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1. Introduction 

Traditionally ray optics expanded in a Taylor series of linear and 

higher order terms about a central trajectory has been used in the de- 

sign of single pass charged particle optical systems such as spectro- 

meters, spectrographs and beam analyzing systems C1,2l. Phase ellipse 

optics, on the other hand, has been used primarily for systems that can 

be described adequately by linear theory and where knowledge of the phase 

shift is paramount to an understanding of the system performance, such as 

in circular particle accelerators C31. Both methods may be used to de- 

sign single pass beam transport systems, but there are applications for 

which the conceptual understanding and/or the mathematical description 

favors one of the two approaches. By combining the best features of each 

technique further simplifications result which make many problems easier 

to solve and understand. It is the purpose of this report to develop the 

theory and to present some specific examples of these methods. 

The basic mathematical formalism for linear ray optics and linear 

phase ellipse optics is summarized below for monoenergetic trajectories 

in one transverse plane. The notation used for the ray optics is that of 

the TRANSPORT program C21. And the notation for the phase ellipse optics 

follows that of the traditional circular machine theory introduced by 

Courant, Snyder, Twiss, and others C3,41. 

Linear ray optics may be described by a transfer matrix R expres- 

sing the amplitude and angle of an arbitrary trajectory at position 2 as 

a linear function of the amplitude and angle at position 1, where the 

amplitudes and angles are measured relative to the optical axis of the 
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system. In TRANSPORT notation this becomes 

(1) 

where for static magnetic fields 1 R 1 = 1. 

In linear phase ellipse optics an ensemble of particles enclosed by 

an arbitrary ellipse at position 1 in a beam guidance system will be en- 

closed by another ellipse of the same area at position 2. The Twiss pa- 

rameters a,B,Y and the beam emittance E specify the beam ellipse at each 

position. This is illustrated in fig. 1. The area of the ellipse is 

A = ITE. The maximum spatial extent of the ellipse (the beam envelope) is 

X 
ItBX 

= 6 and the maximum angular divergence of the beam within the 

phase ellipse is emax = 6. The parameters a or r21 define the orien- 

tation of the ellipse relative to the x and 8 axes. 

Given a matrix 

B -a 
T= 

[ 1 
with ITI = (h-a2) = 1 ’ 

-a Y 

an ellipse of area A = TIE is generated by the matrix equation 

XT& = E where 

(2) 

or in algebraic form, the equation of the ellipse is 
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yx2 + 2axe + f3e2 = E (3) 

The transformation of the Twiss parameters defining an ellipse at 

position 1 to those those defining an ellipse at position 2 is given by 

the matrix equation 

as derived in ref. C21. 

form c41 

$2 

0 1 a2 = 

Y2 

T2 
= RTIRT (4) 

This result may also be written in the familiar 

2 
R1l -2RllR12 

2 
R12 

-R11R21 R11R22+R12R21 -R12R22 
n c) 

, R;l I '2R21R22 I %2 

In eq. (5), the transformation of the Twiss parameters is expressed 

as a function of the ray optics matrix elements R... 
=J 

It is equally use- 

ful to express the matrix R describing the transformation of the ray op- 

tics from position 1 to position 2 as a function of the Twiss parameters. 

To do this an additional variable is required. Courant and Snyder in- 

troduced for this purpose the phase shift, A$, measured between positions 

1 and 2 and defined as follows: 

52 

(6) 

where s is the distance measured along the optical axis of the system 
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and B(s) is the Twiss parameter B evaluated at position S. The final 

result is the following [41, 

( cos A$ + al sin A$) 

sin AJ, + (a2 -al) cos A$ 

d- BP2 I 

d--- B1B2 sin A$ 

Sl B 
2 

(cos A$ - a2 sin A$ 1 1 ) 
(7) 

where the subscripts 1 and 2 correspond to the initial and final posi- 

tions of the beam transfer section. 

Several useful observations can be derived from eq. (7). 

a) Given the transformation matrix R, the phase shift A$ may also be ex- 

pressed as 

sin AJ, = R12 R12 R12 
4~ ' tan A$ = RllB1-R129 = R22B;!+R12a2 (8) 
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b) Furthermore 

Rll = 0 

R12 # O 1 

R12 = 0 

R12 and B1 are con- 

stants and R12 # 0 

Then 

AJ, is a function of both a1 and f31 

tan A$ = - 6 independent of B1 

AIJ = NIT independent of al and B1 

R:2 R2 (minimum value) = - 
% 

when sinA+ = 1. (9) 

It should be noted that a beam transport system, characterized by the 

matrix R, is completely determined by the array of optical elements from 

which it is constructed, i.e., the lenses and drift distances making up 

the system. The numerical values of the matrix elements, R.., are there- 
=J 

fore independent of the particular phase space ellipse configuration that 

exists at the beginning of the system. However, for design purposes, it 

is often useful to specify a particular optical condition at the begin- 

ning and at the end of a system for the purpose of 'inventing' or devising 

an optical array. In particular, if it is assumed that the phase ellipses 

at the beginning and at the end of a system are identical, then the mathe- 

matical expressions describing the matrix R become particularly simple. 

The properties of the resulting system may then be studied for other 

initial and final values of the Twiss parameters. It then remains to de- 

vise an actual optical array of physical elements that possesses the 
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'assumed' properties. Specific examples using this design procedure are 

given below. 

If the phase ellipses at the beginning and at the end of a transfer 

section are identical, i.e., a = u = a, 6 
12 

= f3 
12 = B, and we define 

A$ = P, then eq. (7) reduces to the well-known form used in circular ma- 

chine theory C3,41, 

R=[[ 

where as before (By - a2) = 1, and now 

Trace R = 2 cos p 

(10) 

(11) 

For N such unit cells in sequence, as in a matched repetitive lat- 

tice of a circular machine, the total transfer matrix is given by 

RT 
= RN = ,~] (12) 

and 

Trace RN = 2 cos NV (131 

An equally interesting simplification occurs when a1 = a2 = a and 

A$ = u are constant from cell to cell, whereas the beam envelope size is 

allowed to change by a constant ratio r from cell to cell, i.e., 
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For the first cell in such a series, the transfer matrix, R, is 

R= 

where y1 = 1 + a2 

% 
. 

RN = 

r(cos v + a sin lJ) 
I % sin u 

Y1 sin TV cos u - a sin n 
r r 

The transfer matrix,RN, for the Nth cell is 

1 r(cos u + a sin v> 

I - 

y1 sin u 
r2N-1 

and the total matrix, R T, for a sequence ! t of N such cells is 

.2N-1 Bl sin v 

cos F\ - a sin u 
r 

(14) 

(15) 

(16) 

RT =RN...R1 = [--+-+I (17) 

This completes the discussion of the basic mathematics for linear optics 

as is needed here. We shall now make use of it to develop some specific 

examples. 
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2. Optical Building Blocks 

Monoenergetic first-order (linear) optical systems are basically com- 

posed of combinations of 'thin' lenses interspersed with drift distances. 

It seems appropriate, therefore, to explore the properties of some of the 

basic elements before formulating more complex systems. 

A. Drift Distances 

A drift distance is characterized, in ray optics, by the fact that 

the angle of any arbitrary trajectory relative to the optical axis re- 

mains unchanged. Stated in terms of an ensemble of trajectories enclosed 

by an ellipse, the angular divergence of the beam, emax = 6, is a con- 

stant whereas the beam envelope, xmax = 6, and the orientation a of the 

ellipse are changing. 

A typical drift distance and its basic properties are illustrated in 

fig. 2. The following characteristics are to be noted: 

4 Since the phase space area is conserved, it follows that y = 1, 

where Bw is the value of f3 at a 

b) The phase shift through a drift 

beam waist. 

region depends not only on the 

length of the drift, but also on the value of the initial Twiss pa- 

rameters 6 1 and a 1 at the beginning of the drift. 

4 If a thin lens of variable strength precedes a drift, it may be ad- 

justed to provide a minimum beam size xmin = JB2(min)E at the end of 

the drift. The magnitude of B2(min) is derivable from eq. (9) by 

setting sinAJl = 1. We conclude that 
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R;2 L2 B,(min) = 7 = 7 , 
L p1 

beam envelope 

the emittance 

where x 1 = q is the 

measuring x min and x 1' 
mined and given by 

E = XIXmin 
L 

p1 

size at the thin lens. By 

of the beam is uniquely deter- 

. 

d) If it is desired to transmit a beam of particles through a constant 

aperture, e.g., the gap of a magnet, then the minimum aperture re- 

quired is also readily obtained from eq. (9) by equating B1 = f32 = f3 

and requiring that f3 be at a minimum value. That is, the beam en- 

velope should have the same size at the beginning and at the end of 

the system and be at a minimum value. Under 

beam waist, f3 
W’ 

occurs at the midpoint. The 

1 ‘I 

these circumstances a 

result is 

B=LandB =$=f. 
W 

The minimum aperture required to transmit the beam is 

x1 (m-in) f JBTd = a 

and the ratio of the beam envelope size at the two ends of the 

system to the size of the waist at the midpoint is 
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B. A Thin Lens 

A thin lens changes the direction but not the position of a particle 

trajectory as the particle passes through the lens. In linear theory the 

change in angle is A9 = -x/F, where x is the amplitude of the trajectory 

and F is the focal length of the lens. Stated in terms of the phase el- 

lipse formalism, the Twiss parameter a changes by ha = B/F, while the 

beam envelope, 6, remains unchanged. The net phase shift, A$, is zero 

as can be seen from the Courant-Snyder definition of phase shift given in 

eq. (61, and from the fact that the matrix element R 12 for a thin lens is 

zero. These properties of a thin lens are illustrated in fig. 3. 

C. A Thin Quadrupole Lens 

A quadrupole focuses in one transverse plane while defocusing in the 

other plane. For a thin lens quadrupole it is assumed that the two planes 

differ only by the sign of the focal length F as is illustrated in fig. 4. 

(In realistic systems the absolute value of the focal length in the two 

planes is not the same but this assumption is a good approximation for 

many purposes.) As with the simple thin lens discussed in the previous 

paragraph, the phase shift, A$, vanishes in both planes. If we define 8 

to be the particle direction in the x plane and $I its direction in the y 

plane, then A0 = -x/F and A$ = y/F. Stated in terms of the phase ellipse 

formalism, Aa 
X 

= Bx/F and Acry = -By/F, while x, y, f3, and By remain con- 

stant in a 'thin' lens. 

Very often in beam guidance systems a segment of the system may be 

composed of a periodic array of identical elements or 'unit cells', such 
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that the phase ellipse in the two transverse planes x and y is similar 

or even identical at specific locations in the periodic array. One such 

situation occurs at the midpoint between two quadrupoles of a matched 

periodic array where the quadrupoles are of equal strength but of oppo- 

site sign, i.e., a FODO array. The beam envelopes, at this location, 

have the same magnitude but the phase ellipses in the x and y planes are 

mirror images of each other about the 6 and 4 axes, i.e., B 
X 

= By but 

a = -a . 
X Y 

If a thin lens quadrupole is positioned at this location, any 

adjustment of its focal length preserves the above symmetry. The beta 

functions fix and By remain unchanged, the absolute values of Iax1 and 

layI change, but the mirror symmetry property a = -a is maintained. 
X Y 

This is illustrated at the bottom of fig. 4. This characteristic is a 

very useful feature for phase ellipse matching between two dissimilar 

systems as will be demonstrated in some of the examples. 

D. A Telescope 

Another basic optical module is the telescope. For a one-dimension- 

al system it consists of two thin lenses, separated by a distance equal 

to the sum of their focal lengths, as illustrated in fig. 5. The tele- 

scope has the unique property of simultaneous parallel to parallel and 

point to point imaging. This is equivalent to saying that the R21 and 

R12 matrix elements are zero. Since R12 = 0, the phase shift is always 

a multiple of 71, independent of the initial phase ellipse configuration. 

The fact that R21 = 0 coincident with R12 = 0 requires that a2 = al, 

. i.e., the parameter a is the same at the beginning and end of the tele- 
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scope. (This is the condition imposed upon eqs. (14-17) and the 

significance of this will become evident later.) 

A two-dimensional telescopic system, using four quadrupoles, is il- 

lustrated in fig. 6. It is an obvious extension of the one-dimensional 

example of fig. 5. It has the added advantage that the magnifications of 

the beam envelopes in the two transverse planes may either be the same or 

different. This property allows such an array of lenses to be used for 

matching systems with different properties in the x and y planes. 

3. Beam Envelope Matching 

A common task in beam optics is to match the phase space ellipse of 

one beam guidance system to that of another one by an appropriate tran- 

sition section. We shall now describe some solutions to this problem 

that have evolved from the theory and techniques discussed in the previ- 

ous paragraphs. 

In general, it is almost always possible to match two dissimilar 

systems by using one or more telescopic arrays similar to those shown in 

figs. 5 and 6. In particular, the system illustrated in fig. 6 has the . 
flexibility of simultaneously matching different phase ellipses in the x 

and y planes. Six variables are needed to achieve a match in both trans- 

verse planes. Typically the variables used are the strengths of the four 

quadrupoles and the two drift distances L3 and R4, though other combina- 

tions of six variables are permissible. It should also be noted that the 

endpoint (position 2) for the two planes need not coincide, this provides 

additional flexibility to the range of possible solutions. This system, 
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however, has the disadvantage that the position of the quadrupoles as well 

as their strengths change when the match requirements change. It is 

therefore desirable to explore solutions where only a variation of the 

strengths of the lenses and not their positions is sufficient to esta- 

blish a phase space match. This is possible, and systems having this pro- 

perty are developed in the following paragraphs. 

A thin lens varies the Twiss parameter a. If it is placed at 

the beginning of an arbitrary beam transfer section, characterized by the 

matrix R, it is observed from eq. (5) that as it varies a1 it also varies 

B2 and a2, provided the matrix elements Rll and R12 are non-zero. A se- 

cond thin lens positioned at the end of the system will vary a2. Thus 

13~ and a2 may be continuously adjusted by varying only the strengths of 

the two lenses. Their positions remain fixed. The range of variation of 

B 2 is obtained from eq. (9) and is 

, 

where B 2 = Rf2/81 is the minimum value of B2 allowed. 

By using quadrupoles for the two variable lenses, it is possible to 

simultaneously match the phase ellipses in both transverse planes. Let us 

assume that the desired phase ellipse in the two transverse planes x and 

y at both positions 1 and 2 possesses the following syrmnetry: Bx = By and 

a = -a 
X Y' 

but that in general B(2) # B(1) and a(2) # a(1). Under these 

circumstances it is possible to achieve a match between the two positions 

with two quadrupoles, one placed at the beginning of a transfer section 

and the other positioned at the end provided that the transfer section, 
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described by the matrix R, has the following properties: a) The ab- 

solute value of the matrix elements of R is the same in the x and y 

planes. b) Either Rll and R22 should change sign from the x to the y 

planes and R12 and R21 remain unchanged, or c> R12 and R 21 change 

sign and Rll and R22 remain unchanged. Under these circumstances the 

two quadrupole singlets may be used to simultaneously match both planes. 

As an example of matrices that possess the above properties we cite the 

following: 

R = X9Y 
R22 

1 

where the underlined matrix elements change sign from the x plane to the 

y plane. The consequence of this is to change the sign of the underlined 

matrix elements in eq. (5) as shown below: 

B2 

0 a2 = 

y2 

R?l -2RllR12 

-R11R21 RllR22 + R12R21 

2 
R21 -2R21R22 

I 

R:2 - 

-R12R22 

2 
R22 

where this Twiss transformation applies to both the x and y transverse 

planes. The absolute value of each of the matrix elements in the Twiss 

transformation is the same in both planes. The consequences of this are 

the following: If B1(X) = B1(y) and a,(x) = -a1 (y) and if it is desired 

to match another system where B2(x) = B2(y) and a,(x) = -a,(y), then a 
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thin lens quadrupole positioned at 1 changes a by Aal = -Aal as its 

strength is adjusted. This variation, combined with the properties of 

the Twiss transformation, varies B2 and a2 such that the symmetry condi- 

tions B2(x) = B,(y) and a,(x) = -a,(y) are always preserved. A second 

quadrupole positioned at 2 varies a2 in a similar manner. Hence a combi- 

nation of the two quadrupoles plus the transfer section characterized by 

the R matrix permits a match to be made, provided 

We now wish to formulate a specific beam envelope matching system 

having the above properties. To do this we make use of the linear phase 

ellipse theory developed in the earlier paragraphs. Consider a unit cell 

such that B1 = b2 = ,!3, al = a2 = a and A+ = v/2 for both transverse 

planes, but where the sign of a changes from the x plane to the y plane. 

By a simple substitution of the above conditions into eq. (lo), it imme- 

diately follows that the matrix R must have the following form: 

R = = 
XSY 

fa 8 

[ 1 
-y +-a 

where the upper sign of a corresponds to the x plane and the lower to the 

y plane. Thus Rll and R22 change sign from x to y whereas R12 and R21 

do not change sign and the absolute value of each of the matrix elements 

is the same for both transverse planes. The above matrix describes an 

optical system that is the same from left to right in the x plane as it 
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is from right to left in the y plane. The question is, what optical 

system is described by this matrix? One possible answer is the quadru- 

pole doublet shown in fig. 7. The proof that this is so is outlined in 

the figure. The focal length and spacing of the elements must now be 

chosen such that A$ = u = x/2 for the "matched" condition B = B 12 = B and 

al = a2 = a* This condition for 1-1 is satisfied when 

sin& = II % 1 -=- 
2 2F fi 

Having chosen the parameters F, R, and Rs to correspond to a matched 

phase shift of u = IT/~, the optical design of the cell is established and 

remains fixed. The transformation properties of the Twiss parameters for 

any initial and final condition are then given by substitution of the 

matrix R into eq. (5). The result is 
X*Y 

$2 

0 a2 = 

y2 

a2 I T2aB 

fay 

Y2 

-(l+2a2) 

T2ay 

. 
B2 

+a$ 

a2 . 

We note that the above equation has the desired transformation properties; 

that if 

B1 (x) = B1(y) and al(y) = -a,(x) 

then it must follow that 

e2 (x> = f32(y) and a2(y) = -a,(x). 
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We now use this module, fig. 7, to formulate the beam envelope 

matching system shown in fig. 8. A quadrupole Q, is added at the begin- 

ning of the system and a second quadrupole Q, at the end. The final re- 

sult is a beam matching system having the properties outlined in fig. 8. 

Energizing Q, varies a1 and hence a2 and fi2. Energizing Q, varies a2. 

Therefore, both a2 and 6, may be adjusted by varying the strengths of the 

two quadrupoles Q, and Q, without moving their positions. As before, the 

range of adjustment of B2 is restricted by eq. (9) and is 

2 
> R12 >B 

2 
fj2 = 81 or B2 = q 

In fig. 9 and fig. 10, two additional examples of phase ellipse 

matching are given. These examples use the same design concepts as were 

used in the preceding example, but the choice of the matrix % , and 
9Y 

hence the optical module corresponding to it, is very different. 

In fig. 9 we use the telescope as the basic module. A unity magni- 

fication telescopic system is devised such that the x plane image pre- 

cedes the y plane image by a distance 2L. The endpoint of the system, 

position 2, is chosen to be midway between the x and y images. The matrix 

R 
X¶Y 

describing the linear ray optics between positions 1 and 2 is 

Here R12 and R21 change sign between the x and y planes, while 

R1l and R 22 do not change sign. The fact that R21 = 0 is unimportant to 
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the final result. Again a quadrupole Q, is positioned at the beginning 

of the system and a second quadrupole Q, at the end. By energizing Q, 

and Q, a phase ellipse match becomes possible. The results are summar- 

ized in fig. 9. 

Figure 10 illustrates still another system. Here the basic module 

is a segment of a periodic FODO array of quadrupoles. The system is de- 

signed such that all of the quadrupoles have the same focal length F and 

the spacing between the quadrupoles is L = F. When Q, is turned off and 

Q, is set to a focal length F = L, the ray optics matrix becomes 

In this example Rll and R22 change sign between x and y, but R12 and 

R21 remain unchanged. As before the absolute value of the matrix elements 

is the same in both transverse planes. As can be seen from the Twiss 

transformation given in the figure, varying Q, varies a1 and hence a2 and 

B2' Similarly varying Q, varies a2. Hence, as before, a phase space 

match is possible. The details are summarized in the figure. 

Another approach to phase space matching is that described by eqs. 

(14-17) where the beam envelope is increased by a constant ratio r from 

cell to cell and several cells are used to complete the transition. The 

advantage of this method is related to the mathematical ease with which 

second-order aberrations may be analyzed and controlled ES]. To illus- 

trate the concept, we choose a system with a phase shift per cell of 

p = x/2. The Twiss parameter a is held constant from cell to cell but 
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the function B is allowed to change. A practical realization of such a 

system is illustrated in fig. 11. As can be seen, it is a sequence of 

telescopic systems such that the spacing between any two adjacent lenses 

is equal to the sum of their focal lengths. The starting point (position 

1) of the system is arbitrary as long as II 2 L1. The total transfer 

matrix is derived by setting u = 1r/2 and NV = 2~ in eq. (17). Such sys- 

tems are being studied as possible candidates for matching low beta in- 

teraction regions to the main lattice in large storage rings [51. The 

advantage gained is the ease with which global cancellation of chro- 

matic aberrations may be achieved. 

4. Summary 

Phase space matching between two dissimilar optical systems has been 

a time consuming task for optics designers in the past. In this report 

we have presented the mathematics for, and examples of, phase space 

matching techniques that have proved useful to the author and many of his 

colleagues. It is hoped that the reader may benefit from our experience. 
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Y~xmax=~ x / Xinj= < 
/ ‘BEAM 

CENTROID 

A TWO-DIMENSIONAL BEAM PHASE ELLIPSE 

The area of the ellipse is given by: 

A= 4 n(det o> = mmax Bint = wXint emax = nE 

The equation of the ellipse is: 

yx2 + 2axB + 802 = E 

where 

TRANSPORT COUfUNT-SNYDER 
NOTATION NOTATION 

and 

II-80 3989Al 

Fig. 1 



A DRIFT 

R- 

[ 

1L 

01 

cos A$ + al sin A$) 
I 

d- BIB2 sin A$ 

( cos AJI - a2 sinA$ 

(i)=[+f-F]( i) 
Conclusions: 

Y = $ is a constant for a drift 
W 

sin A$= L 
, tan AJ, = 

L2 
, B2(minimum) = 7 

1 
when A$ = : 

If 81 = B2 then a2 = -al 

If 61 = e2 = f3 and A$ = 4 , then 13 is at a minimum value 

and f3 = L , al = -a2 = 1 , = By = (l+a2) = 2 
11-80 

3989A2 

Fig. 2 
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A THIN LENS 

f $ 
x2 = x, 
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8 
(constant) 

\ 
/J2 =-;+q 

AI 

( cos A+ + a 1 sin NJ) d-- 8182 sin A+ 

R= 

C 

(l+ala2) SinA+ + (a2- aI) sinAl ( cos A$ - a2 sinA$I 

or 

and 

R= 

82 

0 a2 = 

Y2 

Aa -- 
8 

0 

81 

I( ) Ol 

Yl 

Conclusions: 

8 = constant for a lens 
2 

sin 
-1 

R12 = O 

B1 = B2 = 8 , Aa= p 
0 

11-80 
x1 = x2 = x , Ae=-$ 

0 3989A3 

Fig. 3 



A THIN LENS QUADRUPOLE 

+F 

0 x plane 

R =[T; ;]= [-& :] * Aa = (a2-a1) 

n 
y plane 

-F 

0 0 

1 0 44 2 k-- F 1 

when k or 7 signs appear, top sign = x plane and bottom sign = y plane 

Conclusions:. 
8 

!Y fj2 = B1 , Aax = + , Aay = - F 3 A.Jlx,y = sin 
-1 

R12 = O 

Special Case: 

If 8, = By = 8 and a,(l) = -a,(l) 

Then Bc2) = p = 8 and 
X*Y X*Y 

ax(z) = -ay(2) , Aax = i 

I t 
w 

Y play x plane I 
, /slope =-$ 

A+=- 

Y2 = Y, 

Yl 
+,=F+ 

11-80 3989A4 

Fig. 4 
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A TELESCOPIC SYSTEM 

kFI + 
/slope=-z 

@I 

S2 J 
- . 

-- 0 
% 

t 0 -$ 
J" 2. 

i F2 -- 
F1 

0 

4-l 0 
F1 -- 
F2 

= 
I 

I % 

a1 

\ 9 

0 

I 

= 
1 -- 
M 

J 

M2 0 0’ 

,# 

0 1 0 

0 0 
1 

M2 

B2 

0 a2 = 

Y2 

Conclusions: 

a2 = a1 = a is a constant 

( ) 62 !a M2 A6 -1 

81 
, = sin R12 = = 

3989A.5 
11-80 

Fig. 5 



A TWO-DIMENSIONAL TELESCOPIC TRANSFORMER USING QUADRUPOLE LENSES 

R = 
X*Y 

-“X 
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-I 0 1 -- 
MX 
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0 
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-M ( 
Y 

1 
O li 

-- I 
I L 
Y 
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B 
2x -- J- 

8 
0 

lx 
B 0 

0 -- $ lx 
8 

2x 

B2 -Y 

i- $lY 
0 

0 

0 
h -I 

$ % 
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Fig. 6 



I 
_. __- __ -_ . _. 1 ,. 

Then 

AU = n/2 UNIT CELL MATCHED FOR 6 AND a 

B1 = t32 = B , n al = a2 = a , A$J~,~ = FC = T 

a B 
Rx = 

[ 1 
and choose -y -a 

or 

+a B upper sign = x plane 
R = where 

XSY 
[ 1 -Y 7a lower sign = y plane 

This describes an optical system that is the same from left to right in 

the x plane as it is from right to left in the y plane. 

One example of such a system is the Quadrupole Doublet 

2 

x plane 

71 
y plane u =- 

XPY 2 

F F 

The Twiss transform is 

B2 

0 a2 = 

y2 

a2 T2aB B2 

w 
+ay -(l+2a2) +a$ 

Y2 72ay a2 1 
Notice that if 

then 
11-80 

I+) = Bl(Y) and sly = -alx 

and B2 (x) = B2(Y) a2y = -a2x 

Fig. 7 

3989A6 



A VARIABLE n/2 PHASE ELLIPSE TRANSFORMER 

FI 
i ~~~~ =[I: J , Trace R = 2cosu 0 k E y plane 

rn I I 91 

i 
I I - i I ‘) 

” .I rY2 1 1 YZ I T2ay I aLJ \Y, 

The above equations apply when Ql and Q, are turned off. 

Energizing Ql varies al where 

Q2 varies a2 

It follows that: 

If "lx = -Oly 
and %x = %y 

Then a2x = -a2y and B2x = 82y 

The allowable range of variation for B2 is: 

11-80 

82 

2 

B2 2 $1 i.e* ' 
B 

R12 
2 (minimum) = - 

% 3909Al 

Fig. 8 



VARIABLE TELESCOPIC PHASE ELLIPSE TRANSFORMERS 

R = 
XSY 

The above equations apply when Ql and Q, are turned off. 

Energizing Q, varies al 

Q2 
varies a2 

It follows that: 

If "lx = -sly and %x = %y 

Then a2x = -a2y and B2x = 62y 

The allowable range of variation for B2 is: 

2 
R12 

B2(minimum) = - 
% 

3969AB 11-80 

Fig. 9 



A PERIODIC QUADRUPOLE ARRAY PHASE ELLIPSE MATCHING 

Ql Q2 
r: 
II X plane 
LI 

y plane 

R = 
XSY 0 

L =F 

2L 

71 3 

The above equations apply when Q, is off and Ql is set to focal length 

F = L. 

Varying Ql varies al 

Varying Q, varies a2 

If alx = -OL1y and @lx = %y 

Then a2x = -OL2y and B2x = Bqy when Ql and Q, are varied 

The available range of variation for B2 is 

ll- 80 
' 5J2 i.e., 

2 
R12 

B2= B1 B2(minimum) = - 
% 3989AlO 

Fig. 10 



A MAGNIFYING TELESCOPIC SYSTEM WHERE 

THE PHASE SHIFT PER CELL p, = t~/2 

___---- 

IfI f2 f3 f4 

Cl C2 C3 C4 

I 2 3 4 5 

al = a2 = a3 = a4 = a5 = a , AJ, = 4p, = 2n 

LN=( - fN+fNl) ' 
1 -L+- 1 

FN = LN h+l 

(!I!$) = (+) = (y)= (*) =r2 
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Fig. 11 


