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ABSTRACT 

The problem of upd.ating replicated data in a distributed database will be 

discussed. Several centralized control. algorithms that salve the problem 

will be pressnted. They range Fro.m c3 tstally ccntrsfizsd algnrithm ta one 

which only centralizes the con%rol of the data. The performance of these 

afgorithms ,is compared far completely duplicated databases in a no failure, 

tipdate? only environment.. The algorithms are studied through simula%ians 

3s well as by an analytic technique bas-crd an a queueing model. 

i A. IN-JRoDUCTIuN. 

In a distributed database, data may be replicated at SC?VE?T'af nudcis ami= the 

s;ystem. One of the reasons for replicating data is to improve its 

(Presented at the 1st International Conference on Distributed Computing Systems, 
October l-5, 1979, Huntsville, Alabama). 

* Work supported in part by the Department of Energy under contract number DE-AC03-76SF00515, 
Advanced Research Projects Agency of the Department of Defense under contract MDA903-77-C- 
0322, and Biotechnology Research Program of the National Institute of Health under Grant 
NIH PR-00785. 



Hector Garcia-Molina PAGE 2 

availability. Another reason is to distribute the load by allowing 

transactions to read the data at different sites. The price that must be 

paid for the increased availability and %he option of concurrent reads 

at different nodes is an increased cost for processing updates. Updating 

replicated copies of data is more expensive than updating a single copy of 

the data because in the replicated case updates must be performed on all 

copies. Furthermore, it is harder to coordinate conflicting updates when 

there are multiple copies to be Modified than it is to coordinate the updates 

when there is a single copy to be updated. 

In this paper8 we will not study the tradeoffs involved in repXicating 

data. We will assume that the decision to replicate a subset of the data has 

been made. That is, it is either imperative that the data be available even 

in the face of failures, or it i5 expected that the number of updates to the 

data will be considerably smaller than the number of reads on the data. Clnce 

we decide to replicate the particular subset of the data, we need to design 

an algor ithm for performing the updates. This algorithm must make sure that 

all updates are performed on all copies of the d.ata in the system. The 

algorithm must also guarantee th e consistency of the data C21. Many such 

algorithms have been sugges%ed~ and in this paper we wauld like to present 

some of these algorithms and compare their per+ormance. We will concentrate 

on a particular type of algorithm, the centralized control algorithms. These 

algorithms are fairly simple and, surprisingly, perform r'ather well‘ as we 

will see shortly. 
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2. THE MODEL. 

In order to study the update algorithms and their performance, we choose 

a ‘4 e r y simpl'e model for the distributed database and the updates. Since we 

are interested in updates to a particular subset of replicated data, we will 

view our "system" only as the replicated data and the nodes where it is 

located. That is, in our "system", all nodes will have a complete copy of 

the database. We will assume that all transactions that are processed in the 

system are update transactions. 

We will view the database simply as a collection of named items. Each 

item "i" -has associated with it a set of values,; each of these values is 

stored at a different node in the system. We represent the value of item '*i" 

at node x by dTi,x3. The values for a given item should be the same (i.e.8 

dCi,xl should equal dCi,yI for all nodes xI y). Howeverr due to the updating. 

activity, the values may be temporarily different. 

In our system, an update transaction A consists of three steps: 

(1) Update transaction A requests values for items ilr i& ...I in. 

These values are read at any node in the system. That is, we read dCil,xl, 

dCiZ?,xf, .-.# dCins xl at same node x. 

(2) Using the values obtained, A performs some computations and comes up 

w i t h a set of new values for a subset of the items read il, i2, . . . . im, 

where m is less than or equal to n. 
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(3) ‘The new values produced are stored at all nodes in the system. That 

is, we do m dfik, x 7 : = new value for item ik " for aLI nodes x and all items 

ik in iI., i2, . . . . im. 

Wotice that 'updates initially specify their read set. Except for this 

restriction, our update model is a general one. ,At the. end of this paper we 

will briefly comment on the effect of this restriction. 

Finally, in this paper we will assume that no failures occur in the 

system. This is a strong statement, but we make it in order to simplify the 

presentation and the analysis of the algorithms. However, the results we 

obtain here can be extended to the case where failures occur. Due to space 

limitations, we will be unable to give the details for this here. We will 

only make a few comments at several points in the paper as to how failures 

can affect the perfarmante of the algarithms, and we will refer the reader to 

C51 for a complete presentation. 

3. THE CDMPLETE CENTRALIZATION ALGURITHf*1 (CCA). 

Thi! first update algorithm that we will present is a complete 

centralization algorithm, CCA Calso called a primary copy algorithm [II). 

The basic idea of this solution is to select a "central" node where aI1 

update transactions are totally executed. The central node then broadcasts 

the new update values produced by the transactions ta all other nodes. A 

sequence number is attached to each "perform update" message (i.e., the 
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message with the new values) so that the values are stored at each site in 

the same order that.they were produced by the central node. This algorithm 

provides consistency because all update transactions are serialized by the 

central node. 

We now give a brief outline of the CCA algorithm: 

(I) Update transaction A arrives at node x from a user. 

(2) Node x forwards transaction A to the central node. 

(3) When the central node receives an update transaction AI it place5 it 

in a queue. Transactions from this queue are executed one at a time at the 

central node. That is, the values requested by A'are read from the XocaI 

database, the computations are carried otlt, and the new values are stored in 

the local database. <Update transactions can be executed in parallel at the 

central node as long as a local concurrency control guarantees that-the 

effect on the database is as if transactions were performed one at a time.1 

A sequence number is assigned to transaction A. This number represents the 

order, with respect to other transactions, in which A was executed. 

(4) "Perform update" messages are sent out by the central node to aX1 

other nodes giving them the new values that must be stored at each sfte. -i-h@ 

sequence number of A is appended to these messages. 
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(5) When a node y receives a "perform ui;date" message, it waits until it 

h as processed all "perform update" messages from transactions with Lower 

sequence numbers. Then node y stores the neu values into its local database, 

as indicated by the message. 

There are two potential disadvantages with this algorithm. The first 

problem is that-if the central node crashes* then no more update transactions 

can be proceSSed. HoweverI this is not really a problem because the complete 

centralization algorithm (as well as the other algorithms we will p-resent) 

can be made resilient. The main idea is to have a protocol for electing a 

new central site when the old central node crashes. The new central node can 

collect all the state 9rom the active nodes, and based on this& it can 

complete an9 unfinished update transactions and start processing new ones. 

The techniques 9or making the CCA algorithm.crash resistant are given in C51. 

&hen we study the performance of the CCA algorithm, we will use the simple 

algorithm given above, but as we have stated, the results can be extended to 

the resilient version. 

Another potential problem with t? me CCA algorithm is that all update 

transactions must be processed at a single node. This creates a bottleneck 

which can significantly degrade performance. This paper will show when the 

bottleneck occurs and how serious a problem it is- 
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4. THE PERFORMANCE MOCEL. 

In order to study the performance of the CCA and other algorithms, we use 

a simple performance model which represents the principal characteristics of 

a distributed database system. The performance model is described in 673. 

Here we will only give a brief outline of the model and its parameters. 

Dur performance evaluation of the update algorithms does not only count 

the number of messages transmitted in order to process an update transaction. 

Our model also takes into account the IO and CPU processing time required by 

the transactionsl as well as the queueing delags involved in waiting for the 

IO and CPU resources. In addition to this,' the performance evaluation also 

considers the extra delays and processing loads caused by update transactions 

that conflict. 

The main parameters of the performance model are: 

(1) The mean interarrival time of update transactions at each node, Ar. 

The arrival of transactions at'each node is a Poisson process. 

(2) The average number of items read bg an update transaction, Bs. The 

number of items referenced by a transaction is exponentially distributed with 

mean Es. All items are equally likely to be referenced by a transaction. 

Out of the items read, a random fraction will be modified. 

(3) The number of items in the database, M. 
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(4) The number of nodes, N. 

(5) The netwark transmission time, T. Ne assume that the time it takes 

any message to go from one node to any other node is a constant T. (Howeverr 

the correct operation of the algorithms does not depend on this fact. ) 

(bf The CPU time needed to set or check a lock Car to check a 

timestamp), Ct. This parameter is only used in the algorithms that use locks 

or timestamps. 

i7) The CPU computr time, Cu. After an update transaction reads the z 

values it needs‘ it will use Z times Cu seconds of CPU time in order to 

produce the.new values' for the update. 

(0, The IO time needed to set or check a lock (or to read or write a 

tim$stamp), It. Again, this parameter is only used in the algorithms that 

use locks or timestamps. 

(5') The IO time needed to read or write one item value from a 

database, Iu. 

5. THE PERFORMANCE RESULTS FOR THE CCA ALGORITl-!M. 

The performance o.f the CCA algorithm was studied using the performance 

model we have described. The results we present were obtained using a new 

iterative technique based on queueing theory C31. The results were also 

verified through detailed simulations. 
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The main measure we use for performance evaluation is the average 

response time of update transactions, R. Ne define the response time of a 

transaction as the diff erence between the finish time and the time when the 

transaction arrived at its originating node. We consider the transaction to 

be finished when the originating node has finished all work on the 

transaction. 

Curve "CCA" of Figure 1 shows the average response time of update 

transactions with the CCA algorithm, as a function of the transaction 

interarrival time Ar, f0r.a set of representative parameter values. Notice 

that as Ar decreases, the arrival rate'of transactions and the load 

increases. In this curve We observe a sharp knee.tFlhich occu'rs when the 

central node is swamped by requests to process transactions. 

In order to provide a point of comparison, in Figure 1 we also shaw the 

performance of another well know update algorithm. This is the distributed 

voting algorithm (due to Thomas t81). The average response time of update 

transactions with this algorithm is given by curve "INA" in Figure 1. This 

algorithm does not have a central no de which acts as a bottleneck, but 

surprisinglyr its performance is not as good as that of the CCA algorithm. 

The main ‘reasons for this relatively poor performance of the distributed 

voting algorithm are that (af transactions must visit a maJority of nades 

(instead of one) before being executeds and (b) the CPU and IO loads produced 

by a voting operation at a node are iensiderable, while in the CCA algorithm 

there is no I(3 and very little CPU load caused by the serialization of 

updates. 
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klthQUgh it is not sho?i;n in Figure 1, both algorithms saturate at about 

the . r SaCTIP incerarrival time. Hhen the loads become very high, the analysis 

is not very accurate and the simulations are very expensive to run. 

Fort!Jn?kely, we are not very interested in this regicn because both 

algorithms per.Form so poorly there. For a11 cases which are not close to 

the saturation point, the CCA algorithm performs better than the distributed 

voting algorithm. 

The resu.lts of Figure 1 are for the particular set of‘parameter values 

shown in the figure. Extensive tests have been run to study the effect of 

the parameters on the average response time. We have. found that the CCA 

algorithm performs better in most cases of interest. The actual difference 

in average response time between the two algorithms can be reduced or 

increased by varying some parameters, but the basic relationship remains 

unchanged. For a two pi‘ three node system and for a small value of the It 

parameter (i.e.8 the IO time to read or write a tinestamp)', the performance 

of the two algorithms is very similar. As the number af nodes N, the 

transmission time .T, or It increases, the difference in average response time 

increases and the CCA algorithm becomes more attractive. Notice that the 

results of Figure X are for an It3 bound situation. However, the results are 

similar for a CPU bound case. 
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6. A CENTRALIZED LOCKING SOLW-ICIN. 

Since the CCA algorithm performs so well, we will now investigate other 

C?ntr3 lized approaches in order to try to improve the performance further.' 

If WP look at the CCA algorithm, we realize that the central node is the 

first to saturate. If we can somehow reduce the Load at the central node, 

the knee of th* average response time curve should occur at a higher arrival 

rate of updates, and the update algorithm will be able to process more 

transactions. 

In the CCA algorithm, the central node is performing two distinct 

functions: (a) the central node is reading the data and performing the 

computations for all update transactions, and- (b> the central node provides 

the necessary concurrency control for the transactions Ci.e.I it serializes 

the transactions). In the algorithm we will propose now& the centralized‘ 

locking algorithm (CLAI, we will move function (a) to the other nodes in 

or.der ta reduce the load at the central node.. Function CbIr whzich is 

naturally performed at the central node, will remain there. 

'fn the CL4 algorithmr the central node will provide conrurrencc~ control 

by managing locks for the items in the database. Before an update 

transaction is executedr it will request locks for the items it references. 

l4hen the locks are granted8 the transaction will be able to proceed knowing 

that no other update transaction Lii1.1 interfere. 

In the Cl-A algorithm, an update transaction that arrives at node x is 

processed as follows: 
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lj r;ade x re.quests from the central node lacks for a21 the items 

referenced by the transaction. 

22) The central node checks all of the requested !,ocks. If all can 

be granted, then a "grant" messa3e is sent back to node x. If some 

items are already locked, then the reguest is queued. There is a 

q:;‘“‘JZ for each item and a request only waits in one queue at a time. To 

prevent deadlocks, a11 transactions reques t locks for their items in the same 

predefined order. 

3i Gnce node x gets all of the requested locks, it can proceed 

with the transaction. The items are read from the local database, and 

the update values are computed. t-9 "perform update" message is sent to.all 

other nodes informing them of the update. Node x updates the values 

stored in its local database.' 

4) When the other nodes receive "perform update" messa3esr they 

perform the indicated update on their copq of the database. When the 

central node receives the "'perform update" messager it also releases the 

locks of the involved items. Reques t-s that were waiting on those items 

are notified and can continue their locking process at the central 

node. 

To prevent timing problems (e.g., "perform IJpddtP” messages arriving out 

of order at a node), the central node gives seq,uance numbers to al!. 

transactions it grants locks ta. Nodes must remember the sequence number o? 

the latest update message they have processed and they must delay processing 

"perform update" messages that are ou-t of order. 
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7. sEGXNCE tWMSERS PXIDUCE UNNECESSAEY DELfiYS. 

The centralized locking algorithm as stated above may produce 

unnecessary delays in update transactions due to the sequence number 

restriction. An example is the best way to illustrate this problem. 

Suppose that a large update transaction (i.e., one involving,many items) 

arrives at node 1. A lock request is sent to the central node. At the 

central node, the locks are granted and the transaction is assigned a 

sequence number, say number 1G. The grant message is sent to node 1 where 

the transaction is executed (assuming that node 1 has processed al.1 updates 

with sequence numbers less than lOi. Executing transaction 10 consists of 

reading all items in its read set and doing some computations with th@ vdl$Jes 

read. Since we assumed that this transaction re-Ferenced many items, 

executing the transaction at node 1 will take a long time. 

Suppose that while transaction 10 is being executed at node 1, another 

transaction arrives at node 2. Node 2 sends a lock request to the central 

node. Let us assume that this new transaction has no items in common with 

transaction IO or any other transactions which are still in progress. Then 

the central node can grant the requested lacks and assigns sequence number 11 

to this transaction. A grant message is then sent to node 2 indicating 

that it can proceed with transaction 11. But node 2 will not be able to 

execute the transaction because it has not seen transaction 10 yet <i.e., 
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because of the sequence number rule). However, we know that transactions 10 

a n d 11 have no items in common and that they could be performed concurrently. 

hfor%unatefy, node 2 does not know this fact. 

As far as node 2 knows, the following sequence might have occurred: The 

locks of transaction 10 were granted, the update performed at all nodes 

except node 2 and the locks released at the central node. The-"perform 

update" message to node 2 Cstep 4 in the CLA algorithm) has been delayed and 

is on its way. Then transaction 11 arrived. It conflicts with transactiun 

10, but since the locks of transaction 10 have been released, transaction 12 

can proceed. Thus transaction 11 has obtained its locks but it cannat bo 

perfOrmed at node 2 until node 2 has per9ormed update 10. 

Going back to our original situation, if we want node 2 to be able to 

proceed with transaction 11 while transaction iQ is being executed at node 

I, we must give node 2 additional information that permits it to distinguish 

the current case from the hypobhet' lcal case where transactions 10 and 11 

conflict. This additional information is available at the central node. 

There are several ways in which the central node can give node 2 this 

information. In this paper we will discuss two ways in which this can be 

done. The algorithm that uses the first method (called the UCLA algorithm) 

will be presented in section 8, while the algoriehm that uses the second 

alternative (called the MCLA algorithm) is given in section 9. (Nate: The 

XCLA algorithm is the "centralized locking algorithm" of C71.) 
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8. THE CENTRALIZED LOCKING ALGORITHM bJITH "WAIT FOR" LISTS (WCLA). 

In the WCLA algorithm8 the central node keeps track of the last update 

transaction that referenced each item in the database. In other words, the 

central node keeps a tablet LAST(i?, where LAST(i) is the sequence number oe 

the last update transaction that locked item i. Then, when an update 

transaction A ofitains its locks, the central node constructs a "wait; for" 

list for transaction A. This listr which we will tall wait-for(A), includes 

the sequence number of all update transactions that A must wait for before 

being executed. Wait-for(A) is simply the list of the LAST(it. entries for 

all items i referenced by A. The wait-for(A) list is appended to the grant 

message to A's originating node x. Before node x executes transaction A, it 

must wait until al'1 "perform update" messages for transactions in wait-far<A) 

have been processed locally. Notice that node x will only wait for 

transactions whose resulting v'alues are absolutely necessary for executing A. 

In our example, update transaction 11 will not be delayed by transaction 10 

because transaction 10 did not conflict with transaction 11 and hence .is not 

in the wait for list of transaction 11. -Wait-.fbr(A> must also be appended to 

all "perform update" messages for Al 50 that the new update values produced 

by 4 can be stored at all nodes in the proper sequence and without 

unnecessary delays. 

There are two potential overhead sources in the WCLA algorithm. mle is 

the processing that is needed before an update can be performed. That is8 

before performing an update, a node must check that all "per+orm update" 

messages for transactions in the wait for list of the update have been seen. 
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To do this, nodes need to have a list of the sequence numbers of all 

previously processed “perform update” messages. This list may be very long, 

but there are many ways to compact it. Thus, we expect this list to fit in 

main memory at each node, and the CPU time needed to check the wait for list 

against this list of performed updates should be relatively small. 

A mare serious source 0.f overhead is the construction of the wait for 

fist5 at the central node. This node must keep a seq.uence number (i.e., 

LASTCi)) for each item in the database, and in most cases this information 

will not fit in main memory. Th ti s , in order to read or modify this 

information, the central node must use the IO device. This is undesirable 

because Lile are trying to reduce the processing loads at the critical central 

node. 

Figure 1 shows the average response time of the WCLA algorithm for three 

different values of the It parameter. The It parameter is the IQ time needed 

to set or check a lock, and in the WCLA algorithm this value should include 

the IO time needed to read and modify the LAST'(i) values. Since the LAST(i) . 

information will usually be in the IO device, the value of It will usually 

be'greater than zero. Hence, the lower curve CIt = 0) should be considered 

only as a lower bound forthe KLA algorithm. 

As can be seen in Figure 1, it is possible for the KCLA algorithm to 

perform worse than the simple CCA algorithm. This occurs when the locking 

overhead becomes larger than the data reading load which has been moved out 

of the central node. Uy using caches, the value of It may be reduced, thus 

making, the RCLA algorithm more attractive. 
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9. THE CENTRALIZED LOCKING ALGORITHM rJ1Ti-i HDLE LISTS (MCLA). 

In this section we present an alternative to the CKLA algorithm which 

does not have the ICI overhead at the central nod.@ associated with wait for 

lists. The idea again is to send additional sequencing information with the 

grant messagesl but we choose information which is more easily accessible at 

the central node. 

Let us use the term "hole list" for the list of update transactions in 

progress (i.e.8 locks granted but not released) at the central node. cue use 

the term hole list because each entry in the list is a hole or a missing . 

entry in the list of transactions that have released their locks.) When the 

locks of an update transaction ar& granted, the transaction's sequence number 

is added to the hole list. Nhen an update releases its locks at the .centraX 

node, its sequence number is removed from the hole list. 

Now consider the relationship between an update transaktion A which has 

Just obtained all its locks.at the central node and the hole list existing at 

that instant. If update transaction I3 is in. the hole list, then A and B can 

not have referenced common items Celre A could not have gotten its lacks>-. 

Therefore, U does not have to wait for B. In other words, the hoIe list 

existing at the instant uhen A obtains its locks is a "do not wait far" lis2 

because it contains the sequence number of transactions that can be executed 

in parallel with A. If we append the hole list to the grant message to A's 

originating node XJ then transaction A can be executed at node x even if 
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node x has not performed the updates in the hole list. ln our example, 

secjLuence number LO would be in transaction 11's hole list, so transac.tion 11 

wiil not be deiayed. 

Notice that ther'e may be other update transactions which are not in the 

hole fist but do not conflict with A either. For exanpler a transaction (3 

which does not -conflict with A, but released its locks before A got its locks 

is in this category. tJe then see that the hole list is a partial “do not; 

wait for" list. If cl;e compare the hole list for an update transaction A with 

a complete list of al1 the transactions that do not conflict with A, we find 

that the hole list contains the more recent entries in the complete list. 

HOwevers the older transactions in the complete list have probably already 

been processed at all nodes and are therefore not capable of producing delays 

like the one illustrated in section 7. So the hole list will probably be 

enough to eliminate almost all unnecessary delays. As a matter of fact, if' 

the transmission delays are IJniform (as we assumed in oiJr model), the use of 

a hole list will eliminate all unnecessary delays. This is true because in 

this case all the "perform update" messages for transactions not in A's hole 

list r?lill arrive at A's originating node before the grant message arrives at 

tha't node. 

In suirlmargi hole lists are used as fol'rows. Nhen an update transaction A 

obtains its locks at the central node, 3 sequence number S(A) and a copy of 

the hole list H(A) ark appended to the grant message for A. Transaction A 

will be executed at A's originating node only when all transactions with 

lower sequence number than S(A) but not in H(A) have been seen Locally. The 
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sequence-number S(A) and the hole list H(A) are also appended to a11 

"perform update" messages so that the values produced by A can be stored at 

all nodes in the proper sequence. That is, befare a node y stores the values 

produced by AI it must have stored all values for updates with lower sequence 

number than 'S(A) but not in H(A). 

The advantage of the MCLA algorithm over the WCLA algorithm is that the 

hole list can be kept in main memory and is easy to update. Thus, the IO 

overhead for locking in the MCLA algorithm ii almost zero. (In most cases+ 

the lock table can also be kept in main memory as a hash table.) The 

disadvantage of the MCLA algor'ithm is that it does not eliminate all 

unnecessary delays C43. But for a sljstem where communication delays have a 

small variance, the hole list mechanism will eliminate almost all unnecessary 

delays. 

In our performance model, communication delays are constant‘ so the MCLA 

algorithm performs very well. The average response time for the MCLA 

algorithm is given in Figure 1. (The curve is the same as the one for the 

WCLA algorithm with It = 0.1 In a system where communication delays have a 

large variability, the performance of the MCLA algorithm will surely 

deteriorate. However, the response time of transactions in all algoi-ithms 

will be affected, and which algorithm performs better will depend on the type 

of the communication delays. 
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IO. THE MCtA ALCCRFTHM WITH LIF'IITEC FOLE LIST COPIES. 

In the MCLA (as well as in the WCLA) algorithm we assumed that lists of 

arbitrary size could be transmitted in mefsages. In many sys~e.ms.thi5 nag 

ii 0 t be pass;: ble because there is a bound on the number of sequence numbers 

that can be included in a message. In t41 we have studied in d,8taiL a tYiCLA 

algorithm with this limitation. We call this dlgOT'ithfil the MCL&h al.goTitht2B 

where h is' the maximum size of a hole list copy that can be sent in 3 

message. In the MCLA-h algorithm, we still assume- that the hole list- at the 

central node can be of arbitrary size. In this section we will briefly 

mention some of the results obtained in C41. 

There are two bqsic alternatives for dealing with limited hole list 

COPiE?S. One is to truncate the hole list copy for an update tranfactfon A 

so that it fits in the allotted number 5-f slots in the message. The second 

alternative is to have the central node delay sending the grant message for 

A until the hole list copy shrink.s in size. Notice that after we copy the 

hole list into l-l(A), the copy will shrink in sire as transactions release 

their locks. When H(A) becomes small enough, we can actually send out the 

grant message together with H(A). 

Which strategy performs better depends on how well the central node can 

predict what transactions will releas@ their locks first. If the central 

I-: o d e can predict what transactions will finish first or if h is zero, then 

-i t i5 best to truncate. Otherwise it is best to delay at the central node 



I . 

Her_ tar Garcia-MO 1 in3 PAGE 21 

until the hole list copy shrink-, in size. In either case* the maximum 

diffe rence in average response time of transactions between the trwo 

strategies is about T z.econds (where f is the time to send one message?. 

It turns out that a relatively small value of h is sufficient in order to 

obtain good performance wi.th the MCI-A-h algorithm., For example, in Figure 2 

we give the average response tine of transactions when the delay at the 

central node strategy is used, for several values of h. (These are 

simulation results.) 

Nttice that 3 value of h of 4 or 5 is enough to make the performance 

almost equivalent to the performance o? the MCLA-infinity algorithm (which we 

studied in section 9). O-F courser at very high loads there will be a 

d i f -F P -Fence between the MCLA-5 and the MCLA-infinity algorithms. But we,are 

not very interested in this case because both algorithms are so close to 

saturation. 

11. CCXXLUSIQNS. 

In this paper we have presented two new centralized update algorithms for 

replicated data (the WCLA and the MCLA algorithms), We studied the 

performance of these and other algorithms, and discovered that the MCLA (or 

the MCI&-h with small h) algorithm has. the smallest average response time in 

many cases of interest. 
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The performance results presented in this paper were obtained for 

algorithms that were not crash resistant. However, it is possible to make 

all the algorithms resilient K5X, and the cost in terms of performance for 

doin this is roughly the same for all algorithms (including the distributed 

voting algorithm). That is, the average response time of transactions in 

the resilient algorithms during no failure periods will be increased by about: 

the same factor -f or all algorithms (because of a two phase commit pratocol 

which is always necessary to guarantee that updates are not lost t5fl. 

Therefore, the comparisons we have made here are still val.id for the 

resilient algorithms. (We do not consider the performance of the update 

algorithms during actual failures because we expect these failures to be 

rarer and we expect that the performance during the failure periods will not 

affect the average response time o.F transactions significantly.) 

E;fe also assumed that update transactions specified initially the items 

they referenced, so that it was possible for a transaction to request Iocks 

as a first step. In t61 we study several modifications to the MCLA algorithm 

which allow us to process transactions that do not initially specify the 

items they need. These modified centralized algorithms still seem attractive 

as compared to the other distributed algorithms. 
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