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ABSTRACT 

Three particle equations containing only the phase shifts and 

binding energies of the two particle subsystems are derived from two 

particle 'zero range boundary conditions on the three particle wave 

function and shown to be unitary under the restriction that the two 

particle amplitudes have no left hand cuts; this excludes nuclear 

forces. 
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If we understood the forces between two hadrons, we should at least 

be able to use this knowledge to calculate the behavior of three hadron 

systems. We know that currently we lack this much understanding. For 

example, the nucleon-nucleon scattering amplitudes are known up to, and 

in some cases well beyond, pion production threshold; but from this 

knowledge we cannot predict the binding energy of the triton or He3, or 

their ele&romagnetic form factors. Even the n-p capture cross section 

at threshold differs by 10% from the model-independent1 Bethe-Longmire 

prediction. The reason is, as we learned long ago from Wick, 2 that the 

coupling of the uncertainty principle to special relativity entails the 

creation of mesonic degrees of freedom at short distance. Nuclear 

physicists usually assume that these hidden degrees of freedom can be 

approximated by a "potential", but there is no unique way to define such 

a potential once the short range non-locality implied by the Wick-Yukawa 

mechanism is taken seriously. 

Faced with this ambiguity, it is important to have clear experimental 

criteria for determining what new information is contained in three 

hadron observables which is not already predictable using two hadron 

observables. Starting from the "Fixed Past-Uncertain Future" interpre- 

tation of quantum mechanics, 3 it has been proposed that such a reference 

theory might be provided by calculating three particle amplitudes using 

only two particle on shell scatterings. 4 Once a way of doing this has 

been developed, the theoretically ambiguous mixture of mesonic effects - 

designated but not defined by the terms "off shell effects" and "three 

body forces" - could be uniquely parameterized by adding an on shell 

three particle direct scattering term to the model. A specific attempt 

to articulate this program' failed because it could not be proved unitary. 
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Recently, it has been shown6 that the zero range limit of the Karlsson- 

Zeiger equations7 define a unique three particle theory of the type sought. 

Most requisite physical properties were established, including time re- 

versal invariance, but not unitarity of the three particle amplitude. In 

this communication we derive these equations directly as a consequence of 

the usual zero range boundary condition on the two particle subsystems 

applied directly to the full three particle wave function, and prove that 

the resulting amplitude is unitary, provided the two particle amplitudes 

have no singularities at negative energy other than bound state poles. 

Since we wish our theory to be independent of any assumptions about 

the "interactions" which conventionally are thought to lie behind the 

scatterings, we start from a free particle wave function with the correct 

boundary conditions. For NA particles of defined momenta in and NB 

particles out, this can be derived by introducing the coordinates XA 

where the initial particles disappear, the coordinates YB where the final 

particles appear, and summing over all possibilities in such a way that 

these unobservable "points" cannot enter the theory as hidden variables. 

The result8 is the standard Goldberger-Watson asymptotic wave function' 

with the Phipps phase factor, 10 but with the transition matrix TBA now 

an arbitrary function describing any conceivable quantum scattering 

process. TBA' so viewed, is purely kinematic and need not be the matrix 

element of some "interaction"; it need not even be unitary. Our task is 

to supply dynamical equations for TBA and to prove that this T is unitary. 

In the phenomenological approach presented here, our basic dynamical 

assumption is that for each pair the two particle wave function in each 

partial wave satisfies the free particle Schrodinger equation with out- 

going wave boundary conditions and at short distance the condition 
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lim (y"~(y))'/(y~u(y>) = kctn 6. For simplicity, we consider here only 
Y-+0 
the wave function Y(x,y) = U(x,y)/xy for a state with total angular 

momentum zero with pairwise scattering only in s-waves; the generalization 

to arbitrary finite numbers of angular momenta is immediate. Using the 

Boll&Osborn coordinates, 
11 we project out a one variable coordinate 

space radial wave function by Fourier transformation of the spectator 

coordinate x into the spectator momentum p using the definition 

up(y) = (2/n)Jmdx U(X,Y) sin px/p to obtain, with ks = [12y&G;)]+, 
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If we now apply our two particle boundary condition at y=O to this 

equation, we find that for each value of pB 
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Hence, solving for M 
Ba' 

we find MBa proportional to [(-w8)(k8 ctn 68-ikg)l-1, 
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which is simply the on shell limit of tS(q,<; z-c:). Comparison with 

Ref. 11, Eq. (3.7) shows that in this way we have in fact derived the 

on shell limit of the Faddeev equations without any reference to inter- 

actions. 

Since we can carry out this derivation using any choice of spectator 

variables, we can derive two equations, symbolically represented by 

M GV .f3y 0 ya ‘~0. ta 1 = M$a (4) 

The essential three particle on shell unitarity relation to be proved is 

* 
MBa - MBa = -hi y,y,, MBUf 6w Vy,ylt Mtfta c (5) 

where 15~ is the on shell restriction 2ri6 G2+t2 ( -W)= Go-G; and Vy,y,, 

is the real geometric recoupling matrix connecting different choices for 

spectator and distinguished pair. Since two particle on shell unitarity 

(i.e., real phase shifts) gives us -2rit for O<F2sW, 

the diagonal term in the sum is 
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We can now establish the unitarity relation (Eq. (5)) by noting that the 

two terms beyond M -M" 
Ba $a: 

in Eq. (6) exactly cancel the off diagonal 

terms in Eq. (5), i.e., -2Ti c 8Y,y,,MBy, GwVy,Y,,Mr,,a, when careful 
Y 'Y" 

attention is paid to the variables of integration, which allow US to 
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reconstitute G o-G: as an appropriate 6w. So far this proof only holds 

for 0 sp2,W on the left hand side of Eq. (5), and is independent of 

whether or not there are bound state poles in tg thanks to the fact that 

the range of the p integration is restricted by / q2dq6(p2+q2- 

[e(p) - e(w- pq]. 
0 

To show that the relation also holds for the unique 
- 

-K 2 
values p KB N 

B 
=zi+W, we need simply define MBa p,;W = ( j lim 

PB+P; 
( 
-2 
pB 

-it;-w). 

M~~(P,.~,~W), and, since Eq. (4) factors these poles out explicitly thanks 

to the two particle relation -W) tS(W-$) = -Ni, discover 

that the same proof goes through unaltered at these specific values. 

Although unitarity holds on shell, independent of any assumptions 

other than the fact that t 
B 

can be represented by a phase shift in the 

physical region of two particle scattering, and has the poles discussed 

above if there are bound states, the equation for M Ba 
is not well defined 

if t 
B ( 1 W-p2 has singularities for negative real arguments other than 

these poles. To avoid this difficulty, we extend t B by the on shell 

dispersion relation (see discussion at end of paper) 

(7) 

With this definition we can then show, by writing 

MBa(pB’pa;W) = ~gatg(W- ;;) + t&W- i$)ZBa(PB.Pa;W)ta(W- Ff) (8) 

that the on shell limit of the KZ equations can be derived from our 

equation for M, and hence recover the equations for Z Ba previously pre- 

sented. 7 These are 
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Note that the kernal depends explicitly only on real functions of two 

body observables in the physical region. Note also that if we insert 

the solution of this equation in M 

8(z-P;) Ba 

, thanks to having the primary 

singularities in t explicitly separated out, we can identify the 

elastic, rearrangement, breakup, coalesence, and 3-3 amplitudes immediately; 

calculation of Z suffices to define all of them at once. 

In order to actually solve these equations, it will be convenient 

to isolate the moving singularity in the kernel for 0 5 c2 5 W, and the 

coefficients of the primary singularities, from the non-singular parts 

which do not contribute to the asymptotic wave function. We do this by 

splitting Z into an exterior and interior piece by defining Z = e(w-;")z" 

+ e(& w)zI. For ZE we make a change of variable appropriate to the 

finite interval, e.g., c2 = Wsin2w, and expand in terms of an appropriate 

complete set, in this case sin2nw/sin2w. The logarithmic singularity in 

the kernel can then be integrated analytically, leaving a non-singular 
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integral to be done to define the matrix coefficients in nn'; if we use 

empirical input for the two body observables, this last integral has to 

be done numerically in any case. Our splitting guarantees that the 

kernels for ZT are non-singular. This leads to coupled equations of the 

form 
P) zE = KEE ZE + KEB ZE + 

n c nn' n' c 
n' b nb b / 

KFnT(pf)Z1(p') dGf2 

W 

g'(p')Z'(p') d;12 
_- 

(15) 
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K=(p,p') Z'(p') dGt2 
n b W 

Here we exhibit the bound state indices b as a reminder that the value of 

Z at these singularities (elastic and rearrangement amplitudes) should be 

explicitly separated out, but have suppressed the Faddeev indices for 

simplicity. We see that for finite n the matrix for ZE can be explicitly 

inverted and substituted into the continuum equation for Z' making that 

equation also explicitly non-singular. This is one way to generalize a 

previous non-singular treatment of the two body problem. 
13 Since only 

the ZE are physically observable in three particle systems, this two 

step process has the advantage that the solution for Z' need only be good 

enough to guarantee the accuracy of the quadrature which occurs in the 

equations for ZE. This is obviously a less stringent requirement than 

having to solve for the functional dependence on p. 

Since these equations for Z are unique, there is no guarantee that 

they will agree with experiment. According to elementary particle theory, 

there will be additional effects generated by mesonic degrees of freedom 
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at short distance. In conventional non-relativistic theories these are 

replaced by two body off shell effects arising from some assumed potential 

model and in some cases by three body forces. Unfortunately there is no 

consensus as to how to separate these effects theoretically, and as has 

been pointed out4 they are impossible to separate using only the two and 

three body observables themselves. However, now that we have a unique 

reference-theory based only on two particle observables, we do have a way 

of measuring the combined mesonic effects. One way to make this explicit 

is to introduce into the model a direct "zero range three particle" 

scattering amplitude. If this itself is unitary, like the two particle 

amplitudes, the equations remain unitary and provide via the parameters 

in this added amplitude a way to parameterize the discrepancy between 

the unique theory and experiment. Such a system need be inverted only 

once to obtain fitting formulae which can be used for data analysis, 

rather than requiring the solution of an integral equation each time a 

parameter is varied. Brayshaw 14 has demonstrated the practicality of 

this approach to data fitting in various relativistic situations. So 

far,as we can see, our zero range equations can be extended to the 

relativistic case and form a special case of a general separable model 

given by Brayshaw. 
14 We have also shown that minimal four particle 

equations can be obtained in a similar way, but will not pursue either 

of these applications of our approach here. 
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Note Added, January 1980: The restriction imposed by Eq. (7) drastically 

limits the field of application of this theory. In particular, since all 

the quantities appearing in that equation are observable, if the amplitude 

has a "left hand cut" this equation (a partial wave dispersion relation) 

can be used to calculate the contribution from this cut in the physical 

region. For nucleon-nucleon scattering this contribution is substantial, 

as has been shown many times, for example by D. V. Bugg. 15 Another way 

to see this is to start from the Low equation to construct the fully off- 

shell t-matrix. 16 If this is done, and the on-shell amplitude has a left 

hand cut, it is easy to show that the zero range limit cannot be taken. 

If there is no left hand, the limit can be taken, but the solution of the 

Low equation implied is of the Castillejo, Dalitz-Dyson type in which 

scattering persists even though the "interaction" goes to zero. All of 

this will be discussed in detail in a longer paper now in preparation. 

In spite of these dismal conclusions, which make this zero range theory 

of little direct use for nuclear physics, the elementary particle exten- 

sion using relativistic kinematics looks promising. 
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