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1. INTRODUCTION 

The recent successful operation of the "free electron laser" by 

the group at Stanford and the availability of high power electron beams 

has stimulated a great deal of interest in the use of the "free electron 

laser" (FEL) to produce a high power tunable laser beam.l It is the 

purpose of this paper to treat the FEL in a manner which has been used 

by accelerator physicists to treat the acceleration of charged particles 

with radio frequency accelerating systems.:! This will allow us to use 

the ideas that have been developed for the acceleration of charged 

particles to guide us in the design of the wiggler magnet used for the 

FEL. 

The emphasis of this paper is mainly tutorial so that the derivation 

of the equations are presented in a physically intuitive fashion rather 

than in a strictly rigorous manner.3 This type of treatment displays 

in a rather graphic way how the variation of the magnetic wiggler field 

and wave length affects the coupling of the electron energy to the 

-optical laser beam. We will find that by proper variation of the wiggler 

parameters, it is possible to obtain a tremendous improvement in the 

performance of a variable parameter wiggler over the constant parameter 

wiggler. 
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(a) Derivation 

2. EQUATIONS OF MOTION 

We will consider the case where the wiggler magnet field and the 

signal (or optical field) may be derived from the vector potentials 

-t 
Aw = -(mc2/e) aw(z) 

and 

+ 
As (mc 2 A 

= /e> as(z) x cos 

[kw(z,)dzl)+ Gsin([kw(zl)dzl)] (2.1) 

z 

J 
0 

ks(zl)dzl-~st) - ~sin(~ks(zl)dzl-~st]] 

(2.2) 

7 
where we have introduced the dimensionless vector potentials a = eA/mc' 

(Eo=mc2/e=.017 kG*m=.511 Mv). Gaussian units will be used throughout 

this paper. We will assume that the fractional change in aw and as is 

small over a distance of one wiggler period; i.e., 

$ (a> -z-c kwa (2.3) 

With this assumption and definition and the Lorentz equation 

. . . . 
rnv(% + $) = e(GEx+GEy) - (evz/c)(GBy- qBx) 

we obtain fcr the transverse velocity 

and 

. 
x= 5 aw(z> cos 

I 1 

; = f aw(z> sin 
i 

z 

J kw(zl)dzl 
0 

z 
- a,(z) cos (J kw(zl) dz 

0 

J kw(zl)dzl + a,(z) sin 
0 

1 - wst 11 

(2.4) 

kw(+zl - wSt 
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The rate of change in the energy of the electron is given by 

-; 5 (e/mc2) ( ;Ex+;E 
Y > (2.6) 

which yields 

; = - 
ks c as a 

W sin 
Y 

/ ( kw(zl) + k&)) dzl - wst 
I 

(2.7) 
0 

where we have neglected the term a 2 s compared to a a . For the case of SW 
a 1 kG wiggler of 5 cm period and a signal wavelength of 10 -4 cm, the 

electric field of the signal wave must be much less than 10 12 V/m, or 

equivalently the optical power density must be much less than 6x 10 21 

Watts/m'. This constraint will be easily satisfied for the cases of interest. 

We will use the energy parameter y and the phase JI defined by 

J, = [ jjk,'"l' + ks(zl))dzl - wst ] (2.8) 
0 

as the coordinates in the equations of motion. The equation of motion 

for JI is 

5, = (kw+ks);-us (2.9) 

We use the fact that ws = ksc, v2 = vi .- + v; + v; , v,/v << 1, vy/v << 1 

and the relativistic approximation, (c-v) = 2 (c/2y ) to obtain 

(V2 - 2awascos J/) 

where 

p2 = ( 1 + a: + a:) 

(2.10) 

(2.11) 

We will change the independent variable from t to z by using the 

condition that dz = idt X cdt, and obtain for the equations of motion 
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JI’ 
kS 

= kw- - 
2Y2 

[ lJ2 - 2awas cos $1 

and 

kaa 

y' = - YW 
sin J, 

(2.12) 

(2.13) 

where the prime denotes the derivative with respect to longitudinal 

position 2, along the wiggler. For completeness we need the equations 

that describe the signal field as and the wave number ks as a function 

of 2. The formula that describes the amplitude of the signal field 

may be obtained by observing that the energy lost by the electrons 

increases the energy in the optical field. This yields the following 

expression L 

L J 
= a:(O) - o [Y(Z) - y(o)] 

k2E s 0 

or (2.14) 
2 

ai Cd = a:(O) - + [Y(Z) - ;(o)] 

w 
S 

where J is the current density of the beam, Z. is the impedance of free 

space, w 
P 

is the plasma frequency, and the bar over y indicates the 

average over all of the electrons. 

An alternative derivation of Eq. (2.14) along with the determina- 

tion of 6ks is presented in Appendix I. The results derived there are 
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2 a 

6kS 
cos $J 

=2F2 - a s s ( 1 Y 

2 
a' = hl p 

2wsc "w 
sin J, 

S ( 1 Y 

or (2.15) 

6ks = > ' ( cos 4J/Y) 
s (sin +/y) 

With the previous assumption for the rate of change for as, Eq. (2.3), 

we see that it is possible to ignore the change in the wave number ks 

and assume that ks : us/c. In deriving Eqs. (2.12) to (-2.15) we have 

assumed that the cross section of the optical wave and the electrons 

are equal so that all of the electrons are coupled to the total optical 

wave. If the electron cross section is less than the cross section of 

the optical wave, we must multiply the current density J in Eq. (2.4) 

by a filling factor equal to the ratio of the beam cross section to 

optical wave cross section. Similarly, if the beam cross section is 

larger than the wave cross section, Eqs. (2.12) and (2.13) will be valid 

only for those electrons inside of the optical wave so that the average 

of y over all particles is reduced. We will not belabor this point and 

for simplicity will assume that we are considering only the portion of 

electrons and optical wave that overlap. 

The equations of motion derived above (Eqs. (2.12) and (2.13)) are 

valid (under the special assumptions that were made) for every electron, 

and given the initial conditions $(O) and y(O) for every electron along 
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with the expressions for kw, aw, and as, these equations may be inte- 

grated to yield the values of I/J and y as functions of the longitudinal 

position 2. Of course, for a high gain FEL it is necessary to make sure 

that the signal field as used in the equations of motion is also a self 

consistent solution to Eqs. (2.14) or (2.15); by using a computer one 

can solve the equations of motion for a large number of particles and 

obtain the final coordinates in phase space for every particle as well 

as the final signal field and phase. In principle this procedure could 

be used to choose the optimum functional form for kw(z) and a,(z). It 

is possible to gain physical insight into the content of these equations 

without the need of integrating the equations of motion for a large 

number of initial conditions by referring the electrons energy variable 

y to the synchronous or resonant value y,. This approach is extremely 

useful in determining the functions kw(z) and a,(z) to be used in 

different modes of operation for the FEL. 

(b) Definition of Synchronous Energy and Phase 

We first define the synchronous energy, y,, by 

n 

k u‘ 
y;(z) = 2ks(z) 

W 

and define the synchronous phase, 

& (Y,(Z)> = - 
ks “w as 

y 
r 

(2.16) 

(2.17) 

Note that one is restricted in the choice for the function y,, since JI, 

is undefined if 



(2.18) 

It is possible to look at Eqs. (2.16) and (2.17) as definitions of 

y, and $, assuming that kw, aw, and as are known functions of z. How- 

ever, it is also possible to consider these as design equations where 

the wiggler functions kw and aw are to be determined to achieve the 

desired functions y,, a,, and a . 
S 

Many of the other papers in this session will deal with different 

ways to choose $, and y, and hence the wiggler parameters for various 

operating modes of the FEL. We first must study the motion of electrons 

with phase coordinates different from the synchronous values and 

demonstrate that for sufficiently small deviations the electrons will 

perform stable oscillations about the synchronous values; while, as we 

will see later, electrons with phase coordinates that are too far away 

from the synchronous values may be unstable and not oscillate about the 

synchronous values. 

For the special case where we choose y, = constant, JI, z 0 and we 

obtain from Eq. (2.16) that kw and aw are related by 

(2.19) 

where we have neglected as compared to aw. This is the resonant condition 

one obtains for the standard constant parameter FEL. 
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(c) Motion About the Synchronous Energy 

In this section we study the motion of the electrons about the 

synchronous energy by writing 

Y = 6Y + Y, (2.20) 

with the definitions for y, and JI, as chosen in Eqs. (2.16) and (2.171, 

and with the assumption of 16y[ <<yr, we can neglect the (as/awl terms 

to obtain the following equations of motion 

k 

$' = 2 f (6y) 

and 

(6~)' = - 
ks “w as y 

r 
(sin+ - sin$r) 

(2.21) 

(2.22) 

These equations of motion may be obtained from the following 

Hamiltonian 4 

H = > (6~)~ + F(G) (2.23) 
r 

where 

F(G) = - 
ks "w as 

y cos* + J,sinJlr (2.24) 
r 

is the z dependent potential and for Q, > 0 is shown in Fig. 2.1. 
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Fig. 2.1. Potential F($) versus $. 

Of particular interest are design parameters chosen so that electrons 

trace out trajectories in the $, 6y phase plane given by 

(2.25) 

where E(O) is given by the value of the Hamiltonian for the initial values 

of $ and 6~. The closed orbits correspond to the electrons trapped in 

buckets and which perform stable oscillations about the synchronous value. 

If the change of parameters with z is adiabatic the E(z) is determined 

from H(O) and the requirement that the area of the closed phase curve, 

given by 

J = 
f (6~) d$ (2.26) 

remains constant. Because the pattern repeats in $ at intervals of 27r, 

we only will need to study the phase plane for -71 < $ < IT. The maximum 

stable phase curve or bucket is shown in Fig: 2.2 and corresponds to' 
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(Y Maximum Closed 
Phase Curve 

1 

J 

-7T 9, Jr, +, J12 $2 = 

I -n 366162 

Fig. 2.2. Phase curves 6$ versus JI. 

Em = ks “w as 
yr [ COSJ, - r ( 71 wWr - JI, sin $,)I (2.27) 

while the maximum value of 6~ for which a particle may be trapped in a 

bucket is 

6Ym = 
2yr 6 

lJ 
r (e,) 

with 

r(JI,) = J cos JI, - 
( ; sm 4~, - 6,)sinJI, 

(2.28) 

(2.29) 

In the absence of prebunching, electrons will enter the wiggler at 

arbitrary initial phase $o. For electrons of energy y,, trapped electrons 

will oscillate between 5, and G2 where one of the limits is given by JI, 

and the other is related to it by 

c~s$~ + $lsinGr = cosG2 + G2sin$, = cosQo + $Osin$r , 

(2.30) 
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as shown in Fig. 2.2. The maximum stable range for $, is given by the 

bucket intercepts of the J, axis with y=y,, and is designated by $1 and 

$, in Fig. 2.2. 

JI, = T sgn $, - JI, (2.31) 

and 

CO.S$~ + $, sinJlr = COS&~ + 4J2sfnJIr (2.32) 

The area of the bucket shown in Fig. 2.2 may be obtained from Eq. (2.25) 

and is given by 

J 
8yr J2as “w = 

lJ a($,) 

where 

45 a($,) = -g-- cos$, + cos J, s - (n-$r-$)sin$r] d$ 

(2.33) 

(2.34) 

The electron with a small oscillation amplitude will oscillate in 

the clockwise direction about the synchronous point at 6y= 0, and J,=JI, 

with frequency Q. For linear motion the frequency is 

2k 
W 

n -J = 
u 

asawcos$r = (2.35) 

Since the independent variable is,z, the unit for R is inverse length. 

In order to define the closed phase curves it has been assumed that the 

change in the Hamiltonian is small in a distance corresponding to one 

synchrotron oscillation period. 
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3. CONSTANT PARAMETER WIGGLER 

While the subsequent talks will discuss the general case where the 

wiggler parameters vary with z, it is useful to show how the results of 

the previous section apply to the original mode of FEL operation which 

utilized a wiggler with fixed wave number kw and field amplitude aw.' 

This mode is one in which 

*r = constant = 0 (3.1) 

and 
2 

2 kS” 

yr 
= constant = - 

2kW 

(3.2) 

so that the Hamiltonian which describes the motion of the electrons is 

given by 

H = ks "w as cos J, (3.3) 
yr 

At first glance it is a little difficult to understand how such a 

device can accelerate or decelerate electrons since the initial phase 

distribution will be uniform and electrons which are injected near the 

synchronous energy will have their energy oscillate about the synchronous 

value. The average energy will be equal to the synchronous energy which 

remains constant for a non-accelerating bucket. 

The key to the successful standard operation of the FEL is to 

inject the electrons above the synchronous energy and to allow the elec- 

trons to complete only a fraction of a synchrotron oscillation. An 

example of such an operation is shown in Fig. 3.1. Both electrons 

with an initial energy different from the resonant energy by an amount 
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..A 
I-7. -2 0 2 Ibaic1 

Fig. 3.1. Evolutionof energy dis- 
tribution of electrons. (a) Initial 
distribution. (b) After one-half 
oscillation. (c) After nearly one 
oscillation. 

fractional energy loss is: 

(“;‘), w (>) = 2v 

much larger than 6ym and electrons 

near the resonant energy will, 

on the average, have only a small 

energy charge. The electrons with 

the largest possible energy charge 

will have an initial energy 

b. 1 - 6ym as shown in Fig. 3.la. 

After a distance L which corres- 

ponds to approximately one-half 

of a synchrotron oscillation, many 

electrons will have their energy 

shifted below the resonant energy 

as shown in Fig. 3.lb. For longer 

distances these electrons will 

continue to oscillate about the 

resonant energy and their initial 

energy will begin to increase 

back to the initial energy as 

shown in Fig. 3.1~. From Eq. 

(2.28) we see that the maximum 

(3.4) 

loss 

while from Fig. 3.lb, we see that the electrons emerge with an energy 

spread 
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6Y m NP 
Y (3.5) 

The optimum wiggler length L obtained from Eq. (2.35) is 

(3.6) 

with 

From Eqs. (3.4) and (3.6) we see that the maximum energy that can 

be extracted from the electron beam is inversely proportioned to the 

length of the wiggler, i.e., 

AY ( ) 
1 

Y Yii max 
(3.7) 

loss 

where N is the number of wiggler periods, which results in either a low 

extraction rate or, for a large extraction rate, the need for a large 

ponderomotive potential term. A 10 kG wiggler with a 10 cm period gives 

a 
W 

w 10, while an optical field of lo8 w/cm2 and 1 urn wave length gives 

- 1o-5 
. 

a 
S 

so that a maximum fractional energy loss of -1% with a N=lOO 

wiggler is about the. practical limit.. 

The fact that the average energy spread in the emerging electrons 

is equal or greater than the average energy loss places a severe re- 

striction on the use of an FEL in a storage ring where repeated passages 

would quickly build up the energy spread in the beam until it exceeds 

either the storage ring acceptance or the width of the bucket.4 In the 

next section and in subsequent papers we will see how the variable 

wiggler schemes allows one to avoid these limitations. 



-16- 

4. PHASE AREA DISPLACEMENT 

It is satisfying to note that the results of Section 2 give the 

correct answers for the constant parameter wiggler, however, the real 

use of the graphic method of buckets is in the understanding of FEL 

operation with variable parameters. In later talks the method of 

capturing a significant fraction of the electrons in a decelerating 

bucket will be discussed. This method is very useful for the case 

where the initial energy spread is small compared to the bucket size 

and can allow a large transfer of energy from the electron beam to the 

electronmagnetic wave. 

In this section we would like to discuss a scheme of FEL operation 

that is much easier to understand with the aid of the moving bucket 

graphics. 

Y 

I 
---------------- +- y,(L) 

Y,(O) 
I 

-Ye(L) 

Fig. 4.1. Position of empty 
bucket and phase area of 
electron at various positions 
in the FEL. 

The method called phase area dis- 

placement refers to an operational mode 

in which an empty bucket is acceler- 

ated through the phase area of the 

beam with the result that the phase 

area occupied by the electrons is 

displaced downward in energy.* This 

is illustrated in Fig. 4.1 where the 

accelerating bucket (Qr < 0) starts 

with a resonant energy far below the 

energy of the electrons and is 

adiabatically moved through the beam 
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until the final resonant energy is far above the electrons' energy. 

The final mean energy of the electrons is lowered by the phase area of 

the empty accelerating bucket divided by 2~r, while the final energy 

spread of the beam is nearly equal to the initial energy spread, i.e., 

<Y(O)> - <y(L)> = AJ (4.1) 

*Yf N *Yi (4.2) 

where J is the area enclosed by the accelerating bucket and is given by 

Eq. (2.33). 

The method of phase area displacement can allow all of,the electrons 

to be decelerated even when the initial energy spread (or effective energy 

spread when transverse emittance and magnetic field variation with beam 

size are included) is considerably larger than the bucket height. Indeed 

as long as the total change in y, is much larger than the sum of the 

bucket height and the energy spread in the beam, and the change is made 

adiabatically the average energy loss of the electron is independent of 

the initial energy spread in the beam. In order that the increase in the 

energy spread remain small it is necessary, in addition, to keep the phase 

area of the bucket constant during the displacement. Otherwise electrons 

displaced where the bucket area is larger will have their energy decreased 

more than those displaced where it is small. 

The results of integrating the equations of motion (2.12) and (2.13) 

for a large number of particles with various initial energy spreads is 

presented in Figs. 4.2 and 4.3. The value of $,=-15', the length of 

wiggler =80 m, Yinitial =200, the wavelength and intensity of the 

electromagnetic radiation is 1 urn and 5 x 10' W/cm2. The average energy 

lost by an electron is plotted versus the initial energy spread of The 
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I I I I 
0 I 2 3 4 5 0 I 2 3 4 5 

10-7. AYini+iol (%I ,&.I., 10 - 79 AYini+iol (%I ,661.. 

Fig. 4.2. Average energy lost. Fig. 4.3. Ratio of final/initial 
energy spread. 

beam in Fig. 4.2, where we see that the average energy lost is nearly 

independent of the initial energy spread. In Fig. 4.3 we see that for 

large initial energy spreads the increase in the energy spread is quite 

small. 

For the case where JI, is held constant a small fraction of the 

particles are often captured by the moving bucket and will have their 

energy increased, thereby significantly contributing to the increase 

in the energy spread of the final electron beam. The particles that 

may become captured are those which are near the unstable fixed point 

of the bucket. One method that may be used to prevent this capture is 

to increase the magnitude of the resonant phase angle $, as the bucket 

is accelerated; this moves the unstable fixed point slightly preventing 

trapping of the electron. It also tends to decrease the phase area, so 

careful design is required to balance the virtue of constant bucket area 

against that of capture avoidance. 

As a final example of the use of phase area displacement deceleration 

we have integrated the equations of motion (2.12) and (2.13) for the 

case where the same electron beam passes through the FEL many times. 
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We have assumed that between passages through the FEL all electrons 

have an equal energy added to replace energy lost to the electromagnetic 

wave, in addition the phase of each particle is randomized between 

passages. This simulates the case of an FEL in a storage ring where 

an rf cavity replaces the electron's energy loss. We have assumed an 

initial monoenergetic electron beam with yinitial = 200, an electro- 

magnetic wave of 1 urn with an intensity of 5x10' W/m2. The wiggler 

design is such that JI, changes from -15' to -27' in a length of 60 m. 

This corresponds to a change in the wiggler wavelength and magnetic 

field of 

and 

xW 
= 3.61 cm + 4.41 cm 

BW 
= 3.42 kg -f 4.19 kg . 

In Fig. 4.4 we have plotted the 

average energy loss and the energy 

spread of the beam as a function 

of the number of passes through 

the FEL. We note that the build 

up rate from the energy spread is 

much slower that the rate of 
0 5 IO 15 20 25 30 

w-m PASSES THROUGH FEL ,bbt., energy lost, whereas for the case 

Fig. 4.4. Energy loss and spread 
of electron beam for multiple 
passes through an FEL. 

of a constant parameter wiggler 

the build up of the energy spread - 

is greater than the rate of energy 
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loss l Also for beams with energy spreads as large as 2% the electrons 

continue to lose energy at a reasonable rate. 

5. CONCLUSION 

In this report we have described the use of the graphical method 

with moving buckets to help design and understand various operational 

modes of the FEL. The importance of using the concept of buckets to 

describe the particle motion is not only useful for understanding of 

the various schemes but has proved to be very useful in the invention 

of these schemes. 
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APPENDIX I 

Af; alternative derivation of Eq. (2.14) along with a determination 

of 6ks can be obtained from the Maxwell equation 

a2As a28 4lT -- 
az2 

$5 = -72, 

Substitution of the form (2.2) yields 

2w 2w 
-$ 6ks As ;l --$$;2 = 

(A. 1) 

(A. 2) 

A 

where e 1 and g2 are defined by 

Z 

J ks(zl> dzl 

0 

- ust) 1 ;sin([ ks(zl) dsl - u,stl 

ii; = ks e2 (A.3) 

and we have neglected derivatives of AA and 6ks compared to us/c. 

Because cl is a unit vector and &l l g2 vanishes we therefore find 

In order that the form originally chosen for is be strictly correct it 

is necessary that the right hand side of Eq. (A.4) be time independent. 

In actual fact the J-l' 61 generated by the assumed form for hs will be 

a periodic function of time with period 2n/w,. We shall eliminate the 

oscillating terms by carrying out a long time average of J l Gl. Such 
-1 
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a procedure is valid* provided 6ks << k 
W’ 

For a single electron we have 

J 11 = exrl* g1 l e 
-1 

6(x- x0(t)) “(Y - y,(t)) 6 (z - zow) 

where 

-e& -eA 
v = -x 
-1 YmC YmC 

(A-5) 

(A. 6) 

for 4, << A 
NW* 

Hence 

(JI. el) 
single particle 

= e2>iz' cos $6(x- X0(t))+ - Yo(t))G(z - z;(t)) 

(A.71 

We time average by integrating over time from say -T/2 to T/2 to obtain 

(zl* el) 
single particle 

= f;;; cos ‘4(z) 6 (x- xo(t(z)l)b(y - y,(t(z))) 

for -T/2 < t(z) < T/2 

= 0 otherwise (A. 8) 

Summing over all electrons, and average over the beam cross section 

_ to eliminate the transverse 6 functions we obtain 

time average 
(A.9) 

* The field produced by the higher harmonics is small because the higher 
harmonics are not phase matched. That is to say their phase velocity 
differs from c by too large an amount. The current will in general 

contain Fourier components of the general form An,(z) Yz (iI+ T Jkw dz) , 
for which (W/c-k), = (ni 1)k -n6ks. Thus a single term (n- 1, with 
n=l) dominates so long as 6kz << k 

W’ 
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where again (- ) means average over initial JI and energy. Substitu- 

tion of Eq. (A.9) with Eq. (A.4) yields 
- 

u2 
6ks= &> cos Icl\ - 

s s 

Again from Eq. (A.2) we find 

and proceeding in a similar manner we find 

2 a’ = 
S 2ba - sin Q 

W 
S ( 1 Y 

(A.lO) 

(A.ll) 

To compare Eq. (A.ll) with Eq. (~2.14) we note that 

- 
aaw 

5% = _ SW-3 
dz C 

(A.12) 

The equivalence of Eq. (A.ll) and Eq. (A.12) to Eq. (2.14) is apparent. 

From Eq. (A.lO) and Eq. (A.ll) we have 

6ks = > ' (cos Jl/Y) 

s (sin Jl/v) 
(A.13) 

so that the assumption ah/as CC kw made at the outset would appear to 

typically imply 6ks << kw as well. Since we expect the particles to 

bunch in the 0~ JI< 71/2 range, (cos $/y) will be positive. This implies 

a tendency of the electron beam to trap the optical beam and hence to 

counter to some extent the effects of diffraction. 


