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ABSTRACT 

It is shown that no non-Abelian spin system or gauge theory on a 

lattice is self-dual, unless the model can be rewritten as an Abelian 

system. Some examples of such effectively Abelian models are given. 

In addition, for both discrete groups and Lie groups with non-trivial 

centers dual local field theories are constructed. For the gauge theory 

the dual order parameter has the 't Hooft commutation relations with the 

Wilson loop. 
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1. Introduction 

In recent years many authors have investigated the duality proper- 

ties of Z(N) spin systems and gauge theories on a lattice Cl]-[7]. 

Duality transformations are powerful tools for examining the behavior of 

order parameters of systems. For a spin system the appropriate order 

parameter is the spin expectation value, while for a gauge theory it is 

the Wilson loop. In this paper duality transformations will be constructed 

for non-Abelian l+l dimensional spin systems and 3+1 dimensional gauge 

theories in the discrete space/continuous time Hamiltonian formulation. 

In particular it will be shown that systems based on finite non-Abelian 

groups cannot be self-dual unless they are effectively invariant under 

an Abelian symmetry, and a local dual field theory can be constructed 

whose order parameter is the Nielsen-Olsen-t' Hooft loop [81,[91. 

Cardy [lo], Elitzur, Pearson, and Shigemitsu [ll], Horn, Weinstein, 

and Yankielowicz [12], and Ukawa, Windey, and Guth [13] have investigated 

the phases of the Z(N) models, and have found that as N increases their 

phase diagrams greatly resemble those of U(1) models. This suggests 

that finite non-Abelian gauge theories may parallel Yang-Mills theories 

when the order of the group is large enough (for example the polyhedral 

groups may tell us something about O(3)). For this reason it seems 

worthwhile to understand the duality properties of finite non-Abelian 

models, since this will shed some light on their confinement properties. 

Mandelstam [9] suggested that there exists a field theory dual to 

Yang-Mills whose order parameter is the Nielsen-Olsen-t' Hooft loop. 

It will be shown here that this is a property of any local dual theory. 



-3- 

Duality transformations are a means of describing a model by a new 

system whose degrees of freedom are on the dual lattice. The dual of a 

l-dimensional lattice has its sites midway between the sites of the 

original lattice. In 3-dimensions, the dual lattice has its sites at 

the centers of the cubes of the original lattice. 

Consider a Hamiltonian 

H(r,Q ; A) = T[r(x)l + XV[Q(x)l (la> 

where x denotes a point on the lattice (either a site or a link), G(x) 

is the field operator, and r(x) is some other operator which does not 

commute with n(x) at the same point. Now suppose there is a second 

Hamiltonian 

h(.y,w ; A) = C' 
x 1 

tCy(x)l f XVCw(x> 1 
i 

9 (lb) 

and a unitary operator D such that 

DTCUX)ID+ = vCW(X)I , DVCQ(X)ID+ = tCr(x)l . (2) 

If T,V,t,v are all polynomial functions 

T[Dr(x)D+] = &I(X)] , VCDQ(x)D+1 = t[y(x)l * (3) 

Define the transformation 

9 =dD , (4) 

where d displaces quantities by a half-unit in each coordinate, for 

example 

df (4 (5) 
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in l-dimension. The dual variables are 

= gr(x)@l , RD = C%I(x)d , (6) 

and 

h(y,u ; A) = AH(rD,QD; l/X) . (7) 

If this is the case the two Hamiltonians (la) and (lb) are said to be 

dual to one another. The practical value of (7) for statistical mechani- 

cal systems is that AC is a critical point for the model (la) if and only 

if l/Xc is a critical point for (lb). If H and h are the same Hamiltonian, 

the system is called self-dual. Systems invariant under continuous compact 

groups, such as non-linear sigma models and Yang-Mills theories, are 

never self-dual, since their kinetic terms have discrete eigenvalues, 

whereas their potentials have continuous spectra. 

In the next section Hamiltonians for spin systems and gauge theories 

with any finite group will be constructed. Section III is devoted to 

duality for both these models, and Lie group systems. 

II. Hamiltonians 

The most general globally invariant Lagrangian for a 2-dimensional 

spin system is a function of a group element field g(x) s G and may be 

written as 

R 1 .9(X) = -c c 
k=l u=~ 

‘, ak x,[idx)%x+ +i,)]k + h.c. , (8a) 

h 

where sO,no and cl,nl are the lattice spacings and unit vectors in the 

time and space directions, respectively, R is some finite integer, and 

xF is the character function (trace) in the lowest dimensional faithful 
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representation. The positive coefficients ak are the relative couplings 

which characterize the theory, and 8, are the time and space 

temperatures. For the lattice gauge theory in 4-dimensions, 

Lagrangian is 

L 3 

inverse 

the 

ii?‘(X) = -x c BuvakxF g(X,nll)g(x+EU;l~,Ely)g(X+EU;Ly,;lU) 
C 

-1 

k=l u,v=O 
lJ#v - 

P(X,Q 
-1 k 1 + h.c. , (8b) 

where the group elements are now located on the links of the lattice, 

B =: 
io Boi = 8,, Bij = Bs are the time and space temperatures, respectively, 

and e = E = E 1 2 3' 

In order to find the Hamiltonians for (8a) and (8b), it is convenient 

to use the regular representation of the group. Suppose the elements are 

labeled by ga, a = 1, . . . . N. The regular representation is an N-dimensional 

representation defined by 

ubc = 
‘9 gb=gagc 

, UT a a 
0, gb ' gage 

(9) 

The spin system Lagrangian (8a) may be rewritten as 

ax) = - $ $ a 2 d $ Bi,Cak xF(gc)k+h.c.]U;aUda(%) Udb(%+c&) 
= , 9 9 

= -' ' kk XF(gc)k+h*C*] i S, 6Cg k k=l p=O 
g(;;)-lg(x+E ; )] Y Y 

C’ lJ u 

(10) 

which is a linear combination of double-valued quantities. If each one 

of these quantities is regarded as a Lagrangian, the corresponding 
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Hamiltonian may be constructed through the use of the transfer matrix 

c141. It is not difficult to show that the transformation yielding 

Hamiltonians from Lagrangians (the discrete Legendre transformation) 

is linear. Consequently resumming gives the spin system Hamiltonian 

(discrete space/continuous time) 

Gf(x) + X c 
ab ga 

abg 
UC 51 (x) Qgb(x+s) 1 

= - xdf c Gf(x) - X c Aab c Qga(x) ngb(x+s) , (11) 
f X a& X 

where x 1' 9 have been relabeled by x, E, the number h is proportional 

to the inverse square of the coupling constant, and the local operators 

Gf(x) and Q ab (x> are defined by 

Gfbd> = kfgd) , 

Qab(gd> = uiblg,> , 

(Ed 

(12b) 

where \g d > is a local Hilbert space vector at a site. The operator Gf(x) 

may be regarded as a "spin flipper". 

To obtain the Hamiltonian for (8b), it is easiest to work in Ao=O 

gauge (g(X,;l,) = I). This forces the Lagrangian of a time-space oreinted 

plaquette to have the same form as (8a). Thus the kinetic term is the 

same as that in (ll), and the Hamiltonian is 

H = -c df c Gf(:,ni) - X c Aab xT+J Qac(;,fii) .Q~~(;+E;~ , nk) 
f x,i abcde . . 

, 

x ned&+ lik, ;Ij) n be(Ti , $) (13) 
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For (11) a global gauge transformation is 

$jf = nGf(x) . (14) 
X 

The physical states must be eigenstates of (14). The gauge theory 

Hamiltonian (13) must be augmented by Gauss' law (because of the gauge 

condition). This is just the statement of the invariance of physical 

states under spatial gauge transformations. The basic spatial gauge 

transformations are 

$jf(x) = n Gf(%, iii, Gf(ii, -ii> . 
i 

(15) 

This establishes the strong coupling (small X) states as loops and strings 

of excited links. 

The form of (11) and (13) can be made more compact by defining 

c dC 

B ab ab 
= 6 ab da+ ' - 

c 

ee A [ 
A 

e 

and making the replacement 

c da 

x-t a eeX 
c A 
e 

so that (11) becomes 

ab aa 
6 A 1 , (16) 

(17) , 

1 

H = -gBab Gkab Ga(x) + A c QCa(x) nCb(x+d , c 
1 

(18) 

and (13) is 

H = - g Bab [l&ab Ga + AplaqFttes 2 Qac Qcd Qed Qbc] . (19) 
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The order parameter for the spin system is the magnetization 

M(A) = , 
A 

(20) 

where IO>, is the ground state for a particular value of A. Unless 

global gauge invariance is spontaneously broken M(h) is zero. This can 

be seen by averaging over global gauge transformations (14) and from the 

fact that-the sum over all the group elements of the character of an 

irreducible representation vanishes. If M(A) is zero the system is 

said to be in the disordered phase. Otherwise it is (at least partially) 

in the ordered phase. The boundary between these phase Xc is where a 

phase transition occurs (there may in general be more than two phases). 

For the gauge theory, the order parameter is the vacuum expectation 

value of the Wilson loop 

M(c,A) = (O[A(C)(O)~ = h(O(Tr[B mgc Q(m)]lO)x , 
x 

(21) 

where m is a link of the closed loop c. In strong coupling perturbation 

theory, the first non-vanishing term is of order An where n is the minimal 

number of plaquettes of a surface enclosed by c. This is just the Wilson 

criterion for confinement. 

III. Duality 

It is now straight forward to test these models for self-duality. 

A necessary condition for self-duality is that the spectrum of the 

kinetic term is the same as that of the potential. Therefore there 

exists an orthogonal operator S such that 

S+F Baa Ga S = gBab Qab + c1 a . (22) 

, 



where a is some real constant. As an example of this situation, if the 

ak's in (8a,b) are adjusted so that the Lagrangian is the trace in the 

regular representation, we have B 
ab = 1 for all a,b and =-I. In the 

case of (8a) this is the Potts model [15,161. Define 

r ab = ss1 ab s+ . (23) 

For an Abelian group T ab differs from gabGa by a constant, since all the 

Ga's may be simultaneously diagonalized. The spin system Hamiltonian 

may be written from (22) and (23) as 

H = - 5 Bab c[rab(x) + X Coca(x) ncb(x+s)] . (24) 
, X C 

A general eigenstate of the potential term is 

((g(x)), x = -> = Qo I&d> 9 (2.W 
X 

where g(-a) = g(m) = I is imposed as a boundary condition. An eigen- 

state of the kinetic term with the same eigenvalue as (25a) is 

J{gW , A = 0) = g) slg(&(x)> . 
X 

Now define 

52 = d c @ Slg(x)-lg(x+E)>Cg(x>I 
I 

. (26) 

Using (26) it is simple to define variables on the dual lattice 

ab 
w = !2aQab(x)cB-1 = n rab(x') , (274 

x' ix 

ab 
Y . (27b) 
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Then 

c Bab u’“(x + ;) uCb(x + ;) = c Baa Ga(x) . (.28) 
abc a 

In general, unless the model is self-dual 

c Bab yab(x -t ;) # 2 Bab RCa(x) !JCb(x+s) , (29) 
ab 

however a-variable y' ab may be defined, 

Y ,ab 
( ) x+2 2 = cd rab(X+E)g = Cnca(x) ifb(x+E)) 

C 

(30) 

such that 

c B ab yIab(x + $) = 2 Bab RCa(x) QCb(x+c) . (31) 
ab 

Now suppose the theory is non-Abelian, then w will not have local 

commutation relations with y'. This is because the form (27a) is dis- 

tinguishable from a global gauge transformation at points different 

from x. Consequently w will not have local commutation relations with 

the potential term, unless the model is effectively invariant under an -- 

Abelian group. This means it is possible to rewrite the Lagrangian as 

an Abelian Lagrangian. However, 52 ab certainly has local commutation 

relations with the kinetic term. Therefore self-duality implies that 

the model is effectively Abelian. 

A trivial example of an effectively Abelian theory is the Potts 

model. This model is not characterized by anything pertaining to the 

group except its order (the action is just a Kronecker delta in the 

group indices). Consequently, if the group is non-Abelian, it may be 

replaced by an Abelian group. Bellissard [171, Drouffe, Itzykson and 
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Zuber C181, and Monastyrsky and Zamolodchikov Cl91 have shown that any 

spin system invariant under a solvable group is an effectively Abelian 

model. A group G is solvable if it contains a chain of subgroups 

G = Go 3 G1 3 . . . 1 Gk = I (32) 

such that each G is normal in GRWl (that is, GR is invariant under 

similiarity transformations in Gtml) and GeBl/Ga is an Abelian group. 

These groups include S(.3), S(4) (the permutation groups of three and 

four objects respectively), the octahedral group, and any group of odd 

order. A spin system invariant under a solvable group may always be 

written as one based on 

G’ = GO/G1 @ . . . @ Gkm2/Gkml 8 Gkml . (33) 

The duality transformation had earlier been found for A(4) = S(4)/Z(2) 

by Dotsenko 1201. 

For an Abelian system the criterion for self-duality is 

c B aa <{g(x)'), x=+a(x)({g(x)l, ?,=a> 
a (34) 

c B ab = <{g(x)'),A=O(i2Ca(x) ncb(x+~)I(g(x)),X=O> + const. 
abc 

which is satisfied if C s2 ,Q ab =o 1 . 
These results simply generalize to the case where (22) is replaced 

by the condition that the kinetic term of a spin system has the same 

spectrum as the potential of another spin system based on the same 

group and vice-versa, which is neccessary for mutual duality. For the 

same reasons as those outlined above, intrinsically non-Abelian spin 

systems are not dual to other systems with the same group. 
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The above analysis applies to gauge theories as well. It is 

simplest to carry out the procedure if an additional gauge restriction 

A3(t=t0) = 0 is imposed. The problem of non-locality persists in the 

non-Abelian case, accompanied by further difficulties in requiring the 

dual states to satisfy Gauss' law as well as the Bianchi identity. 

Again if the model is effectively Abelian these troubles disappear. 

For the solvable groups there are effectively Abelian gauge systems, 

although they exist only for certain values of the relative couplings. 

If the ak's are chosen properly the model is explicitly broken to a 

system with the gauge group Ge-l/G&. Two examples will be given here. 

Consider S(3), whose breakdown as in (32) is 

S(3) 3 Z(2) 3 I , S(3)/Z(2) = Z(3) . (35) 

The Lagrangian (8b) for this model has R=3, and xF is the trace in the 

two dimensional representation. For the choice al=a3=0, a2=l, this 

is a Z(3) model. This becomes apparent if local degeneracies in the 

potential are summed over. The group has six elements S(3) = \I, w, 

2 2 
w , r, m, rw i , where o is a Z(3) rotation and r is the reflection 

(this may be seen geometrically as the set of relative couplings the 

local Hilbert space states )I>, jr>, (ru>, (11a2> may be summed over. 

The second set of relative couplings which renders the invariance 

Abelian is al=a2=0, a3=l. This is a Z(2) system. A more interesting 

example is the group of the tetrahedron 

S(4) 3 A(4) 3 V(4) 3 I , S(4)/A(4) = Z(2) , 

A(4)/V(4) = Z(3) , (36) 

where V(4) is the dihedral group of order 4, V(4) = 11, I ql, q2, q 1, 31 
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4; = I, 9.4. 1J 
= qk if i#j #k#i. In this case L=6. The choices 

(i) al=a2=a3=a4 =a5=0, a6=l, (ii) al= a3=a4= a5=a6=0, a2=l, and 

(iii) al=a2=a4=ag'=a6 =0, a3=l, give (i) Z(2), (ii) Z(3), and 

(iii) V(4) invariances, respectively. 

Though it is not possible to find a self-dual intrinsically non- 

Abelian model, it is still interesting to try to define dual fields 

which develope an expectation value in the disordered phase. A first 

guess might be to try to define objects like 

$“k + ;) = ,!, Ga(x) (37) 

as the dual fields for the spin system. The operator $J~ x + -!$ commutes 
( 1 

with the kinetic term, and produces a soliton when acting on a classical 

state. Thus it develops an expectation value in disordered phase, and 

has a particle interpretation in the ordered phase. In fact, for Abelian 

systems these operators are just what is needed C3,7,161. For non- 

Abelian systems, however, they do not possess local commutativity. 

Hence wave functionals of these operators are not defined. So even if 

the Hamiltonian can be rewritten in terms of Jla x + 2 the theory does 
( > 

not exist! 

The correct dual fields must satisfy the following criteria: 

i> They violate the boundary conditions of classical states. 

ii) They have local commutation relations with the potential term. 

iii) They have local commutation relations with each other. 

iv) It must be possible to construct the kinetic term from them. 

First consider spin systems. In order to satisfy i) and ii), the dual 

field operator must be indistinguishable from a global gauge transforma- 
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tion at large distances. Because of iii) the only acceptable global 

gauge transformations correspond to elements of an Abelian subgroup. 

Here the requirement iv) will be strengthened to: 

iv)' The dual fields may be used to construct Gf(x), 

This is not essential for spin systems, but is needed for gauge theories, 

where Gauss' law must be imposed as a constraint. 

It i-s impossible to satisfy i), ii), iii) and iv)' unless the group 

has a non-trivial center. With iv)', global gauge transformations not 

corresponding to the center are unacceptable. For simplicity, assume 

that the group is a subgroup of O(3) with center Z(2). Then the simplest 

choice of a dual field obeying the above conditions is 

ga( x+E 2) = Ga(x> ,,Fx G’(x’) , (38) 

where g is the reflection element. The Hamiltonian (18) in terms of 
r 

these fields is 

H = -AgBab c[vab(x +$)++ 6ab #r(x - 5) $a~ +$)] 
X 

(39) 

where 

vyx + ;) = F iFa QCb (x+d . (40) 

When viewed as an operator on wave functions of $a, the relevant feature 

of v ab is its commutation relation with the dual field, 
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qx + ;) g(y + ;) = 6xy & uzd O’(Y + ;) vdb(x + ;) 

+ 6 c 
ae ed 

xy-E de 'r 'c qy + 4) Vdbjx + $) . (41) 

The physical states must satisfy a dual global invariance 

iTr[,FV(x+q)]\Yj= IY> . (42) 

For (19) the appropriate dual fields are 

c$$ + ; (I$ - nj +iik) , ij] = Ga(;,<) fjl Gr(; - Il+ , ;lk> , 

(43) 

where (i,j,k) is an even permutation of (1,2,3). The Hamiltonian is 

H = -), z Bab c jFvab[x + i (;Il+~2+~3) $4 
X (44) , 

1 
+2A = t i#j 0; x +; (;II+;12+;13),;1 j 1 r. +; x + ; (l$ +A2 + n3) + +,nj Ii 

where 

V ab - 
L 
x+" 2 (fii+;lj - 'k) 'k] = g nac(+> ifd(x+ Eii ii.) i' J 

x ned(x+ E;lj ‘iii) nbe(x,Clj) , (45) 

and again (i,j,k) is an even permutation of (1,2,3). The commutation 

relations between V 
ab and c$' is similiar to (41), 
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6 6 uad - 6-- _ & ed = 
ij xy c XY 

c qe UC 
k e 

+; (;11+;12+"3),"j 1 
x v + 4 (iil+ii2+n3),;li 1 . 

The Bianchi identity becomes the dual local invariance 

n V(%,&i) V(',E;j) II ) ' =IY> * 
i 

(46) 

(47) 

Gauss' law gives a constraint on the dual fields 

+5 (l++G2+G3)- Eiii,ii j 1 [ 0; x +5 (;11+fi2+n3),;j = 1. 1 
(48) 

The dual order parameter, or disorder parameter, is 

Na(c',X) = h<O\Ba(c')lO>, = (49) 
h h 

where c' is a closed curve on the dual lattice. The object Ba(c’) is the 

simplest that can be defined which is invariant under (43). If ,the 

invariance (47) is not spontaneously broken, i.e., the phase is com- 

pletely disordered, the states will contain loops and strings of excited 

vortices (magnetic confinement), produced by operators such as Ba(c’) 

acting on the ground state. If c and c' are two closed paths such that 

no link in c is a distance 5 from any link in c', then 

A(c) Ba(c') = rBa(c') A(c) 

if c' closes through c and 

A(c) Ba(c') = Ba(c') A(c) 

(504 

(50b) 
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if c' doesn't close through c. This results from requirements i), 

ii), iii), iv)'. Equations (50a,b) are the commutation relations of 

't Hooft C81. 

All of the discussion (37)-(50a,b) applies to continuous compact 

groups as well as finite groups. The only formal difference is the 

summation over group indices is replaced by group invariant integration 

over group parameters (coefficients of generators). This is needlessly 

cumbersome however, and the discussion here will be in a notation better 

suited to Lie groups. 

For the O(3) non-linear sigma model the Hamiltonian is 

“+ CIC 
X 1 

82 Ga + 1 Tr[Q(x)+ 
a p4c4 g2 

~l(x+s)] 
i 

+ h.c. , (51) 

where a = 1,2,3, Tr is the trace in the 3-dimensional representation, 

2 
?J is the mass scale, and 

-iu2c/g(d/dAa(x)) G'(x) = e , 
and 

n(x) = e 
-igeAaTa 

, 

(524 

(52b) 

where T a are the group generators. The dual field is 

$‘yx + ;) = Ga(x) x,q x Gr(X’> 3 Ga(x) @r(x - ;) (53) 

where Gr is the same as before. Defining analogously to (40) 

vx+; ( ) = n(x)+ D(XfE) ' (54) 

the Hamiltonian may be rewritten as 

Hz- 2 c/Trp(x +;)I +$$ Fmr(x - ;) $a(~ +$)I + h.c., 
E X 

(55) 
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with the commutation relations 

V(X + 5) ga(y + :) = (6xy- 6w-E) e-‘2E2Ta $(y + 2) V(x + 2) - 

(56) 

The dual global invariance is 

-$Tr[n v(x+<)]~Y) = (Y> . 
X 

(57) 

The O(3) gauge Hamiltonian is 

H-k CJ 
2 

x,ijk u E I 
% Ga -t 4 Tr 

g C 
Q(x,hj) G(Xi-EG.,G 

Jk ) 

- An 
x Q(x+ cnk,nj) + n(x,;l,)+ 

II 
+ h.c. , (58) 

where, as before, (i,j,k) is an even permutation of (i,2,3)* Defining 

~s[;, + ~ (;li- nj +;;,) ,~j] = G'(X,~k) all G'('- "'i,;;k) 

and 

_ Ga(x,;lk) 4’ ‘; - 4 (;li+nj-nk’,‘j 
[ 1 , (59) 

v (iti+i+& 
3 1 = fi(;,i) a(%-+ +,f;k) 

t 
x n(;;+& f; > k' j n(x,Ak)+ 3 (60) 

(60) becomes 

Hz- & xGk [2Tr V[G + 5 (;li+ij -A~),;~] 
, 

G2 + n3> ,lG j + 2 (;11+i.i2+;L3) + E;li,ttj 
UE a 

+ h.c. , (61) 
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and the commutation relations are 

+; (cil+fi2+;3),iii 1 [ oa y +; (;11+ii2+G3),;;. 
J 1 

= 6 

+; (;11+;;2+;13),;;i 1 . (62) 

The dual local invariance is 

Tr +p (fi1+ii2+;i3),iii 1 [ v x +5 (fil+fi2+;13),-;li 1 
(63) 

Finally there is the constraint 

+4 (l$+ii2+iG3) - E;; 
(64) 

Now that the dual system is defined, the disorder parameter invariant 

under (63) can be given. It is 

Na(c',X> = X<OIBa(~')IO>A = (0 / n $a(m')lO) . (65) 
x m'cc' x 

IV. Concluding Remarks 

It has been shown here that intrinsically non-Abel'ian spin systems 

and gauge theories cannot be self-dual. Even so, there are many spin 

systems and a few gauge theories, based on the solvable groups, which 

have the same duality properties as Abelian systems. This should be of 

some aid in finding phase diagrams. In particular, the phases of the 

polyhedral groups should be investigated. The smallest Z(N) group which 
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has some resemblance to U(1) is Z(5) [lo-131. Consequently it may be 

that the only polyhedral group which is relevant to O(3) is the group 

of the dodecahedron, whose faces are pentageous. Unfortunately, this 

group is not solvable. 

The utility of the operators defined in (38), (43), (53) and (61) 

is not clear. They are not the Hamiltonian analogues of the dual fields 

founded by Ukawa, Windey and Guth [131. Their approach has been to 

factor out the Z(N) piece of an SU(N) Lagrangian and perform the Z(N) 

duality transformation. This prescription does not switch the kinetic 

and potential terms, although a loop satisfying (50a,b) can be made 

with the resulting variables. 

Since iv)' need not be satisfied by spin systems, it might be 

interesting to investigate duality with iv) instead. It may be possible 

to extend the duality transformations found here to the continuum. 

However, there will be difficulties in defining the dual fields and the 

Hamiltonian in a non-singular way. A less ambitious task would be to 

understand the behavior of Fermion field operators in the O(3) non-linear 

sigma model, constructed from the original and dual fields. These are 

very useful in the Ising model r-141. To investigate either of these 

possibilities will rely heavily on the use of operator product 

expansions. 

I wish to thank Leonard Susskind, who suggested investigating 

duality for non-Abelian models, and Eduardo Fradkin and Stephen Shenker 

for constructive criticism. I am also indebted to Murray Gell-Mann and 

Cosmas K. Zachos for discussions. 
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