
SLAC-PUB-2360
July 1979
(N)

Hector Garcia-Malina

Computer Science f)epartment

Stanford University
and

Stanford Linear Accelerator Center

Stanford, California 94305

ABSTRACT

The problem of upd.ating replicated data in a distributed database will be

discussed. Several centralized control. algorithms that salve the problem

will be pressnted. They range Fro.m c3 tstally ccntrsfizsd algnrithm ta one

which only centralizes the con%rol of the data. The performance of these

afgorithms ,is compared far completely duplicated databases in a no failure,

tipdate? only environment.. The algorithms are studied through simula%ians

3s well as by an analytic technique bas-crd an a queueing model.

i A. IN-JRoDUCTIuN.

In a distributed database, data may be replicated at SC?VE?T'af nudcis ami= the

s;ystem. One of the reasons for replicating data is to improve its

(Presented at the 1st International Conference on Distributed Computing Systems,
October l-5, 1979, Huntsville, Alabama).

* Work supported in part by the Department of Energy under contract number DE-AC03-76SF00515,
Advanced Research Projects Agency of the Department of Defense under contract MDA903-77-C-
0322, and Biotechnology Research Program of the National Institute of Health under Grant
NIH PR-00785.

Hector Garcia-Molina PAGE 2

availability. Another reason is to distribute the load by allowing

transactions to read the data at different sites. The price that must be

paid for the increased availability and %he option of concurrent reads

at different nodes is an increased cost for processing updates. Updating

replicated copies of data is more expensive than updating a single copy of

the data because in the replicated case updates must be performed on all

copies. Furthermore, it is harder to coordinate conflicting updates when

there are multiple copies to be Modified than it is to coordinate the updates

when there is a single copy to be updated.

In this paper8 we will not study the tradeoffs involved in repXicating

data. We will assume that the decision to replicate a subset of the data has

been made. That is, it is either imperative that the data be available even

in the face of failures, or it i5 expected that the number of updates to the

data will be considerably smaller than the number of reads on the data. Clnce

we decide to replicate the particular subset of the data, we need to design

an algor ithm for performing the updates. This algorithm must make sure that

all updates are performed on all copies of the d.ata in the system. The

algorithm must also guarantee th e consistency of the data C21. Many such

algorithms have been sugges%ed~ and in this paper we wauld like to present

some of these algorithms and compare their per+ormance. We will concentrate

on a particular type of algorithm, the centralized control algorithms. These

algorithms are fairly simple and, surprisingly, perform r'ather well‘ as we

will see shortly.

Hector Garcia-Mofina PAGE 3

2. THE MODEL.

In order to study the update algorithms and their performance, we choose

a ‘4 e r y simpl'e model for the distributed database and the updates. Since we

are interested in updates to a particular subset of replicated data, we will

view our "system" only as the replicated data and the nodes where it is

located. That is, in our "system", all nodes will have a complete copy of

the database. We will assume that all transactions that are processed in the

system are update transactions.

We will view the database simply as a collection of named items. Each

item "i" -has associated with it a set of values,; each of these values is

stored at a different node in the system. We represent the value of item '*i"

at node x by dTi,x3. The values for a given item should be the same (i.e.8

dCi,xl should equal dCi,yI for all nodes xI y). Howeverr due to the updating.

activity, the values may be temporarily different.

In our system, an update transaction A consists of three steps:

(1) Update transaction A requests values for items ilr i& ...I in.

These values are read at any node in the system. That is, we read dCil,xl,

dCiZ?,xf, .-.# dCins xl at same node x.

(2) Using the values obtained, A performs some computations and comes up

w i t h a set of new values for a subset of the items read il, i2, im,

where m is less than or equal to n.

i-je~tor Garcia-MoLina PAGE 4

(3) ‘The new values produced are stored at all nodes in the system. That

is, we do m dfik, x 7 : = new value for item ik " for aLI nodes x and all items

ik in iI., i2, im.

Wotice that 'updates initially specify their read set. Except for this

restriction, our update model is a general one. ,At the. end of this paper we

will briefly comment on the effect of this restriction.

Finally, in this paper we will assume that no failures occur in the

system. This is a strong statement, but we make it in order to simplify the

presentation and the analysis of the algorithms. However, the results we

obtain here can be extended to the case where failures occur. Due to space

limitations, we will be unable to give the details for this here. We will

only make a few comments at several points in the paper as to how failures

can affect the perfarmante of the algarithms, and we will refer the reader to

C51 for a complete presentation.

3. THE CDMPLETE CENTRALIZATION ALGURITHf*1 (CCA).

Thi! first update algorithm that we will present is a complete

centralization algorithm, CCA Calso called a primary copy algorithm [II).

The basic idea of this solution is to select a "central" node where aI1

update transactions are totally executed. The central node then broadcasts

the new update values produced by the transactions ta all other nodes. A

sequence number is attached to each "perform update" message (i.e., the

I .

Hector Garcia-Molina PAGE 5

message with the new values) so that the values are stored at each site in

the same order that.they were produced by the central node. This algorithm

provides consistency because all update transactions are serialized by the

central node.

We now give a brief outline of the CCA algorithm:

(I) Update transaction A arrives at node x from a user.

(2) Node x forwards transaction A to the central node.

(3) When the central node receives an update transaction AI it place5 it

in a queue. Transactions from this queue are executed one at a time at the

central node. That is, the values requested by A'are read from the XocaI

database, the computations are carried otlt, and the new values are stored in

the local database. <Update transactions can be executed in parallel at the

central node as long as a local concurrency control guarantees that-the

effect on the database is as if transactions were performed one at a time.1

A sequence number is assigned to transaction A. This number represents the

order, with respect to other transactions, in which A was executed.

(4) "Perform update" messages are sent out by the central node to aX1

other nodes giving them the new values that must be stored at each sfte. -i-h@

sequence number of A is appended to these messages.

I

Hector Garcia-Malina

(5) When a node y receives a "perform ui;date" message, it waits until it

h as processed all "perform update" messages from transactions with Lower

sequence numbers. Then node y stores the neu values into its local database,

as indicated by the message.

There are two potential disadvantages with this algorithm. The first

problem is that-if the central node crashes* then no more update transactions

can be proceSSed. HoweverI this is not really a problem because the complete

centralization algorithm (as well as the other algorithms we will p-resent)

can be made resilient. The main idea is to have a protocol for electing a

new central site when the old central node crashes. The new central node can

collect all the state 9rom the active nodes, and based on this& it can

complete an9 unfinished update transactions and start processing new ones.

The techniques 9or making the CCA algorithm.crash resistant are given in C51.

&hen we study the performance of the CCA algorithm, we will use the simple

algorithm given above, but as we have stated, the results can be extended to

the resilient version.

Another potential problem with t? me CCA algorithm is that all update

transactions must be processed at a single node. This creates a bottleneck

which can significantly degrade performance. This paper will show when the

bottleneck occurs and how serious a problem it is-

I .

Hector Garcia-Molina PAGE 7

4. THE PERFORMANCE MOCEL.

In order to study the performance of the CCA and other algorithms, we use

a simple performance model which represents the principal characteristics of

a distributed database system. The performance model is described in 673.

Here we will only give a brief outline of the model and its parameters.

Dur performance evaluation of the update algorithms does not only count

the number of messages transmitted in order to process an update transaction.

Our model also takes into account the IO and CPU processing time required by

the transactionsl as well as the queueing delags involved in waiting for the

IO and CPU resources. In addition to this,' the performance evaluation also

considers the extra delays and processing loads caused by update transactions

that conflict.

The main parameters of the performance model are:

(1) The mean interarrival time of update transactions at each node, Ar.

The arrival of transactions at'each node is a Poisson process.

(2) The average number of items read bg an update transaction, Bs. The

number of items referenced by a transaction is exponentially distributed with

mean Es. All items are equally likely to be referenced by a transaction.

Out of the items read, a random fraction will be modified.

(3) The number of items in the database, M.

Hector Garria-Molina PAGE 8

(4) The number of nodes, N.

(5) The netwark transmission time, T. Ne assume that the time it takes

any message to go from one node to any other node is a constant T. (Howeverr

the correct operation of the algorithms does not depend on this fact.)

(bf The CPU time needed to set or check a lock Car to check a

timestamp), Ct. This parameter is only used in the algorithms that use locks

or timestamps.

i7) The CPU computr time, Cu. After an update transaction reads the z

values it needs‘ it will use Z times Cu seconds of CPU time in order to

produce the.new values' for the update.

(0, The IO time needed to set or check a lock (or to read or write a

tim$stamp), It. Again, this parameter is only used in the algorithms that

use locks or timestamps.

(5') The IO time needed to read or write one item value from a

database, Iu.

5. THE PERFORMANCE RESULTS FOR THE CCA ALGORITl-!M.

The performance o.f the CCA algorithm was studied using the performance

model we have described. The results we present were obtained using a new

iterative technique based on queueing theory C31. The results were also

verified through detailed simulations.

Hector Garcia-Molina PAGE 9

The main measure we use for performance evaluation is the average

response time of update transactions, R. Ne define the response time of a

transaction as the diff erence between the finish time and the time when the

transaction arrived at its originating node. We consider the transaction to

be finished when the originating node has finished all work on the

transaction.

Curve "CCA" of Figure 1 shows the average response time of update

transactions with the CCA algorithm, as a function of the transaction

interarrival time Ar, f0r.a set of representative parameter values. Notice

that as Ar decreases, the arrival rate'of transactions and the load

increases. In this curve We observe a sharp knee.tFlhich occu'rs when the

central node is swamped by requests to process transactions.

In order to provide a point of comparison, in Figure 1 we also shaw the

performance of another well know update algorithm. This is the distributed

voting algorithm (due to Thomas t81). The average response time of update

transactions with this algorithm is given by curve "INA" in Figure 1. This

algorithm does not have a central no de which acts as a bottleneck, but

surprisinglyr its performance is not as good as that of the CCA algorithm.

The main ‘reasons for this relatively poor performance of the distributed

voting algorithm are that (af transactions must visit a maJority of nades

(instead of one) before being executeds and (b) the CPU and IO loads produced

by a voting operation at a node are iensiderable, while in the CCA algorithm

there is no I(3 and very little CPU load caused by the serialization of

updates.

Hector Garcia-Molina PAGE 10

klthQUgh it is not sho?i;n in Figure 1, both algorithms saturate at about

the . r SaCTIP incerarrival time. Hhen the loads become very high, the analysis

is not very accurate and the simulations are very expensive to run.

Fort!Jn?kely, we are not very interested in this regicn because both

algorithms per.Form so poorly there. For a11 cases which are not close to

the saturation point, the CCA algorithm performs better than the distributed

voting algorithm.

The resu.lts of Figure 1 are for the particular set of‘parameter values

shown in the figure. Extensive tests have been run to study the effect of

the parameters on the average response time. We have. found that the CCA

algorithm performs better in most cases of interest. The actual difference

in average response time between the two algorithms can be reduced or

increased by varying some parameters, but the basic relationship remains

unchanged. For a two pi‘ three node system and for a small value of the It

parameter (i.e.8 the IO time to read or write a tinestamp)', the performance

of the two algorithms is very similar. As the number af nodes N, the

transmission time .T, or It increases, the difference in average response time

increases and the CCA algorithm becomes more attractive. Notice that the

results of Figure X are for an It3 bound situation. However, the results are

similar for a CPU bound case.

Hector Garcia-Molina PAGE 11

6. A CENTRALIZED LOCKING SOLW-ICIN.

Since the CCA algorithm performs so well, we will now investigate other

C?ntr3 lized approaches in order to try to improve the performance further.'

If WP look at the CCA algorithm, we realize that the central node is the

first to saturate. If we can somehow reduce the Load at the central node,

the knee of th* average response time curve should occur at a higher arrival

rate of updates, and the update algorithm will be able to process more

transactions.

In the CCA algorithm, the central node is performing two distinct

functions: (a) the central node is reading the data and performing the

computations for all update transactions, and- (b> the central node provides

the necessary concurrency control for the transactions Ci.e.I it serializes

the transactions). In the algorithm we will propose now& the centralized‘

locking algorithm (CLAI, we will move function (a) to the other nodes in

or.der ta reduce the load at the central node.. Function CbIr whzich is

naturally performed at the central node, will remain there.

'fn the CL4 algorithmr the central node will provide conrurrencc~ control

by managing locks for the items in the database. Before an update

transaction is executedr it will request locks for the items it references.

l4hen the locks are granted8 the transaction will be able to proceed knowing

that no other update transaction Lii1.1 interfere.

In the Cl-A algorithm, an update transaction that arrives at node x is

processed as follows:

Hector Garcia-Molina PAGE 12

lj r;ade x re.quests from the central node lacks for a21 the items

referenced by the transaction.

22) The central node checks all of the requested !,ocks. If all can

be granted, then a "grant" messa3e is sent back to node x. If some

items are already locked, then the reguest is queued. There is a

q:;‘“‘JZ for each item and a request only waits in one queue at a time. To

prevent deadlocks, a11 transactions reques t locks for their items in the same

predefined order.

3i Gnce node x gets all of the requested locks, it can proceed

with the transaction. The items are read from the local database, and

the update values are computed. t-9 "perform update" message is sent to.all

other nodes informing them of the update. Node x updates the values

stored in its local database.'

4) When the other nodes receive "perform update" messa3esr they

perform the indicated update on their copq of the database. When the

central node receives the "'perform update" messager it also releases the

locks of the involved items. Reques t-s that were waiting on those items

are notified and can continue their locking process at the central

node.

To prevent timing problems (e.g., "perform IJpddtP” messages arriving out

of order at a node), the central node gives seq,uance numbers to al!.

transactions it grants locks ta. Nodes must remember the sequence number o?

the latest update message they have processed and they must delay processing

"perform update" messages that are ou-t of order.

I .

Hector Garcia-Molina PAGE I.3

7. sEGXNCE tWMSERS PXIDUCE UNNECESSAEY DELfiYS.

The centralized locking algorithm as stated above may produce

unnecessary delays in update transactions due to the sequence number

restriction. An example is the best way to illustrate this problem.

Suppose that a large update transaction (i.e., one involving,many items)

arrives at node 1. A lock request is sent to the central node. At the

central node, the locks are granted and the transaction is assigned a

sequence number, say number 1G. The grant message is sent to node 1 where

the transaction is executed (assuming that node 1 has processed al.1 updates

with sequence numbers less than lOi. Executing transaction 10 consists of

reading all items in its read set and doing some computations with th@ vdl$Jes

read. Since we assumed that this transaction re-Ferenced many items,

executing the transaction at node 1 will take a long time.

Suppose that while transaction 10 is being executed at node 1, another

transaction arrives at node 2. Node 2 sends a lock request to the central

node. Let us assume that this new transaction has no items in common with

transaction IO or any other transactions which are still in progress. Then

the central node can grant the requested lacks and assigns sequence number 11

to this transaction. A grant message is then sent to node 2 indicating

that it can proceed with transaction 11. But node 2 will not be able to

execute the transaction because it has not seen transaction 10 yet <i.e.,

Hector Garcia--Xolina PAGE 14

because of the sequence number rule). However, we know that transactions 10

a n d 11 have no items in common and that they could be performed concurrently.

hfor%unatefy, node 2 does not know this fact.

As far as node 2 knows, the following sequence might have occurred: The

locks of transaction 10 were granted, the update performed at all nodes

except node 2 and the locks released at the central node. The-"perform

update" message to node 2 Cstep 4 in the CLA algorithm) has been delayed and

is on its way. Then transaction 11 arrived. It conflicts with transactiun

10, but since the locks of transaction 10 have been released, transaction 12

can proceed. Thus transaction 11 has obtained its locks but it cannat bo

perfOrmed at node 2 until node 2 has per9ormed update 10.

Going back to our original situation, if we want node 2 to be able to

proceed with transaction 11 while transaction iQ is being executed at node

I, we must give node 2 additional information that permits it to distinguish

the current case from the hypobhet' lcal case where transactions 10 and 11

conflict. This additional information is available at the central node.

There are several ways in which the central node can give node 2 this

information. In this paper we will discuss two ways in which this can be

done. The algorithm that uses the first method (called the UCLA algorithm)

will be presented in section 8, while the algoriehm that uses the second

alternative (called the MCLA algorithm) is given in section 9. (Nate: The

XCLA algorithm is the "centralized locking algorithm" of C71.)

Hector Garcia-Nolina PAGE 13

8. THE CENTRALIZED LOCKING ALGORITHM bJITH "WAIT FOR" LISTS (WCLA).

In the WCLA algorithm8 the central node keeps track of the last update

transaction that referenced each item in the database. In other words, the

central node keeps a tablet LAST(i?, where LAST(i) is the sequence number oe

the last update transaction that locked item i. Then, when an update

transaction A ofitains its locks, the central node constructs a "wait; for"

list for transaction A. This listr which we will tall wait-for(A), includes

the sequence number of all update transactions that A must wait for before

being executed. Wait-for(A) is simply the list of the LAST(it. entries for

all items i referenced by A. The wait-for(A) list is appended to the grant

message to A's originating node x. Before node x executes transaction A, it

must wait until al'1 "perform update" messages for transactions in wait-far<A)

have been processed locally. Notice that node x will only wait for

transactions whose resulting v'alues are absolutely necessary for executing A.

In our example, update transaction 11 will not be delayed by transaction 10

because transaction 10 did not conflict with transaction 11 and hence .is not

in the wait for list of transaction 11. -Wait-.fbr(A> must also be appended to

all "perform update" messages for Al 50 that the new update values produced

by 4 can be stored at all nodes in the proper sequence and without

unnecessary delays.

There are two potential overhead sources in the WCLA algorithm. mle is

the processing that is needed before an update can be performed. That is8

before performing an update, a node must check that all "per+orm update"

messages for transactions in the wait for list of the update have been seen.

Hector Garcia-tiolina PAGE lb

To do this, nodes need to have a list of the sequence numbers of all

previously processed “perform update” messages. This list may be very long,

but there are many ways to compact it. Thus, we expect this list to fit in

main memory at each node, and the CPU time needed to check the wait for list

against this list of performed updates should be relatively small.

A mare serious source 0.f overhead is the construction of the wait for

fist5 at the central node. This node must keep a seq.uence number (i.e.,

LASTCi)) for each item in the database, and in most cases this information

will not fit in main memory. Th ti s , in order to read or modify this

information, the central node must use the IO device. This is undesirable

because Lile are trying to reduce the processing loads at the critical central

node.

Figure 1 shows the average response time of the WCLA algorithm for three

different values of the It parameter. The It parameter is the IQ time needed

to set or check a lock, and in the WCLA algorithm this value should include

the IO time needed to read and modify the LAST'(i) values. Since the LAST(i) .

information will usually be in the IO device, the value of It will usually

be'greater than zero. Hence, the lower curve CIt = 0) should be considered

only as a lower bound forthe KLA algorithm.

As can be seen in Figure 1, it is possible for the KCLA algorithm to

perform worse than the simple CCA algorithm. This occurs when the locking

overhead becomes larger than the data reading load which has been moved out

of the central node. Uy using caches, the value of It may be reduced, thus

making, the RCLA algorithm more attractive.

I -

Hector Garcia-Molina PAGE 17

9. THE CENTRALIZED LOCKING ALGORITHM rJ1Ti-i HDLE LISTS (MCLA).

In this section we present an alternative to the CKLA algorithm which

does not have the ICI overhead at the central nod.@ associated with wait for

lists. The idea again is to send additional sequencing information with the

grant messagesl but we choose information which is more easily accessible at

the central node.

Let us use the term "hole list" for the list of update transactions in

progress (i.e.8 locks granted but not released) at the central node. cue use

the term hole list because each entry in the list is a hole or a missing .

entry in the list of transactions that have released their locks.) When the

locks of an update transaction ar& granted, the transaction's sequence number

is added to the hole list. Nhen an update releases its locks at the .centraX

node, its sequence number is removed from the hole list.

Now consider the relationship between an update transaktion A which has

Just obtained all its locks.at the central node and the hole list existing at

that instant. If update transaction I3 is in. the hole list, then A and B can

not have referenced common items Celre A could not have gotten its lacks>-.

Therefore, U does not have to wait for B. In other words, the hoIe list

existing at the instant uhen A obtains its locks is a "do not wait far" lis2

because it contains the sequence number of transactions that can be executed

in parallel with A. If we append the hole list to the grant message to A's

originating node XJ then transaction A can be executed at node x even if

I .

Hector Garcia-Mol.in.3 PAGE IS

node x has not performed the updates in the hole list. ln our example,

secjLuence number LO would be in transaction 11's hole list, so transac.tion 11

wiil not be deiayed.

Notice that ther'e may be other update transactions which are not in the

hole fist but do not conflict with A either. For exanpler a transaction (3

which does not -conflict with A, but released its locks before A got its locks

is in this category. tJe then see that the hole list is a partial “do not;

wait for" list. If cl;e compare the hole list for an update transaction A with

a complete list of al1 the transactions that do not conflict with A, we find

that the hole list contains the more recent entries in the complete list.

HOwevers the older transactions in the complete list have probably already

been processed at all nodes and are therefore not capable of producing delays

like the one illustrated in section 7. So the hole list will probably be

enough to eliminate almost all unnecessary delays. As a matter of fact, if'

the transmission delays are IJniform (as we assumed in oiJr model), the use of

a hole list will eliminate all unnecessary delays. This is true because in

this case all the "perform update" messages for transactions not in A's hole

list r?lill arrive at A's originating node before the grant message arrives at

tha't node.

In suirlmargi hole lists are used as fol'rows. Nhen an update transaction A

obtains its locks at the central node, 3 sequence number S(A) and a copy of

the hole list H(A) ark appended to the grant message for A. Transaction A

will be executed at A's originating node only when all transactions with

lower sequence number than S(A) but not in H(A) have been seen Locally. The

Hector Garcia-Mofina

sequence-number S(A) and the hole list H(A) are also appended to a11

"perform update" messages so that the values produced by A can be stored at

all nodes in the proper sequence. That is, befare a node y stores the values

produced by AI it must have stored all values for updates with lower sequence

number than 'S(A) but not in H(A).

The advantage of the MCLA algorithm over the WCLA algorithm is that the

hole list can be kept in main memory and is easy to update. Thus, the IO

overhead for locking in the MCLA algorithm ii almost zero. (In most cases+

the lock table can also be kept in main memory as a hash table.) The

disadvantage of the MCLA algor'ithm is that it does not eliminate all

unnecessary delays C43. But for a sljstem where communication delays have a

small variance, the hole list mechanism will eliminate almost all unnecessary

delays.

In our performance model, communication delays are constant‘ so the MCLA

algorithm performs very well. The average response time for the MCLA

algorithm is given in Figure 1. (The curve is the same as the one for the

WCLA algorithm with It = 0.1 In a system where communication delays have a

large variability, the performance of the MCLA algorithm will surely

deteriorate. However, the response time of transactions in all algoi-ithms

will be affected, and which algorithm performs better will depend on the type

of the communication delays.

HP c tar Garcia-Molina PAGE 20

IO. THE MCtA ALCCRFTHM WITH LIF'IITEC FOLE LIST COPIES.

In the MCLA (as well as in the WCLA) algorithm we assumed that lists of

arbitrary size could be transmitted in mefsages. In many sys~e.ms.thi5 nag

ii 0 t be pass;: ble because there is a bound on the number of sequence numbers

that can be included in a message. In t41 we have studied in d,8taiL a tYiCLA

algorithm with this limitation. We call this dlgOT'ithfil the MCL&h al.goTitht2B

where h is' the maximum size of a hole list copy that can be sent in 3

message. In the MCLA-h algorithm, we still assume- that the hole list- at the

central node can be of arbitrary size. In this section we will briefly

mention some of the results obtained in C41.

There are two bqsic alternatives for dealing with limited hole list

COPiE?S. One is to truncate the hole list copy for an update tranfactfon A

so that it fits in the allotted number 5-f slots in the message. The second

alternative is to have the central node delay sending the grant message for

A until the hole list copy shrink.s in size. Notice that after we copy the

hole list into l-l(A), the copy will shrink in sire as transactions release

their locks. When H(A) becomes small enough, we can actually send out the

grant message together with H(A).

Which strategy performs better depends on how well the central node can

predict what transactions will releas@ their locks first. If the central

I-: o d e can predict what transactions will finish first or if h is zero, then

-i t i5 best to truncate. Otherwise it is best to delay at the central node

I .

Her_ tar Garcia-MO 1 in3 PAGE 21

until the hole list copy shrink-, in size. In either case* the maximum

diffe rence in average response time of transactions between the trwo

strategies is about T z.econds (where f is the time to send one message?.

It turns out that a relatively small value of h is sufficient in order to

obtain good performance wi.th the MCI-A-h algorithm., For example, in Figure 2

we give the average response tine of transactions when the delay at the

central node strategy is used, for several values of h. (These are

simulation results.)

Nttice that 3 value of h of 4 or 5 is enough to make the performance

almost equivalent to the performance o? the MCLA-infinity algorithm (which we

studied in section 9). O-F courser at very high loads there will be a

d i f -F P -Fence between the MCLA-5 and the MCLA-infinity algorithms. But we,are

not very interested in this case because both algorithms are so close to

saturation.

11. CCXXLUSIQNS.

In this paper we have presented two new centralized update algorithms for

replicated data (the WCLA and the MCLA algorithms), We studied the

performance of these and other algorithms, and discovered that the MCLA (or

the MCI&-h with small h) algorithm has. the smallest average response time in

many cases of interest.

Hector Garcia-Molina FACE 22

The performance results presented in this paper were obtained for

algorithms that were not crash resistant. However, it is possible to make

all the algorithms resilient K5X, and the cost in terms of performance for

doin this is roughly the same for all algorithms (including the distributed

voting algorithm). That is, the average response time of transactions in

the resilient algorithms during no failure periods will be increased by about:

the same factor -f or all algorithms (because of a two phase commit pratocol

which is always necessary to guarantee that updates are not lost t5fl.

Therefore, the comparisons we have made here are still val.id for the

resilient algorithms. (We do not consider the performance of the update

algorithms during actual failures because we expect these failures to be

rarer and we expect that the performance during the failure periods will not

affect the average response time o.F transactions significantly.)

E;fe also assumed that update transactions specified initially the items

they referenced, so that it was possible for a transaction to request Iocks

as a first step. In t61 we study several modifications to the MCLA algorithm

which allow us to process transactions that do not initially specify the

items they need. These modified centralized algorithms still seem attractive

as compared to the other distributed algorithms.

12. ACKNOWLEDGMENTS.

Several useful suggestions and ideas were provided by Clarence Ellis,

R~filP i EL-Masri, Jonathan King, Bruce Lindsay# . . . Toshimi Minoura, Daniel Ries,

Gio Wiederhold, and others.

H.ector Garcia-Molina PAGE 23

This work wss partially supported by the Advanced Research ProJects

AgencrS) of the Department of Defense under contract MDA902-77-C-0322, by

the SLAG Computation Research Group of the Stanford Linear Accelerator

Ce;;ter under Department; of Energ contract DE-AC03-76SF00515, and by the

Ciotechnology Research Program of the National Institute of Health under

grant NIH RR-007S5.

13. REFERENCES.

Cl3 P. Alsberq and J. Way, IIA Principle for Resilient Sharing of Distributed

Resources", 2nd Znt ernational Conference on Software Engineering; San

Francisco, California, 1976.

c23 K. P. Eswaran, 3. N. Gray, R. A. Lorie, and I. L. Traiger, "The Notions

of Consistency and Predicate Locks in a Database System", Communications

of the ACM, Vol. 19, No. 11, Noven;ber 1976.

c33 ti. Garcia-Molina, "Performance Comparison of Update Algorithms fur

Distributed Wataba=esr Parts l-5", Technical Note 143, Digital Systems

Laboratory, Departments of Electrical Engineering and Computer Science,

Stanford University, June 1978.

C4f t-i. Garcia-Molinal "Performance Comparison o.F {Jpdate Algorithms for

Distributed Databases, Part II", Technical Note 146, Digital Systems

Laboratory, Department5 of Electrical Engineering and Computer Science,

Stanford University, December 1978.

Hector Garcia-Molina PAGE 24

c57

f 5 1

C7J

C81

H. Garcia-Molina, "Crash Reco~erq in the Centralized Locking Algorithm",

November 1978, to appear as a Technical Note.

t-1. Garcia-Molina, "Partitioned Data, Multiple Controllers and

Transactions with an Initially Unspecified Base Set", February 1979,

to appear as a Technical Note.

l-f. Garcia-Molinar "Performance Comparison o+ Two Update Algorithms for

Distributed Databases", Proc. Zrd Cerkeley Norkshop on Ristributcd Data

Management and Computer Networks, San Francisco, August 1978:

R. Thomas, "A Solution to the Update Problem fog Kultiple Copy Databases

Which Uses Distributed Control", Report 3340, Bolt Beranek and Newman

Inc., Julg 1975..

I .

R
average
response
time (set)

1.5

1.0

0.5

---f33

I

’ cc,
I -

I

I
I
I
I

t

I
I

I
1

/ I

/
WCLA 0 0
1t=O.01 .s - MM

_----
6---- WCLA

1tq-- --- C- -s- -_L ---
W----

--
_-.-w--

2 WCLA, MCLA
1t=O,O s

N-6, M=lOOO,
T=O.l s, Bs=5,
Iu=O.O25 s,
It=O.Ol s in DVA,
Ct, Cu small,

I s I I I I f I
5 ‘4 3 2 1 0

Ar
interarrival time (set)

FIGURE 1

R R
average average A A response response
time (set) time (set)

3.0-- 3.0--

2.5-- 2.5--

2.0-- 2.0--

1.5- 1.5-

1.0 1.0

T T

N=6, Pf=lOOO,
T=O.l s, Bs=5,
Iu=It=0.025 s,
Cu, Ct small.

MCLA-h algorithm,
_ delay at central node

strategy, simulation
results.

h=O

i
I
J

; h=l
1 12

I 1 1 , 1 I t I , I I I I I I *
14 13 12 11 10 9 8 7 6 5 4 3

hr
interarrival time (set

FIGURE 2

