(2r)3 Ir: - ;;I2 q2 
J;(q) (6.19) 

.I 

The Clebsch-Gordan is this time twice as big, because ET and EL are 

not identical degrees of freedom 

= 2(1>2 + 4(+)2 = 3 (6.20) 

using z l % = 0, and going to the zero-frequency limit, we get a 

correction 

A 
48k2dk 1 N as A2 

J 
l - = - Y-i- log q 16r3k3 j;12 

(6.21) 

In computing the "electrostatic" energy 

(6.22) 

we get another such term from the other EL* and a third identical term 

from contracting the O(e) contributions from each of the EL factors. Thus 

the entire contribution from this source to the effective charge is three 

times what we have written down. While not at all obvious, the geometric 

sum does survive these combinatoric complications55 and the net change in 

coupling-constant from this last source is 

,(c) = 3ao log n2 -- IT q2 
(6.23) 
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We now can add together the three contributions. Writing in momentum- 

space, the interaction energy as 

16~r as(M2) V(q) = - 3 
ICI2 

we have 

M2 as CM21 
kf (6.11) log Iq12= - Gr Nf(q2)10g q 

as(M2) E(b) = - 4~ M2 - 
log Id2 

$4 = + 3as(M22) log‘ M2 
IT Id2 

(6.16) 

(6.23) 

where in c(a) the sum over fermion flavors goes only over those fermions 

whose masses are small compared to the momentum scale of interest. Sum- 

ming up the three contributions leads to the aforementioned formula for 

the running coupling constant a(q2): 

1 1 
---=- 
ah21 a(M2) 

MT (33 - 

log 

1 2Nf) M2 
- = - - 
q2 a(M2> 

121T 1% 2 (6.24) 
4 

We see "asymptotic freedom" is controlled by the modifications to "Gauss' 

Law" due to the vacuum fluctuations of the transverse fields in inter- 

action with the Coulomb field of the sources. 

-12 Notice the definition of the coupling constant as(l ) is such that 

at ]q12 = M2, the higher-order corrections vanish. Here there is some 

difference with the traditional QED renormalization program,56 which 

defines the physical charge in terms of the force at large distances 
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(as q2 + 0). In QCD, weak coupling is at short distances only, and there 

is no unique choice of mass-scale at which to normalize. This leads to 

arbitrariness in definition of the coupling constant; this freedom can 

lead to confusion in the interpretation of the theory. One must choose a 

normalization at some very short-distance scale M.(a good choice is 

M -MJ where perturbation-theory is manifestly good. At this scale we 

may for example choose the definition such that the vacuum-polarization 

corrections to the static potential vanish. Then, by convention, the 

coupling-constant at this mass scale is defined to be 

as( >- K2 
12n . 1 

(33 - 2N,d)) M2 log - 
A2 

(6.25) 

The dimensionless number as(M2) is traded in for the parameter A which is 

an energy-scale. The convenience of this definition rests in the fact that, 

for all values of q2 for which the perturbative calculation, Equation (6.24), 

is accurate (and only for such values) one has 

as(q2) z as (0) (q2) =: 12-K 
2 (6.26) 

c33 - 2Nf(q2) Ilog e 
A2 

Thus the expression is form-invariant; A does not explicitly depend upon 

the choice of the scale at which the coupling constant is defined--at 

least to this order of approximation. 

What is the significance of the parameter, A? It is evidently a rough 

measure of the point at which perturbation-theory breaks down. However, 

when q2 - A2, there is no justification left for believing the form of 

Equation (6.26). Also, while the parameter A is claimed to be measured 
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reasonably accurately (let us say, between 300 and 700 MeV), this does 

not mean that we have accurate knowledge of the coupling-constant. For 

example, Figure 15 shows the spread in as(q2) 'allowed by the uncertainties 

in knowledge of A. We may conclude that it makes little sense to even 

consider perturbation-theory below Q2 - 1 GeV', and that Q2 in excess of 

5 to 10 GeV' are needed to bring a 

quantitative results. 

s down to a small enough value to trust 

Actually the slippery nature of coupling-constant renormalization, 

when combined with the proven57 renormalizability of QCD, becomes a 

powerful tool for summing higher orders of perturbation-theory. This is 

the "renormalization-group" method. The application to the behavior of 

the QCD running-coupling constant is just like that of QED. Without any 

explicit diagrammatic calculation, the Q2-dependence resulting from sum- 

mation of leading and next-to-leading logarithms can be determined. In 

particular one justifies that the leading approximation is the summation 

of the simple vacuum-polarization bubbles into a geometric series, a 

result which is not so obvious in QCD as in QED. A further result of the 

renormalization-group calculations is that if one starts with a small 

coupling constant as( 2 ) defined at a short distance scale M and tries to 

accurately extend it back to large distances, the convergence is rather 

slow. The formula for as becomes, after summation of next-to-leading 

logs? 

as (s2) = as(M2) + c C 
nm aS(M 

2n 
) n2m 

n>l 
(6.27) 

or 

ai1(q2) = ai1(M2) - 
(33- 2Nf) M2 

log 

3(153- 19Nf) 

1% 

as(q2) 

2 
- 

2 as(M2) 
+ . . . 

121T 4 2~(33- 2Nf) 
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Fig. 15. Q* dependence of the running coupling constant for 
A = 5002 200 MeV. 
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with a(') 
S 

the "standard form," Equation (6.26), for the running coupling 

constant. As q2 gets small, the correction becomes important when the 

running coupling-constant gets large. For q2 >> M2 the correction-term 

is never large, despite that fact that 

as(q2) - u AO’ (s2) -log log q 2 

aiO' (n2> 1% q2 
(6.28) 

giving a very slow rate of convergence. 

Let us now return to the question of onium bound states. The ques- 

tion of higher-order corrections to (and even existence of) the potential 

has been extensively studied. For the most part, the development runs in 

parallel with the treatment of QED bound states. There is one somewhat 

new feature5g which appears in high orders, and that is that the 

interaction-energy has terms cxi Rn cs. These come about from diagrams 

as in Figure 16 where the intermediate (transverse) gluon is very soft, 

and produces an infrared divergence. The infrared divergence is cut off 

by the energy-splitting of the intermediate (color-octet!) Qq configuration 

from the color-singlet QG bound state. But beyond this complication there 

is no signal of confinement other than the behavior of the running 

coupling-constant. 

How does all this compare with the properties of the Y and T systenm ? 

Most of the spectroscopic facts of those systems rest on a nonrelativistic 

model of quark motion and are not very specific to QCD. Given the 

assumption of nonrelativistic motion, Quigg, Eosner, and ThackerGo have 

used the level-spacings of the Y and T states, along with the wave-functions 

at the origin lY(0)12 ( measured via the leptonic decay widths) to 
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Fig. 16. H-diagram contribution to the Coulomb energy. 
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reconstruct the form of the potential. They find (Figure 17) a rather 

good linear potential at moderate distances, with some tendencies toward 

a l/r singularity at short distances. The slope of the linear potential 

(string-tension?) is 1 GeV/f2 in agreement with what is inferred from the 

string model of ordinary hadrons. John RichardsonG has turned things 

around and taken the QCD form, Equation (6.26) and made a very simple 

ad hoc change which turns the potential at large distances into a linear 

potential. He writes, in momentum space 

v(q) = $ 
12a 16nA2 

(33 
2 + (33 - 2Nf) q2 log (1 + e) 

A2 

- =Jf)q4 
(6.29) 

Aq -4 behavior as q2 + 0 corresponds to a linearly rising potential. In 

terms of a string model, the coefficient is related to the string-tension 

T as follows: 

T = i q2c(q2) 1 g 3!!'t26 E 0.25 + 0.15 GeV2 - 1 GeV/fermi (6.30) 

q2+o 

Whether or not this has any fundamental basis, this potential does well 

in describing the level-structure of charmonium. Other calculations for 

even heavier onia have been made,62 as shown in Figure 18. One sees 

that the pure QCD Coulomb potential is not applicable until the onium 

mass exceeds -100 GeV. 

Does QCD have much to say about fine and hyperfine-structure? Here 

the situation is not very clear for several reasons. First of all, the 

detailed origin of the linear component of the potential is theoretically 

unclear; hence it is not reasonable to expect spin-dependent refinements 
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Fig. 17. Typical charmonium potential as reconstructed by Thacker, 
Quigg, and Rosner (we choose m = 1.2 GeV, and E = 3.8 GeV). 
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Fig. 18. Onium levels as a function of mass. From Ref. 50. 
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to it to be under control. Perhaps the most reliable (and also most 

successful) QCD application is the pattern of hyperfine splittings. These 

are typically short-distance in nature and operative in s-states, so that 

one may hope that a perturbative estimate is at least qualitatively 

adequate. The most interesting result from QCD is that the signs of the 

splitting come out correctly both for q: and qqq systems. Thus for ci;l 

systems, the relative signs between charge and spin couplings are opposite 

to QED, because of the Al . A2 factor, and 3Sl lies above 'So. This 

pattern is universal among the quarks; p, w, 4 lie above r, n, II' and D* 

lies above D. Thus Y had better lie above n,, although the magnitude of 

the splitting is not certain. 

For qq systems, the agreement persists. The QCD prediction is that 

A (1236) lies above the nucleon. This can be seen fairly easily; in going 

from a 'So e+e- to a 'So e+e+ in QED, the sign of the spin-dependent force 

changes sign; hence is attractive. However, in QCD, there is still the 

4 l A2 color factor which will be negative in 2 and positive in G. Thus 

the energy between two quarks goes as 

(6.31) 

Then in the A, where each quark pair is in a spin-triplet state with 

(0 l o)=+l 
i 3 

<AIHspinIA> = -<Xl l X2 + X2 l X3 + X3 l A,> = + $A; (6.32) 

and there is net repulsion which is optimally strong. Thus N must lie 

below A. 

The situation regarding fine-structure splittings is confused. A 

Breit-type hamiltonian built in analogy to QED predicts quite a large 
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amount of spin-orbit splitting among ordinary hadron multiplets. However, 

there is relatively little observed. The problem is most acute in the 

P-wave 70, L = 1 baryon states, where there is remarkably little spin- 

orbit coupling found. There is some success in organizing the 3 P1 states 

of the charmonium system using semiphenomenological potentials, but the 

picture is not a completely simple one.65 

There are many detailed studies of the level splittings from both a 

QCD and directly phenomenological point of view.63 The above discussion 

only scratches the surface. From the present point of view, many of the 

analyses are not fully relevant because they incorporate the old evidence 

for the '1, at 2.8 GeV as seen by DASP. A rather thorough study of baryon 

splittings has been made by Karl and Isgur,64 who account for a remarkable 

amount of data on 70, L = 1 and even on 56, L = 2 from a semiphenomeno- 

logical QCD starting-point. 

We next turn to transitions between onium levels. In Stage II, many 

of the low-lying levels are stable with respect to strong interactions, 

because the only open channels contain (probably relatively massive) 

gluonium states. Nevertheless, we may induce transitions (e.g., in the 

femtouniverse) by slowly varying external gluon fields. Under this 

circumstance, a multipole-expansion is suggestive. This has received 

quite a bit of study.66 Effective local color-singlet operators, e.g., 

as written in Table 5-l (gluonium field operators), will have calculable 

couplings, including transition-couplings, to the onia. This is still a 

long way from estimating hadronic widths for onium transitions. For 

that one needs to know the spectrum of gluonia and their decay widths 

into ordinary hadrons. However, some information on relative widths can 
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be gleaned by analysis of angular-momentum barrier factors present in 

the various transition channels. For example the 3Pl x (3510) state is 

forbidden to decay into two gluons, and operators higher order in c1 need 
S 

to be invoked to induce the decay. It follows that its hadronic width 

would be expected to be smaller than for the 3Po 2 x-states. This seems 
, 

to be the case experimentally. 

The annihilation channels, where the Q-value is large compared to the 

confinement scale, offer a circumstance where perturbative QCD should be 

applicable (onium can happily annihilate even when confined in the 

femtouniverse; thus its decay-width should be calculable perturbatively). 

The width for T + ggg can be stolen from the 1949 (!) QED calculation by 

Ore and Powe1167 for the 3-photon annihilation of positronium. 

NT ? ggg) = $ $ 

0 

l (WFC) l T(3Sl positronium + yyy) l (6.33) 
c 

The factor (WFC) is a wave-function correction originating from the fact 

that the onium wave function is not purely Coulombic. The numerical 

factor comes from the color wave function. 

There is some ambiguity in what value of as(q2) to use in the above 

formula. We may contemplate three choices for q2: 

a* 4 2 = 4: This is the time scale over which the annihilation 

process takes place. 

b. q2 = l/9 rnc. This corresponds to a distance scale equal to the 

Compton wavelength of each gluon. 

2 
c* Q =: a2m2 

s T' This corresponds roughly to the size of the onium bound 

state (the initial state should fit into the femtouniverse). 
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This gives a spread in possible q2 values from-3 GeV2 to-100 Ge v2 , and 

a corresponding uncertainty in a s (f rom Figure 15 ) of a factorz4. Thus 
1 

the theoretical width for the T is (conservatively) uncertain to a factor 

160. That is, any experimental value within that range could be rationalized 

as being in agreement with QCD. 

Given this situation, a reasonable way to proceed is to fit the value 

of as to the observed T width of-100 keV. In this way one arrives at a 

value 

as(T + 3g) - 0.2 (6.34) 

This implies, from Figure 15, a Q2 value -10 GeV2, which is quite 

acceptable. We can also infer from simple dimensional considerations that 

the Q2-value for Y-decay should be about 10 times smaller. Hence, were 

perturbative QCD ideas to be acceptable for the Y + ggg decay, we should 

have 

[ 1 
3 

l?(Y -t 3g) r(T -t 3g) 
r(y + pp) z 4r(T + J.Q) . 

a,(Q;) 

a&Q;) 
(6.35) 

The leptonic branching ratio for the T is still poorly known. But putting 

in numbers for these widths, one finds 

(6.36) 

Even qualitatively this is not what is expected. From Figure 15, there 

should be a decrease in a 
S 

of 50% to a factor 2 in going from the Y system 

to the T system. 

”  
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The easiest conclusion to draw from this is that the mass of the Y 

is much too low to allow quantitative applications of perturbative QCD. 

This should be no surprise inasmuch as each gluon carries an average of -1 
49 

.GeV of momentum. In addition, recently calculated radiative corrections 

turn out to be remarkably large, even for the T system. 

A perhaps better test of perturbative QCD is to look for the 3-jet 

final state in T-decay, and also the radiative process 

T + ggY (6.37) 

The branching ratio for this process is estimated to be-3%. These ques- 

tions are discussed in detail by Stan Brodskyo2 

7. . INCLUSION OF LIGHT FERMIONS 

Thus far we have not faced directly the real-life situation present 

when the light fermions are included in the theory. We have already 

indicated the basic changes which occur. The most important is the 

appearance of the ordinary hadrons. Qualitatively there is not much of 

an additional conceptual problem. The problem is a quantitative one: 

can we understand the classification and the mass-spectrum--especially 

of the excited resonant states --and their couplings to each other? This 

question is a very big and difficult one to handle theoretically, and 

will not be directly attacked here. It would seem necessary to have a 

rather firm control of the mechanism of confinement before one had firm 

control of such questions. 

Along with the introduction of the light quarks goes the disappearance 

of the string, which can break due to (Heisenberg-Euler) pair creation." 

Actually, the lifetime of a piece of string is somewhat uncertain. If 

- -.--.%P* _ 
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mesons of large J can be considered as quarks rotating about each other 

and connected by a piece of string, then their lifetimes (P N" lo-100 MeV) 

give some measure of the string lifetime. The relatively large widths of 

chsrmonium states which lie above DD threshold are another indicator. But 

in any case the linear potential becomes complex (absorptive) as r 

increases,. and we should not expect that the concept continues to make 

much sense when, say, Re V(r) >> 1 GeV. This is because Im V(r) grows 

with r (linearly?, quadratically?) as well as Re V(r). 

Introduction of light quarks will also modify the properties of the 

gluonia discussed in Section 4. Gluonia may mix with the ordinary mesons, 

and will also decay into meson channels. However, as already mentioned, 

these are not expected to be large effects. Eloquent argumentation for 

this has been given by Witten6* on the basis of the l/N expansion, where 

N is the N of SU(N). One hopes N = 3 may be "large"; as N + 0) one can 

argue that gluonia decouple from quarks (as well as from each other!). 

While probably most theorists expect gluonia to survive as distinguishable 

states even in the presence of mixing with ordinary mesons, a group from 

ITEP6g has challenged this view. Their argument is based on the QCD sum- 

rules for the charmonium system and a generalization to the gluonia. The 

QCD sum rules are interesting in their own right. Weighted integrals of 

the colliding-beam cross section are related to matrix elements of various 

local operators via the Wilson operator-product expansion. The structure 

is, 

CD 

/ 

ds R(s) = sums of vacuum matrix 

SN 
elements of local operators. 

a 
(7.1) 
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The right-hand side is calculable in terms of short-distance properties of 

QCD--the more so the smaller the value of N. With some mathematical 

trickery they can sum things up and also write 

Q) 

/ 

2 
ds e -s'M R(s) 

0 

another sum of vacuum matrix = 
elements of local operators. (7.2) 

When they consider separately the Ri associated with currents of u, d and 

s and choose M appropriately, the sum is saturated by p, u, and 0. The 

result is a successful calculation of masses and widths of these resonances 

in terms of short-distance parameters of QCD!! They then turniro to 

processes such as discussed in the beginning of Chapter V, created by local 

color-singlet gauge-invariant operators such as Tr(g2 - g2) or Tr 2 l 2. 

The corresponding sum rules are constructed analogously to Equation (7.2). 

The right-hand side can be evaluated from the information already obtained 

from the previous sum rules. They find that the left-hand side can be 

saturated by known mesonic states such as E or n' and there is no need 

for additional distinct gluonium states. This does not of course prove 

such states do not exist; however, it does undermine the notion that 

inclusion of light fermions does not significantly modify the properties 

of the gluonia, since without the fermions present there would be no 

alternative but to saturate the QCD sum rules with gluonium states. 

In the context of QCD, some of the most interesting aspects of the 

presence of light quarks have to do with questions of symmetry--from the 

approximate chiral flavor symmetry SU(3) @ SU(3) of current algebra to 

the discrete symmetries of C, P and T. The issues involved are quite 
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subtle, and we shall concentrate our attention in this section on them. 

The first issues have to do with chiral symmetry. Introduction of the 

fermions u, d, s,... adds to the QED Hamilton& a term 

H strong = HPure QCD + (7.3) 

where the mass-matrix is usually presumed to originate from the Higgs- 

mechanism of the electroweak interaction. Because the Higgs sector is 

not expected to respect internal symmetries, it follows that m ij 
need not 

be diagonal. In fact the mass matrix may even contain y5. Nevertheless, 

because of the presumed diagonal and flavor-independent nature of the 

kinetic-energy and 1 l 

+ 

A terms, one can redefine the fields Pi in such a 

way that the mass term in H strong is diagonal and y5 free. This is an 

important feature: it implies (or would seem to imply) that, despite P, 

C, and/or T violating effects in the Higgs sector (or whatever) responsible 

for quark mass generation, such symmetry violation will not find its way 

into the strong interactions. This desirable result will be tempered some- 

what in what follows: the Tr 2 l i surface-term does induce CP violating 

effects in strong interactions via instantons. We shall come to this 

later on. 

In the absence of the mass terms (a reasonable approximation for u, 

d, s), the Hamiltonian is invariant under independent rotations (in flavor 

space) of the left- and right-handed fermion fields 

YiR(X) -t u.. (R) 
iJ 

YjR(X) (7.4) 
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leading to a chiral U(3)L @ U(3)R symmetry. This is broken only by the 

Wsmall" mass terms. Eighteen vector and axial currents can be constructed 1 

which in the limit m 
U’ 

md, ms + 0 are formally conserved by the equations 

of motion. However, one of them, the 9th flavor-singlet axial current, 

is not conserved because the short-distance ultraviolet divergences of 

the theory do not allow it. This phenomenon is the triangle-anomaly: the 

divergent graphs of Figure 19 do not allow the shifts of origin in 

momentum space required to obtain the formal vanishing of the divergence 

of this axial current.71 Defining 

J ys = c pi ySY1-14i (7.5) 
i=u,d,... 

the result is 

terms vanishing 
as m. + 0 1 (7.6) 

where nf is the relevant number of flavors (3 for u, d, s). The Tr i l i 
factor should already be familiar from Section 4 on instantons and from 

Appendix B. There we found that the term Tr i l i itself is a total 

divergence 

2 
- Tr $ e 

4a2 - 

where the current 

e2 
K- EwBY -=AAA 

v 8n2 
3 -a-B-y 1 

(7.7) 

(7 08) 

is gauge-dependent. The operator N = . $ 
Kod3x measured the topological 

quantum number used to classify the QCD vacuua. It might appear that the 
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Fig. 19. The triangle anomaly. 
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U(1) chiral symmetry could be salvaged by considering the summed current 

4 
IJ 

= Jn + Ku which is conserved. - The conserved charge would be in this 

case 

J 
god 3 x E Q 

tot = Q5+2nfN = c (NLi - NRi> + 2nfN (7 09) 
flavors 

where N counts the number of gauge-bubbles present in the QCD vacuum. 

However, even in the absence of the light quarks, we have learned that we 

cannot characterize the vacuum by the quantum number N. Because of ga,uge 

invariance and vacuum tunnelling via instantons, it is its conjugate 

variable 0 that labels the vacuua. So also it will be for the chiral 

charge Q5; the variable cp conjugate to Q,, which is a phase, is used to 

characterize the chiral structure of the vacuum. This is the same as the 

situation for spontaneous chiral symmetry breakdown in the more conven- 

tional context: the vacuum is not an eigenstate of the chiral charge, 

We have not yet motivated why this chiral symmetry-breaking must 

occur. This has to do with the instanton phenomenon. The different 

N-vacuua become coupled because of the existence of a non-vanishing 

quantum tunnelling amplitude (the instanton). With fermions present, we 

must reanalyze the tunnelling process and keep track of how the quark- 

states are affected by, say, the creation of an instanton-induced gauge- 

bubble.72 Consider a femtouniverse where the quark coupling to trans- 

verse gluons may be considered perturbatively (i.e.,neglected). If we 

are in an N = 0 sector the quark states are simple plane waves of definite 

chirality (with the approximation mu d s = 0) and quantized momenta. 
, t , 
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Is there anything different about the solutions in the presence of a 

gauge-bubble? The answer is no: ‘only a color-dependent gauge-phase 

need be multiplied to the quark wave-functions. The energy-eigenvalues 

(which are gauge invariant) remain unchanged at + LL 
V1/3 ' 

+aJ?: - v1/3 ' etc. 

[Note: for convenience we choose to quantize with antiperiodic boundary 

conditions Y($) = -Y(- $) to avoid eigenstates of zero energy.] However, 

we may ask what goes on as the tunnelling occurs. We shall analyze this 

problem in first-quantization. That is, we treat each fermion state 

individually and only introduce the filled Dirac-sea.of negative-energy 

eigenstates at a later point. Because the tunnelling is semi-classical 

the coordinates of a given quark must be deformed along with the gauge- 

field coordinates. In the intermediate configurations between N = 0 and 

N = 1 there are no pure gauges; the quark finds itself in real color- 

electric and color-magnetic fields. Thus the levels will shift--and if 

the tunnelling rate is slow, they will shift adiabatically:73s74 only 

degenerate fermion states mix. However, as the tunnelling becomes complete, 

one returns again to a pure gauge configuration--and therefore the same 

set of energy levels as in the beginning. But the important and crucial 

feature of this process is that the matching of final levels to initial 

levels is nontrivial. Some of the initial levels move upward; others 

downward and end up, at N = 1, in different states (c.f. Figure 20). What 

does this mean? It means that, when one second-quantizes and--according 

to Dirac hole theory-- fills all negative-energy states, the tunnelling 

phenomenon takes one from the N = 0 vacuum of filled fermion states to 

an N = 1 state which is not necessarily the N = 1 vacuum. In fact, if 

any of the fermion energy levels does cross zero, then the N =l state 
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12-79 - I 3662 ~19 

Fig. 20. Schematic picture of shifts in fermion energies as a 
function of winding-number N. 



- 99 - 

which is reached will not be the naive N = 1 vacuum state. This is 

actually what happens. In tunnelling from N =, 0 to N = 1, one negative- 

helicity state (for a given flavor) of originally positive energy dives 

into the negative energy-sea, while one positive-helicity state emerges 

from the negative-energy sea and joins with the positive energy states.75 

Thus, the net effect is that the instanton-induced transition from the 

N= 0 vacuum to the N = 1 vacuum is suppressed; instead the transition 

simultaneously creates a pair of each flavor of "massless" fermion, since 

the levels of all flavors are shifted together. In our case, that means 

the transition is accompanied by creation of three quarks and three 

antiquarks 

(vat) N=O % (vac)Npl f UT; dz ss (7.10) 

Remarkably enough, 
* 

this process respects the conservation law implied by 

Equations (7.6) and (7.7): 

A [T(NRi-NLi']- 2nf AN (7.11) 

* 
When applied to the weak-interaction gauge theory,72 this phenomenon 
is even more spectacular. 
pared to $1, 

In a femtouniverse with dimension small com- 
one expects to have an essentially unbroken SU(2)L non- 

Abelian gauge theory. Thus the instanton creates one left-handed 
fermion from each weak doublet, consistent with charge-conservation. For 
three generations this means: (vaclN Z (va4N+1 -I- (:3 + ($L + (3, + (& 

+(s) +@x +(:), +(q3 
+(>) +(3, +(g2 +(:), 
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This cannot be an accident; the triangle anomaly must sense at the high 

momenta.the imbalance of fermion levels'induced hy gauge-bubbles and 
1 

nonvanishing values of 
J- 

d4x $ l F; - -. One may recall that even in QED the 

definition of the electrical-current operator requires a careful sym- 

metrization between positive and negative energies. The monotonic shift 

in levels of, given chirality induced by an g l i term will be feit not 

only in terms of levels which cross zero energy but also (in the presence 

of a high-momentum cutoff) of an induced asymmetry at the highest momenta 

and consequent multilation of the structure of the current operator.75 

What now are the stationary states? The tunnelling effective 

Hamiltonian analogous to Equation (4.6) now has an extra factor to account 

for the quark pair-creation we have found. Schematically 

2a 

c 
-- 

H' - ' 'N,N+l (%)(dd)(ss)e as(A) 
N 

(7.12) 

When H' is evaluated in a e-vacuum, the N-dependent factor evidently 

becomes a phase 

For example, this means there exist IABI = IALI = 3 virtual transitions 

(vac>Nv(vac) N+l + ve + n + P- + (ccs) + T- + (ttb) 

Thus a pure 3rd generation baryon could decay into a pure second-generation 
antibaryon, an antineutron, and 3 antileptons. Regrettably (or perhaps 
fortunately) the amplitude for this process is extremely small, of 
order 

e- 2 2 sin 8 N 10-60 
a W 
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2n -- 

<elH'le> 'y (const)ei* dX (iu>(zd)(&e as J (7.13) x5 
For diagonal matrix-elements it is necessary to contract the fermion- 

fields %I +<Gu>, etc.; and such contractions vanish if the masses of the 

quarks are zero. Hence all instanton-related effects will now be 

proportional to the product m m m 
U-dYl where these are the current-algebra 

masses.(a reasonable estimate is m - 4 MeV, m 
U d - 7 MeV, m - 150 MeV). 

S 

Furthermore the phase transformations on the quark fields necessary to 

put the mass-matrix&into standard form Cyilmijqi will also leave a 
i 

phase C/I in the expression (Equation (7.13)) for the tunnelling energy in 

a e-vacuum. This phase is easily to be found to be 

4 = arg det,A? (7.14) 

and hence the effective angle relevant to observable effects, such as in 

Equation (7.13) will be 

s= 8 - (I = 8 - arg det.Al (7.15) 

Thus even if strong-interactions have for some reason a boundary condition 

0 = 0, after inclusion of mass-generation (via Higgs-electroweak mechanisms) 

the effective angle s cannot be expected to remain zero. 

Thus far we have found that the U3L B U3R symmetry has been broken by 

instanton effects to an SU(31L @ SU(3)R BUM symmetry. What about 

spontaneous chiral symmetry breaking? The flavor-octet of axial currents 

Ji - 
lJ 

= qyPy5Xiq is not plagued with instanton couplings or triangle 

anomalies, and one may attack the problem in more conventional ways. Even 

in QED, it has been argued that chiral symmetry can be spontaneously 

broken,76 i.e., lepton mass can be generated self-consistently by the 

-- 
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mechanism illustrated in Figure 21. The same mechanism with gluon replac- 

ing photon might apply in QCD. A different line of argument has been 
1 

advanced by Callan, Dashen, and Gross,77 who exploit the instanton 

tunnelling and propose a mechanism as shown in Figure 22. The effective 

instanton-induced six-fermion interaction in Equation (7.13) is used to 

trigger the spontaneous symmetry breakdown. But this is difficult to 

make quantitative. In addition, recent explicit calculations in strong- 

coupling lattice gauge theories78 are also supportive that spontaneous 

symmetry breaking of SU(3) chiral symmetry will occur in QCD. In all 

cases much more needs to be done before one can be fully convinced that' 

QCD does imply the spontaneously broken chiral SU(3) symmetry which 

underlies the successful current-algebra and PCAC phenomenology of 

ordinary hadrons. 

Finally, it is necessary to inquire into the implications of a 

nonvanishing value of z for the questions of CP violation. Evidently a 

term in the Lagrangian 

8 L’ =- 

24n2 
Trioi (7.16) 

which serves to fix the value of vacuum-8 is P-odd and C-even; hence 

T-odd. While formally a total divergence, we have had ample evidence that 

such a term produces nontrivial effects. The greatest threat lies in the 

experimental limit of 10 -24 e-cm on the neutron electron dipole moment, 

implying a value of ISI of A10m8. It is necessary that she very ~mall.~~ - 

There are various points of view possible: 

1. 8 is an arbitrary parameter in the most general renormalizable QCD 

Lagrangian and, since it is subject to divergent renormalizations from 

higher order loops, must be considered not implausibly small. 
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12-79 3662A20 

Fig. 21. Possible mechanism for spontaneous chiral symmetry breaking. 
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Instanton 2i 
12-79 366212 1 

Fig. 22. Possible instanton mechanism for spontaneous chiral 
symmetry breaking. 
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2.. For strong interactions one simply imposes the condition 8 = 0 

by hand as a symmetry criterion: T-invariance of strqng interactions is 

demanded from the start. This does not solve the problem completely; 

weak interactions and Higgs-couplings can reintroduce a non-vanishing 8 

by radiative effects. Furthermore, these effects can again be divergent, 

so one can argue they are not small. On the other hand it is not neces- 

sarily so that the infinity gives a large value of 8. For example, in 

the popular SU (5) grand-unified model, the "infinite" CP violating 

effects only leak into the strong interactions in 14th order. The 

nominal order of magnitude is80 

a7 f3<< -;; 0 log m (7.17) 

This size is safely "small" (f log m 21 for any reasonable value of =). 

3. We saw that in the limit of vanishing quark mass, the vacuum 

tunnelling (and therefore CP violating effect) was suppressed, and that 

in the presence of quark mass the tunnelling amplitude is multiplied by 

a factor proportional to m m m uds or better 

d 
(7.18) 

Thus, were the "bare" current-algebra mass of at least one quark to be zero, 

we could avoid the problem.81 The best candidate is the up-quark, whose 

mass is estimated, from current algebra considerations, to be-4 MeV. 

However, zero mass seems to go against successful current-algebra and 

SU(3) calculations. 
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4.. The mechanism of quark-mass generation can be modified. Peccei 

and Quinn82 found that by allowing an additional U(1) symmetry in the 
1 

Higgs-sector, which was then spontaneously broken, that the CP violating 

phase could be sloughed off into that U(1) phase of the Higgs sector. 

However, Weinberg83 and Wilczek84 then showed that there should be an 

almost massless O- Goldstone-boson (the axion) with mass SlO-106 keV. 

The couplings of this object to matter are sufficiently strong that it 

should probably have been seen.85 

. Among these options, p robably the least unpalatable is option (2): 

8 is put to zero by hand in the strong QCD theory, with the weak- 

interaction and Higgs contributions required to be a small perturbation. 

We have in this section not provided much of any idea how these 

effects are calculated quantitatively. The most appropriate and powerful 

technique utilizes the Feynman path-integral,86 but even that method is 

technically quite difficult. Considerable uncertainty remains in the 

magnitude of these CP violating and other instanton-induced effects, 

8. IDEAS ABOUT CONFINEMENT 

A great deal of effort has gone into trying to understand the con- 

finement problem, and considerable insight has been attained. Neverthe- 

less, there is no general agreement that the question is understood. Here 

we shall only mention in the most superficial way some of the approaches: 

a. Lattice QCD: One approximates the continuous system with a single 

cubic lattice, with quarks living on sites and gauge field living on 

links.87 The basic element is a line integral 

ij Ii l ;ix 

U =:e A 
-AB : (8.1) 

- 
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connecting neighboring sites A and B, and the action is a sum of contri- 

butions of the 4U's at a time taken around an elementary face (plaquette) 

of the lattice. This theory is simplest in the strong coupling limit. 

There Wilson showed87 that there exists a linear potential between heavy 

sources -even for lattice QED. The field chooses the shortest path between 

sources, and any fluctuation costs extra powers of g2 in energy. 

The central problems are to connect the strong-coupling limit to a 

weak coupling theory at short distances, and to demonstrate a distinction 

in that limit between the abelian QED and nonabelian QCD theories. 

Ideally one should be able to compute the string-tension in terms of the 

perturbation-theory parameter A which controls the value of the running 

coupling constant a at short distances. 
S 

Important progress has been recently reported. Kogut, Pearson, and 

Shigemitsu88 calculate the strong-coupling expansion to several orders 

and use Pade approximation to extrapolate toward weak coupling.. Creutz,8g 

using a technique originated by Wilson, reduces the problem to an equivalent 

statistical-mechanical calculation of a free-energy, which he does via 

Monte-Carlo techniques on a computer. Both groups, as well as Wilson, 

find evidence for an abrupt transition from weak to strong-coupling at a 

critical distance-scale, and at a relatively.small value of as - 0.1. 

b. MIT Bag: The MIT bag modelgo was originally formulatedgl at a 

level more phenomenological than QCD. It views the vacuum as a complicated 

medium, and a hadron a "hole" in the vacuum which is simpler, at least 

as seen by quarks and gluons. There is an energy cost in creating such a 

hole; also the vacuum pressure on the hole is compensated by the pressure 

of the quarks and/or gluons in the interior, leading to a stable hadron. 



This picture has enjoyed reasonable phenomeno&ogical success. The QCD 

interest lies in making a connection of this picture to the QCD Hamiltonian. 

The ideas, not necessarily exclusive, include: 

1) Princeton program. Callan, Dashen, and Grossg2 argue that the 

exterior vacuum (viewed 4-dimensionally) is a dense plasma of instanton 

events. However they argue that in the presence of color electric fields 

(i.e, in b,ag interiors), instanton effects are suppressed and one has a 

relatively dilute gas. Their calculation of relative properties of these 

two phases rests heavily upon the use of analogies to statistical 

mechanics and.on taking account of couplings between instantons. 

2) Analogy with Meissner Effect: Electric-Magnetic Duality. A 

monopole in a superconductor undergoes confinement in the way envisaged 

for QCD: a quantized vortex line connects a monopole-antimonopole pair, 

providing a linear potential.g3 To exploit this analogy in QCD, one 

needs to reverse the role of electric and magnetic field; the QCD string 

contains electric flux, not magnetic. There does exist some E-B duality 

in QCD.g4 But this program is evidently a difficult one and at present 

is not complete. 

c. Schwinger-Dyson Equations: Another attack uses the Schwinger- 

Dyson equations, which sum up the Feynman-diagram expansion.g5 The goal 

is typically to find a nonperturbative solution consistent with a q -4 

behavior in the gluon propagator, signalling a confining potential. 

Problems include how to truncate the infinite set of coupled nonlinear 

equations for the Green’s functions, how to enforce gauge-invariance, and 

how to interpret the result (the Green's function of the gluon is itself 



- 109 - 

gauge-dependent). On top of this is the straight technical problem, even 

after brutal truncation, of solving complicated sets of nonlinear integral 

equations. 

d. QCD Strings: This approach treats a piece of bare string, 

possibly closed, as the basic degree of freedom instead of point quanta. 
B 

i J- ; l 2s 

Thus the field degrees of freedom are: A :e :. The problem is 

to establish equations of motion and a consistent quantum-mechanical 

formalism, and then determine properties of dressed.strings.g6 

All these, and others not mentioned, are the subject matter of 

courageous and difficult research. There is optimism that the problem 

can be understood; perhaps one of these approaches will provide some 

answers. 

9. ALTERNATIVES TO QCD 

It is becoming hard nowadays to find serious work on strong interac- 

tions which does not start with QCD. This is less a consequence of over- 

whelming evidence in favor of QCD as it is a consequence of a lack of 

serious contenders. In my mind the two strongest contenders are.the string- 

model and the Pati-Salam scheme. In the case of the string model, one 

simply asserts (without any backup from field theory, etc.) that quarks 

are tied together by strings of unspecified structure and basic origin. 

It has a close relationship with dual models and the topological expansion 

of the S-matrix. A major difference with QCD lies in the absence of 

the gluon degrees of freedom. The recent PETRA data does not encourage 

this point of viev. 

The Pati-Salam scheme, based on Han-Nambu integer-charged quarks, has 

undergone a considerable degree of evolution.q7 The apparent discrepancy 

. 
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with the fractional charge measured in electroproduction can be avoided 

if the theory is gauged. However, it appears difficult if not impossible 

to avoid a low mass (52 GeV) boson 5 which mixes with the photon and 

which has a large leptonic width.g8 This seems to be ruled out on 

experimental grounds. Also, the T lepton and b quark do not fit very 

comfortably into the scheme. 

Why the difficulty in finding alternatives? It is simply the short 

but restrictive list of reasons listed in the introduction, plus the 

problem of incorporation of the parton-model picture at short distances 

(solved in QCD by the asymptotic freedom property). 

QCD does pass the test on these issues. It possesses as well the 

distinguished pedigree of being a local gauge theory like QED, which 

puts the color degree of freedom to work dynamically. It makes it no 

surprise that it is so widely accepted. Nevertheless QCD does need much 

better experimental support for it to be truly confirmed. For me, the 

most reliable tests are those which can be imagined to be carried out in 

a femtouniverse. These include (1) measurement of the e+e- total cross 

section to an accuracy sufficient to see the radiative correction and 

(2) measurement of as via e+e--* qyg, with the final partons in a highly 

non-collinear final state (i.e. N 120' away from their neighbors). One 

will then want to check the gluon spin by measurement of angular correla- 

tions in this or other processes. 

10. CONCLUSIONS 

QCD is a theory of strong interactions which has a starting point as 

fundamental as QED. While there are major mathematical difficulties in 

even a successful formulation of QCD as a quantum field theory, these 
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difficulties are ameliorated by quantizing the theory in a tiny box (femto- 

universe) with a small coupling constant. There do exist processes which 

we observe and which in principle fit into the femtouniverse. These 

processes can be calculated perturbatively; in the femtouniverse QCD con- 

verges as well as QED. 

However, as the box size grows there appear at least six crises: 

1. The Gribov gauge-fixing ambiguity impedes the elimination of 

unphysical degrees of freedom from the canonical (temporal-gauge)formalism. 

2. The running coupling constant becomes strong at large distances, 

and perturbation theory goes out of control. 

3. Large instanton effects occur, complicating the question of 

topological structure of the QCD vacuum. 

4. The vacuum rotor-modes mix with transverse-gluon modes and may 

have significant physical effects. 

5. Gluonium and/or color-singlet hadrons should appear as asymptotic 

states and quarks and gluons should disappear. How (and at what distance 

scale) does this happen? 

6. With light quarks present, spontaneous breakdown of chiral sym- 

metry should occur. Again at xhat distance scale (and how) does this 

happen? 

But while there remain many unanswered questions'about the large- 

distance aspects of QCD, the small-distance behavior appears to be 

comprehensible. If the theory is correct, the problem of understanding 

strong-interaction dynamics can to a great extent be decoupled from the 

problem of interrelating the strong, weak and electromagnetic force at 

extremely short distances. That alone would be a great step forward in our 

understanding of elementary particles. 



- 112 - 

APPENDIX A 

One of the Maxwell Equations 

1 2 l gw> - eAO(x,t) 
1 

Y = 0 (A-1) 

is an equation of constraint. The existence of this constraint is con- 

nected with the residual gauge-invariance of the theory: the condition 

_Ao=O does not completely fix the gauge. Time-independent gauge trans- 

formations 

(A.21 

with 

as 
=,o 
at (A.3) 

can be still carried out. The Gauss-Law operator (2 l g - eA") is actu- 

ally the infinitesimal generator of these gauge transformations. To see 

this write 

g(x) = 1 - iecSk(x) (A.4) 

with 6h(x) a 3x3 matrix. Then by definition 

XA =A--)A) 
w N cy = Q(x), i(x)] + ssgx> (A.5) 

Now in the big Hilbert-space of quantized fields we write the unitary 

transformation W 

,Ja = 1 + i Tr 
/ 

d3y [g l gY) - ezo(y> 1 64(y) 

Then using the canonical commutators, we find 

~ZX(x)4!1 -1 = "(X) + X$x) 

with 6A(x) given above in Equation (A.5). 

(A.61 

(A-7) 
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Likewise the unitary transformation of the quarks is also generated: 

@q(x)%? = (1 -I- ie6L(x>>q(x) (A.8) 

The Hamiltonian has a very large symmetry under residual gauge trans- 

formations. The idea of gauge-fixing is to find all the extra trivial 

coordinates and remove them from the formalism. In QED this is easy to 

do,&as was illustrated in Chapter 3. 

Now we ask what the corresponding procedure is in QCD. Evidently 

we would like to copy QED as much as possible. We may do this as before 

by introducing transverse and longitudinal parts of 5 and & and eliminat- 

ing $ and $ from the theory. We begin with the electromagnetic poten- 

tial and assume there exists a time-independent gauge-transformation 

which renders & purely transverse 

(A.9) 

This is not self-evident; the equation for the gauge-transformation 2 is 

? l (p&+y$ = 0 (A.lO) 

which is not at all transparent. (Note that for QED, with S=eiti, the 

above equation is just 

V2A =? l A (A.ll) 

which allows the solution 

(A.12) 

If this is carried out, then is removed from the Hamiltonian, inasmuch 

as H is invariant under such gauge transformations. To remove 3 
-L' 

define 

B =Qt+Z (A.13) w NT 
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and eliminate k using the Gauss' law constraint 

(A.14) 

It is easiest at this point to expand all 3x 3 matrices in terms of X- 

matrices. Then $A can be obtained formally via 

$A(x) = s d3y KAB(x,y;A) efBCDg(y)* g(y) + e# 1 (A.15) 

with the kernel K "defined" by 

(3 l %AB K(xT~;MBC 

Z V'K(X,~;A)~~ - ef 63(x - y) (A.16) 

In'shorthand notation 

K i-L 
63 

(A.17) 

With 4 defined above, we finally end up with the Hamiltonian 

H= Tr($ + g2 + (?A)') + Y'(z l ($ - e&) + Bm)Y (A.18) 

This somewhat cumbersome form directly generalizes the procedure in QED. 

It is quite satisfactory for weak-coupling applications, but unsatisfac- 

tory for strong coupling. This is because it is known that there exist 

homogeneous solutions for the Green's function K. Roughly speaking, the 

A; 3 term is a potential which supports "bound states" provided A is 

big enough. If the region where A is large has a size L this means AL 

l/eL in order to compensate the kinetic-energy term. 

Another way of seeing what this means is to look at the gauge- 

condition 

? l J=O (A.19) 
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We assumed this could be done in a unique way. However, existence of 

homogeneous solutions of $ l $ = 0 implies that the above condition, 

Equation (A.19), is not unique: namely there exist gauge-equivalent 

fields which each satisfy ? l z = 0. That is, when 4 is chosen such 

that these solutions are close to each other we have 

(A. 20) 

However, from Equation (A.6), (Dog- e&) generates gauge transformations 

sf = 
/ d3Y CB l &(YNh(YL$4 1 

= $en, (A.21) 

Hence 

+ l $5 = 0 (A.22) 

Non-trivial solutions of Equation (A.22) thus imply that fixing z 

to be transverse does not mean that the gauge has been fixed. 
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APPENDIX B 

Even the vacuum of.QCD turns out to have a quite complicated struc- 

ture for essentially topological reasons. We shall enter this subject here 

from what is apparently quite an oblique way. It is not the historical 

path, but we hope it is more physically comprehensible.gg We start by 

adding a term to the Lagrangian density of the theory with the form 

where the dual y of F is defined 
W PV 

2 
-ee Tr 
32x2 

E Fvvna8 
F.tvaB- L % 

2 
e8 Tr ;uvzuv 
16r2 

e20 -+ 
=-TrE 

47r2 - 
l s 

as 

(B-1) 

That is, the dual of 2 is 2, and vice versa. This interaction term is 

evidently parity-violating but C-conserving; hence by the TCP theorem 

also time-reversal non-invariant. We might ask why in the world one 

would gratuitously throw such a coupling into the strong interactions. 

One answer is why not: the term is renormalizable and there is a school 

of thinking that says that one should write down the most general renor- 

malizable theory whenever possible, But even if one restricts the 

strong interactions by hand to be CP-invariant by setting 0 = 0, CP vio- 

lation elsewhere in the theory can eventually leak back into the strong 

interaction and induce such a term. So it is reasonable to expect such 

a coupling at some level, even if it is quite small. However this is 

not the only reason that such a term is of interest. The 9F? interaction 
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is quite peculiar, because it turns out that the Lagrangian density Y' 

is a total divergence. This implies that the Lagrangian L can be written 

as a time derivative of a function of A'. To see this easily we go to 

h=O gauge and write 

Be2 

J 

aA_i 
=- Tr d3x c - 

aOj 

4a2 ijk .at axk 

03.2) 

where we have assumed that k vanishes as ~Z~-WJ so that integration by 

parts may be carried out. Now when the Lagrangian contains a total time 

derivative, it is a simple matter to calculate its effect. We review 

this for a system with a finite number of degrees of freedom. Let 

LkiAi) 
dF hi> 

= Lo(qi'~i) '- dt 

= LO(9i’~i) + C pi ~ 
i i 

The equations of motion are unchanged: 

0 =-- 
:tay/g= [9&q+ 

old 

The Hamiltonian formalism changes a little. 

(B-3) 

1 (B.4) 

new 

The new momentum is 

'i 
aLO' aF E-+-c p (0) I aF 
aQ aqi i aq. 1 

(B.5) 

However the Hamiltonian remains form-invariant (in order to preserve the 

equations of motion!): 
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H(P*'q*) =C Pidi - L 
i 

= C p*‘O)d* - LO 

[ 1 [ + 
i 

~ ~ ~* - ~1 
i 

old new 

=HO(P-$ q) 

and 

0.6) 

Thus the effect of the extra term F can be.taken into account by incor- 

porating an extra phase into the wave function. That is, if 

ayO 
HOYO(q,t) = i at (B.7) 

then upon defining 

Y(q,t) = e -*F(q) y(-Js,t) 03.8) 

one finds 

wq,t) H(p,q)Y(q,t) = * at (B-9) 

inasmuch as e *F(dp e-*F(d = p aF . 
aq 

This looks like it has a trivial 

effect on the theory. The spectrum of eigenfunctions and eigenvalues of 

H are simply determined in terms of those of Ho. In particular the 

energy-eigenvalues are the same. For QCD, the transformation on the 

great big wavefunction for the field-theory is given by 

Ye(A) = e -*N(A)Oyo(A) (B.10) 

with 

N(A) = -$ Tr/d'x Eijk [$A~ 2 - F 4iAjh] (B.ll) 
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Why is this of any interest at all? For pure time-independent gauges 

(ZFI~= 0) the operator N takes the form 

i&N 
.3 

= z 'JJr d3x E 
pure gauge 24n2 / ijk hi&j-& (B.12) 

with 
(B.13) 

It is here that topological considerations enter. If we make an infini- 
-k 

tesimal, time-independent gauge transformation on the above A which van- 

ishes at ~0 we find 

and 

k*(x) + [bl(x), k,(x)] + V,Q(x) (B.14) 

& -ie Tr d3x E = 4 
241~ 

J ] ijk [ie,Aikj&] ' 3Eijk g b&j&) 1 

= 0 (B.15) 

Thus N is invariant under infinitesimal gauge transformations which 

approach the identity transformation as x + m. Thus it is also invariant 

under finite gauge transformations U of the same type which can he 

reached from the identity continuously. It might seem possible there- 

fore to restrict ourselves to potentials & which can be reached continu- 

ously from the trivial potential d = 0; in this case (in the absence of 

gauge fields 2 and E), N would vanish and the wave function would not 

depend upon 8. What follows will demonstrate that things aren't that 

simple and that (1) there exist other pure-gauge field-configurations s 

which cannot be reached from the identity by gauge-transformations (at 

least those which,approach unity at ': + m), and which are characterized 
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by integer eigenvalues n of the N-operator, and (2) these n states are 

dynamically coupled together (by the instanton phenomenon), and that 

(3) the coupling is important enqugh that physical observables depend 

upon 0, despite the fact that its presence in the Lagrangian did not 

affect the equations of motion of the theory. 

To do this, we simply exhibit a prototype example of a gauge func- 

tion which produces a non-vanishing value of N. We write, as in the 

text 

(B.16) 

with C some constant matrix and with the Pauli-matrices q = (x,,J,,,x,,) 

defined as the first 3 of Gell-Mann's X-matrices. The topological games 

come from the curious coupling of internal-symmetry matrices T to coordi- 

nates. In order that lJ + & as r + -, we must have, as r + 03 

f(r) + ITn and C = (-lp (B.18) 

with n an integer. In order that U be nonsingular as r +- 0, we must also N 

have f(r) + 0 as r + 0; hence g+ (->" as r + 0. The integer n will in 

fact provide the characterization of the n-vacuua. Because N is invari- 

ant under continuous gauge transformations (provided they are trivial at 

the boundary) we may choose a simple form for f(r), in particular push 

it out near to the boundary of the region, which we take as a large 

sphere of radius R. Notice that the action of U, is to rotate a quark in 

the internal space by nr as one goes out to m from the origin. The axis 

-. _ I I_ -. _” - -. 
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of rotation in the internal space is dependent on the direction in real 

space that one travels. To calculate i we take a small solid angle 

CrQ near the north pole (x3 - R; x1,x2 small) and calculate the components 

of - with -A 

ie% = "lViE (B.19) 

and1 given by Equation (B.16). Elementary estimates give 

sin f(r) 1 + terms odd in x 

+ terms odd in y 

*?Az ? *T af 
357 (B.20) 

The terms odd in x and y will vanish upon averaging over a region cen- 

tered symmetrically about x=y=O. Insertion into Equation (B.12) for & 

yields 

*i--i. 6 

2bT2 
l 2i/dxdylRF sin2 f(r)f'(r) 

x,y small 

or 

Tn 
df sin2 f =n (B.21) 

What have we accomplished? For one thing we have finally uncovered the 

reason for the factor 32n2 in Equation (B.l). But we emphasize that it - 

is not yet physics: we have merely found a topological classification 

of gauge-potentials i in terms of a single integer n. If one restricts 

oneself to potentials which vanish at spatial infinity, then there is no 
. 

gauge-transformation obtainable from the identity by a product of 

-. 
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infinitesimal transformations which takes a potential characterized by 

one n-value to a potential characterized by a different n-value. 

Enter the instanton. While the n-vacuua are only coupled by gauge 

transformations nonvanishing at the surface at m, there can be dynamical 

coupling of the n-vacuua. For simplicity consider traveling in h-space 

(remember the A_(x)'s are coordinates in the great big Hilbert-space; the 

E(x)"s are momenta) from the origin ,A na = 0 in a straight line to an h(x) 

in the topological sector n = 1. The 

gauge; hence by definition there will 

potential energy 

intermediate k's cannot be pure 

be g-field in between. Thus the 

V(A) = Tr 
J 

d3x g2(x) (B.22) 

increases as one proceeds away from n = 0 and then must decrease again as 

one reaches the n = 1 pure-gauge configuration (c.f. Figure 6). Because 

the great big Hilbert space is so multidimensional, there are many paths 

one may travel in going from 4 = 0 to the n = 1 gauge configuration; 

nevertheless they all share the feature that there is a potential barrier 

(unless one travels via the coordinates on the boundary). However even if 

one cannot go around, one can still go through the barrier by quantum 

mechanical tunnelling. Suppose that e is small. We saw that for a glob of 

potential with 

(c.f. Equation 

n > 0 and spatial extent-L, we must have dimensionally 

03.12)) 

e3A3L3 21 (B.23) 

or 

(B.24) 

The intermediate B-field would then be expected to be 

1 B-- 
eL2 

(B.25) 
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and 

1 
V(A) c1 - 

e2L 
(B.26) 

The height of the barrier is -e -2 ; hence for small e we have a large 

thick barrier and a small tunnelling probability. For such a situation 

(and only for such a situation) there exists an easy, albeit rather 
‘. 

crude, estimate for the tunnelling amplitude: it is the semiclassical 

approximation. To get the answer, again retreat to a system with a 

finite number of degrees of freedom. 

H=- :5 
i=l 

Pi f V(ql."*qn) (3.27) 

with Y(0) = 0 and V(Q,,...,Q,> = 0. For a big thick barrier we write in 

the classically forbidden region 

$r(q) - emscq) (~.28) 

The tunnelling amplitude is then-e -ES(Q) . - S(O)1 When S is large 

(coefficient e -2), th e unwritten factors which normalize the wave func- 

tion are relatively inconsequential. There does exist a rather sophisti- 

cated technologyloo for their calculation (the old-fashioned way involves 

what is known as the Van Vleck determinant lol) but we shall not go into 

this aspect of the problem here. It will be enough to obtain S(Q). The 

equation for S in semiclassical approximation (aV/aq small compared to 

rate of falloff of $) is 

+; g- 2 + VbQ = 0 ( ) i 
(B.29) 
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Other than a change in relative s,ign, this is just the Hamilton-Jacobi 

equation for the phase point ; in the potential V(q). The sign-change 

(which originates in the ems instead of the WKB e iS ) allows us to inter- 

pret Equation (B.29) as the real classical motion of the phase-point < 

starting at rest at the origin and ending at the point Q (again at rest) 

in an attractive potentialV'(q)=-V(q). The quantity S(Q) is, from 

classical theory, the action J associated with such a classical motion 

starting at 0 and ending at Q. To see this, simply retreat from the 

Hamiltonian formalism, writing 

pip4ia aq as(q) H =- 
i ix i 

P; fV'(q) = 0 

L= CPiai-H= FPiqi= C4,~ 
i i 

(B.30) 

Hence the action J is given by 

Eo co 
J = L dt = dt c Qi+ = S(Q) - S(O) (B.31) 

i i 

inasmuch as the motion begins at qi=O and ends at qi=Qi. 

One last point before reverting to the real continuum QCD problem: 

instead of changing the sign of the potential, we could equally well 

change t to it, since the equations of motion 

(B.32) 

undergo the desired sign change. 

Let us now recapitulate. We get a tunnelling amplitude by the fol- 

lowing procedure 
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1) replace t by it; 

2) solve the classical equations for this system, requiring 

;=i = 0 at t -+ Q) (and for us i(x) and k(x) + 0 as 2 + 00 

as well); 

3) calculate the classical action J for this solution. The 

desired tunnelling amplitude is then-e -J . 

We see that we need a classical solution of the Euclidean QCD equations 

with finite action in order to couple together all the 

solution was found by Belavin et al.34 To find it, it 

ko=O gauge and exploit the full 4-dimensional symmetry 

We search first for the form of the potentials &u as p 

n-vacuua. This 

is best to abandon 

of Euclidean QCD. 

= K-F+ 00. 

They must be pure gauge, fall off as p-l and involve the Pauli-matrices 
+ 
f. A choice which satisfies this and looks right is 

This has a singularity at the origin but, as we 

has the right properties to induce a transition 

ing n. Then a choice for the solution is 

ieA 
-u 

= f(p)+& 

with 

f(P) + 1 P+-O" 

f(p) + 0 P-f0 

Direct, tedious calculation shows that 

f(P) = p2 
p2 + x2 

(B.33) 

shall soon see, otherwise 

between states of differ- 

(B.34) 

(B.35) 

(~.36) 
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does the job. The potential&u is indeed no longer singular at x = 0, 

and the QCD equations of motion are satisfied, 

We now can put together all the pieces. In doing this let us again 

recapitulate what we have done. We introduced a term into the Lagrangian 
2 

densfty 9" of the form ee Tr~Pv~uV. 
16r2 

This term is a total divergence 

eauC; hence the Lagrangian L was modified by a total time derivative 

e& 
f 

K"d3x which simply put a coordinate-dependent phase on the wave 

function fn the great big Hilbert space. The phase-operator 8N = 8 d3xKo 
J 

in a representation in which the potentials are diagonal, measures a 

topological property of the potentials, characterized by an integer n. 

Tunnelling between states of different n is possible if there exist 

classical solutions of the equations of motion with finite action, and 

which (in ho=0 gauge) take one from a pure gauge configuration of given 

natt= -Q) to a pure gauge configuration of a different n at t=ta . We 

apparently found such a solution, albeit in a different gauge. To show 

that the solution indeed induces a tunnelling transition between states 

of different n, we introduce in the instanton gauge potential at large 

distances, Equation (B.34), the polar coordinates shown in Figure 23. 

t = p cos J, 

r = p sin J, 

We may then write 

Hence at Q = 0 (t++m, r+O)U=-1, 

(B.37) 

(B.38) 

while at $ = 71 (t+-m, r+O)U=+l. Now make a continuous gauge trans- 

formation to a new E such that 
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Fig. 23. Effects of a gauge transformation on the asymptotic gauge 
potentials surrounding an+instanton: (a) "CovaQant gauge" 
and (b) a gauge in which & = 0 in the past and & is an 
expanding gauge-bubble in the future. 
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-P 
4 

E = -e iT r f(Q) (B.39) 

with f(0) =O and f(n) =T unchanged, but where f($) makes the flip from 

0 to IT at small angles (i.e., in the future). Thus in the past g--l and 

g=o, h'l w i e in the future ,U takes the same form as we had for the proto- 

type gauge configuration with n = 1. It follows that the instanton i. 
induces a tunnelling transition between topological sectors with IAnl = 1. 

To calculate the tunnelling amplitude associated with a single 

instanton, we need calculate only the Euclidean action J of the instanton. 

It is 

J = Tr 
s 

d4x (E2 + g2) 

2 2Tr 
J 

d4x 8 l 3 N N (B.40) 

'by the Schwartz inequality. We use this inequality because we recall 

that i* i is our total divergence, already evaluated from topological 

considerations. From Equations (B.2) and (B.ll) 

2Tr 
J 

81r~ d4x 5.2 = - 
e2 J 

dj-i+i$ [N(a) - N(-m)] = $ (B.41) 
e e 

Hence the tunnelling amplitude is 5 e -8n2/e2 . It is in fact the case that 
+ -f 

the instanton solution is self-dual, i.e., E,=$, and the inequality is an 

equality. 

We now can crudely estimate the effect on the wave function of the 

system. The situation is analogous to the problem of a particle in a 

periodic potential 
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t 
n=O n= 1 n= 2 . . A 

The eigenfunctions are not packets localized near ,$ = O(n=O), but instead 

the Bloch-waves 

Y r c eine Y,(A) 
n 

(B.42) 

This is in fact the structure we already constructed from use of the 

gauge-invariant surface term. This much follows essentially from a 

requirement of gauge-invariance and not of existence of instantons. What 

the instanton does is to provide a coupling between n-vacuua which is 

not a surface-effect, but.a volume effect. That is, the effective. 

Hamiltonian for tunnelling between adjacent n-vacuua will, for dimen- 

sional reasons, be 

8n2 -- 

&e e2(U 

2' 
&n,n-1 

n 
(B.43) 

The volume factor V occurs because the instanton can be located anywhere 

in space (i.e., the choice of which set of coordinates ,Ai(x) do the 

tunnelling is open and must be summed over. Likewise the instanton size 

X is arbitrary and must be summed over). Since H' has dimension of 

inverse length, dimensional analysis gives the weight factor. There is 

an additional factor e -12 which requires study of the Van Vleck determinant 

which normalizes the wave function at the classical turning point.100g101 

The integral over X is infrared-divergent; hence in a finite and very 

small volume, the most important instanton is the one which just fits 
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into the box. If the box is small enough that perturbation theory is 

justified, then in fact the instanton effects remain very small. 
, 

The effect of H' on a B-state is simple to calculate. Recall 

I e> = C eine Q~(A) 
n 

and 

(B.44) 

F b> = -jJ$ e e20) c einepnwl(A) + 'y,+,cAj (B.45) 
n 

where Y n-lcA) and 'n+l (A) differ from Yn(A) by an additional lump of 

gauge configuration somewhere. Thus a e-vacuum is an eigenfunction of 

H'/V with eigenvalue 

H'le> = -2v k cos e 
I & 

where in general lg> might not be equal to I@ but could be deformed 

into it by a continuous gauge transformation. However physical states 

'are to be gauge-invariant; hence for states lo> in that subspace of the 

great big Hilbert space which are physical, we can replace IF> by le>. 

Hence for practical purposes H' is in fact diagonal. We see in particu- 

lar that the vacuum energy density is e-dependent, with 8 =0 being the 

state of lowest energy. 
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