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ABSTRACT 

Isospin invariance, P and CP could well have 

been dynamically broken along with chiral invariance 

by the quark-antiquark condensate (<{q>. #0) . We 

show, however, that under appropriate circumstances, 

the conservation of isospin, P and CP is "natural". 
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Recent ideas about the dynamical breaking of the Weinberg-Salam 

SU(2) 8 U(1) gauge symmetry by a "technicolor condensate"l have raised 

the question whether we properly understand the usual quark-antiquark 

condensate whose existence has been postulated to explain the breaking 

of chiral isospin symmetry in the Nambu-Goldstone fashion and the origin 

of PCAC. Surely, if we do not clearly understand the symmetry properties 

of the cqmparitively simple quark-antiquark condensate, we will be at a 

loss to predict those of the hypothetical technicolor condensates. We 

propose here a simple technique which should help in this question and 

which does work properly for the color condensate. 

First let us point out that it is not so obvious why the usual quark- 

antiquark condensate does not break isospin invariance. We will assume as 

usual that there are two massless u and d quarks whose strong interactions 

are described by QCD. Along with their (current) masses, we neglect the 

weak and electromagnetic interactions of these quarks. They are indeed 

negligible in first approximation in comparison with the effects of the 

strong interactions in the infra-red region. They do play a crucial role 

however to which we will come back later. The QCD Lagrangian is now UL(2) 

63 U R (2) invariant, except that there is a possible breaking of the UA(l) 

axial invariance due to the Adler-Bell-Jackiw anomaly* and instanton 

physics.3 The arguments as to why isospin invariance is not dynamically 

broken can be made both in Case I, where the axial U(1) is broken, and in 

case II, where it is not. Both cases will be discussed separately below. 

We will assume that a quark-antiquark condensate is indeed the reason 

behind the breaking of chiral isospin symmetry and the successes of the 

PCAC hypothesis. There are eight color singlet, Lorentz scalar quark- 

antiquark combinations that could take vacuum expectation values. 



These form a matrix: 

(1) 

-k 
where o, 7~, n and d are the vacuum expectation values of eight hermitean 

effectfve scalar fields with isospin and parity properties I'=0 +, 1-, o-, 

and 1 + , respectively. They are all even under charge conjugation C. 

I$ transforms as the (2,2) representation of UL(2) 8 UR(2): 

Under SUL(2) Q SU,(2)-SO(4), 0 breaks up into two 4-vectors: (a,;) and 

ha * Let us assume that 0 has an arbitrary direction in group space. 

By a UL(2) @ UR(2) transformation, it can always be put into the form: 

9 + 
a-l-b + a-b =- 

2 2 '3 (3) 

where a and b are real and positive. A general expectation value thus 

breaks UL(2) 8 UR(2) down to UV(l) 8 LJV(l). Only when a=b, is SUV(2) 

Q TJV(l) the invariance group of the condensate, If UA(l) is broken by 

instanton physics (or some other strong interactions physics), then we 

are only allowed to use SUL(2) 8 SUR(2) Q UV(l) to align the condensate. 

It can then be put into the form: 

a + ic 0 a+b b 
0 + = 

2 +ic++r3 (4) 
0 b + ic 

where a, b and c are real. The invariance group of the condensate is 

again UV(l) Q UV(l). Isospin is broken unless a=b, Also P and CP are 
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broken unless c= 0, Let us now go on to show that although an arbitrary 

condensate would break isospin invariance, it is nevertheless "natural" 

to expect that the actual condensate does conserve isospin. By "natural", 

we mean that there is a continuous region of finite volume in some relevant 

parameter space where the condensate will be exactly isospin invariant. 

By contrast, in the space of parameters (a,b) and (a,b,c) introduced in 

Eqs. (3) and (4), the region in which isospin is conserved exactly has 

zero measure, 

Let us first consider case I, where the axial U(1) is not broken by 

any strong interaction physics such as instantons. Since the strong in- 

teractions are then UL(2) Q UR(2) invariant, the energy V of the conden- 

sate as a function of I$ must be V,(2) 8 UR(2) invariant. In other words, 

it can only be a function of the two independent U,(2) 8 UR(2) invariants 

Cl=Tr($t@) and C2= Tr($t$)2 that one can build out of 4, albeit an 

a-priori arbitrary function of these invariants. The vacuum minimizes 

v(.+) = V(C,,C,) and therefore satisfies the extremum equations: 

av a O 
= acl 0 b -( ) 

(5) 

There are in general four types of solution to Eq, (5): 

&. (a,b) = (0,O); j&. (a,b)= (0,x) or (x,0); iii. (a,b)= (x,x), where 

x= (- g/2 $$r; and iv. a and b solve $$- = $2 = 0. 
Only the type 

iii extremum has SUv(2) 8 U,(l) as its invariance group. We study in 

detail an effective potential which is an arbitrary polynomial of 
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degree i 4: 

2 
V(4) = --& Tr($t$) -t -$ Tr($t$)2 + z (Tr($f$))2 (6) 

It is bounded from below provided A+y > 0. It has each of the four 

types of extrema except the last one. In Table I, we give the conditions 

for each of these extrema to be the absolute minimum. As promised, there 

is a whole region of parameter space (v2> 0, X> 0) where the vacuum con- 

serves isospin while breaking chiral invariance. This remains true when 

one considers effective potentials more complicated than the one in 

Eq. (6>/+ The UL(2) Q UR(2) symmetric effective potential has however the 

U(1) problem 5 associated with the n-mass, the n being a Goldstone boson 

in this case. 

Let us thus go on to the case where the axial U(1) is broken by in- 

stantons or some other strong interaction physics. Since we neglect the 

small current masses of the u and d quarks, we can set the 8 parameter6 

of QCD equal to zero. The strong interactions now conserve SUL(2) Q 

SUR(2) 8 T+(l), P and CP. The energy V of the quark-antiquark condensate 

as a function of : = (a,:) and z = (n,:) must have these symmetries 
l V is 

then an a-priori arbitrary function of the three independent SUL(2) 8 

sUR(2) Q Uv(l), P and CP invariants Cl=;*;, C2=;*: and C3= (G*z)2 that 

one can build out of G and $. The vacuum satisfies the extrema equations 

zz2 av ;+2 av 

af acl 
ac (G) ;;: = 0 

3. 

av - -= 2 av ; + 2 av 
a: ac2 

T$-- (;*;) ; = 0 
3 

(7) 

-f -+ 
which have six types of solutions: i. v=w= 0; ii. G= 0, z# 0 - 
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(Iii1 solves -IX = 0).; iii. v#O, ii=0 (ISI solves z = 0); &. G# 0, 
ac2 

+- + 
w#O, $1; (I;[ and IZI solve $$= -!!-= 0); v. v#O, 

aC2 
z#O, GII$; and 

vi. f#O, z#O, G*$#O, where ];I, \;I and G. z solve $$=~=$=O. 

Only the type iii extremum conserves SUv(2) 8 Uv(l) along with P and CP, 

while breaking chiral invariance. We again study an effective potential 

which is-an arbitrary polynomial of degree 54: 

2 2 
p’2 + -% x1 x2 - +,.Pw) + -+) 2 + ,($;;) 2 + $-;) <;*;5) + $$-:)2. (8) 

It is bounded from below provided X1> 0, X2 > 0 and X+ y >,-dT This 

potential has each of the six types of extrema except the last one. In 

Table II, we give the (mutually exclusive) conditions for each of these 

extrema to be the absolute minimum, There is a whole region of parameter 

space (pf > O,*Au:- 2 2 
59 > 0, o+yhJ1- Alp:> 0) where the vacuum conserves 

isospin, P and CP while breaking chiral invariance. This remains true 

for effective potentials more complicated than the one in Eq. (8).4 

We note that usually the condition for strong P and CP conservation 

is stated to be that with the phase convention on the quark fields where 

all the quark masses are real and positive, the 0 parameter of QCD is 

equal to zero or V. But there obviously is a second condition: with the 

phase convention where 8= 0 or n, the quark-antiquark condensate must be 

P and CP even. We have showed that this condition along with isospin 

conservation can be satisfied "naturally." 

Before we turn on the weak and electromagnetic interactions or the 

current masses of the quarks, it is pointless to ask how the SU(2) 8 

Uv(l) (assuming we are in the right region of parameter space) invariance 
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group of the condensate is oriented in UL(2) Q UR(2), since we have 

truly no way to distinguish uI from dL or uK from dR. But as soon as 

we turn on; say, electromagnetism, we can distinguish u from d by their 

electric charge and the question arises whether SU(2) is properly oriented 

in SUL(2) 8 SUR(2). 

We can introduce the weak and electromagnetic interactions and the 

current masses of the quarks simultaneously by turning on the full 

Weinberg-Salam gauge theory.7 One proceeds as follows: first, one neglects 

the Yukawa interactions versus the Higgs potential of the Weinberg-Salam 

theory and the effective potential of the strong interactions (it is easy 

to justify this). At that point, the relative direction between the Higgs 

vacuum expectation value and the quark-antiquark condensate is arbitrary. 

Next we turn on the Yukawa interactions which couple these two directions: 

K1 ~&B( ;)dR+K&d4;+ +h.c.j (Kl+K2).v+@+(Kl-K2)9&+'#'+h.c. 

(10) 

where @ = is the Higgs doublet of the Weinberg-Salam theory 

and 

If we are in the right region of the parameter space of the strong effec- 

tive potential, then 9&=0 while the norm of Whas some definite value. 

The effect-of the Yukawa interaction is to alignvwith <@>,. This 

automatically insures that the condensate is properly oriented with 

respect to the weak and electromagnetic interactions and the small 

current masses: m 
U 

=K2<@'>, md= (K1<(Po>)*. 

In conclusion, it is heartening to realize that the symmetry proper- 

ties of a condensate produced by dynamical symmetry breaking can to a 
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large extent be analyzed without having to perform actual dynamical 

calculations, which have turned out to be quite difficult in the cases 

of interest, but which will of course ultimately be necessary. 

Acknowledgments 

I am grateful to L. Susskind for raising the question this paper 

addresses itself to, and for his criticism and encouragement. I thank 

the Aspen Center for Physics for its hospitality while part of this 

work was being done. Finally, I acknowledge useful conversations with 

M.A.B. Bzg, J. D. Bjorken, E. Farhi, M. Einhorn, H. Pagels, H. Quinn 

and M. Wise. This work was supported by the Department of Energy under 

contract number DE-AC03-76SF00515. 



-9- 

References and Footnotes 

1. L. Susskind, SLAC-PUB-2142 (1978); S. Weinberg, Harvard preprint 

(1978); S. Dimopoulos and L. Susskind, Stanford preprint ITP-626 

(1979); E. Farhi and L. Susskind, SLAC-PUB-2631 (1979). 

2. J. S. Bell and R. Jackiw, Nuovo Cimento m, 47 (1969); S. L. Adler, 

Phys. Rev. 177, 2426 (1969). 

3. G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys, Rev. Dl4, 3432 

(1976). 

4. For example, if we construct a polynomial, with arbitrary parameters, 

which includes all possible terms up to a given degree (>4), there 

always exists a finite region of parameter space where the type iii 

extremum is the absolute minimum for both cases I and II. 

5. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B, 365 

(1973). 

6. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976); C. Callan, 

R. Dashen and D. Gross, Phys. Lett. 63B, 334 (1976). 

7. S. Weinberg, Phys. Rev. Lett. 2, 1264 (1967); A. Salam in 

Elementary Particle Physics: Relativistic Groups and Analyticity, 

ed. N. Svartholm (Almquist and Wiksell, Stockholm, 1968). 



-lO- 

Region-of 

Parameter Space 

p2 < 0 

).I2 > 0, x < 0 

?.I2 > 0, x > 0 

(empty) 

Absolute Invariance Number of 
Goldstone 

Minimum Group Bosons 

type iL UL c2) 8 uRc2) 0 

type ii 5 - UVW wJV(1) @U,(l) 

type iii SUv(2) 8 u&) 4(&l) 

type iv uvw Q u,(l) 6 - 

Table I: Vacuum symmetry properties as a function of the region of - 
parameter space for the effective potential of Eq, (6). 
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Region of Absolute Invariance Number of P 
Goldstone and 

Parameter Space Minimum Group Bosons CP 
-3 

u;< 0, ii;< 0 type 2 SUL(2)8 SUR(2) 63UV(1) Cl cx 

v;>o, X4-h2+o, 

(A+ y)u; - x2”; > 0 type ii SUv(2) 8 up) 3 (3 Bt - 

pf>o, xLl;-xl+o~ 
(a+ Y$ 2 - q-9 > 0 type iii suv(2) Q up 3(C) c* 

y> 0, ala24 
2 

>o, 
type iv 5 C* - 

x211; - au; > 0, h& - all; > 0 

uv(l) Q uv(l) 

y< 0, x1x2- (x+y)2> 0, 

x2+ o+ Yh+ 09 type v sup) Q uvw 3 Bt - 

Al!+ o+Y+ 0 

(empty) type vi - uvw Q u&) 5 Bf 

Table II: Vacuum symmetry properties as a function of the region of 
parameter space for the effective potential of Eq. (8). 

*Conserved. 'Broken 


