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ABSTRACT 

The quark color magnetic moment is examined in the 

framework of the interaction of a quark with a constant 

external color magnetic field. Quark and gluon propagators 

in the external field are evaluated and shown to lead to a 

g-Ii 
3a 

s r&5E a field dependent anomalous magnetic moment u = - - 2mc 4T m2 

where B is the external field strength. Comparison is made 

with the behavior of the electron anomalous magnetic moment 

in strong fields. Possible phenomenological consequences for 

hadron mass splittings are discussed. 
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SECTION I 

The magnetic moments of the electron and muon have been experimen- 

tally determined and theoretically predicted to great precision,l and 

the agreement of theory and experiment remains one of the most impressive 

successes of Quantum Electrodynamics (QED). An important feature of this 

situation is our ability to produce magnetic fields of known intensity 

and uniformity. If such magnetic fields were not available, one could 

still get information about magnetic moments from bound state spectros- 

copy since magnetic fields exist inside atoms and the interaction of spin 

l/2 constituents with these fields leads to spin splittings. Indeed, 

investigation of atomic spectroscopy led to the introduction of the 

electron magnetic moment2 and provided the first evidence of the anoma- 

lous magnetic moment.3 However, as the fields are no longer externally 

controlled, but are determined by the interaction of the bound state, 

some understanding of the bound state problem is needed before the effect 

of magnetic moments can be taken into account. Thus, if one did not have 

the option of studying free electrons in external uniform magnetic fields, 

the concept of magnetic moments would be of less practical importance, 

having meaning only in the context of the solution of the bound state 

problem. It is precisely this situation that is encountered in a non- 

abelian gauge theory of the strong interactions, Quantum Chromodynamics 

(QCD) . 4 This theory, which describes a color triplet of quarks inter- 

acting with an octet of vector mesons is supposed to have the property 

of confinement, so that free quarks and long range color fields are not 

observed in nature. The interaction of quarks with the vector field is 

based on a generalization of QED, so that in particular one can introduce 
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the concept of the quark color magnetic moment. Due to confinement this 

magnetic moment cannot be directly measured with a controlled external 

color magnetic field, so to see its effect one must rely on the color 

magnetic field inside hadrons, which should produce mass differences 

between hadrons with differing quark spin orientations. In fact, several 

groups5 have found qualitative evidence for this effect in the N-A, 

n-p, and other mass differences. In addition, Schnitzer6 has investiga- 

ted the phenomenological consequences of a color anomalous magnetic 

moment. However, unlike the case in QED, where the bound state problem 

is well understood,7 a fundamental understanding of the bound state 

problem for hadrons does not yet exist, so that the role of the quark 

color magnetic moment in hadron spin splittings has still to be quan- 

titatively understood. In this paper we address a related problem, the 

behavior of a quark in a constant external color magnetic field. We 

will show that the greater simplicity of this problem allows an exact 

solution to one loop. Of particular interest is the fact that the 

graph of Figure 1.b gives rise to an infrared singular anomalous magnetic 

moment. 8 As other infrared singularities in the perturbative treatment 

of free quarks and gluons have been shown to cancel in appropriately 

defined cross-sections,g an infinity in a static quantity would be 

surprising. Our main result is that the interaction energy of the quark 

with the external field evaluated with the mass operator methodlo is 

(1 l 1) 

where g is the strong interaction coupling constant renormalized at 

some scalep,Bis the external field intensity, and m is the quark mass. 
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The relevant graph is given in Figure 3, where the quark and gluon 

propagators are evaluated to all orders in the external field, as 

indicated in Fig. 2a and 2b. This should be compared with the QED case, 

where the mass operator gives for the interaction energy of an electron 

with a magnetic fieldll 

AE = eB c1 
-2m FiF 

i 0 
1 + !- eB Rn 

3 m2 
y + 6(B2) 
m 

(1.2) 

Thus in QED the mass operator can be expanded to first order in the 

external field, which corresponds to using the diagram in Figure 1.a. 

However, the QCD mass operator clearly cannot be expanded due to the 

presence of a logarithm in Eq. (1.1). Using the Feynman diagram of 

Figure 1.b. and encountering an infrared divergence is the consequence 

of making an improper expansion of the mass operator, so the associated 

infinity is a mathematical artifact rather than a physical effect. This 

same problem arises in QED when the mass operator is expanded to higher 

order in eB, as first noted by Newton,12 but due to the weakness of 

attainable magnetic fields compared to the critical field of 10 13 gauss 

such effects are negligible in practice. 

In Section II the mass operator formalism is set up and expressions 

for the quark and gluon propagators derived. In Section III the mass 

operator is evaluated for a particular quark state and Eq. (1) proved. 

Section IV contains discussion of the results and some comments about 

possible phenomenological consequences. 
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SECTION II 

The problem we wish to deal with is an external field problem. We 

assume that by some external agency a constant color magnetic field has 

been set up, and treat this field as classical. Fluctuations of the field 

about this classical value are treated with perturbation theory. We form 

the field from a particular choice for the vector potentials 

I 
0 lJ = 0,1,3 

A; = B Q8 

x1 !-I=2 

(2.1) 

This leads to a constant magnetic field in the 3 direction in ordinary 

space and the 8 direction in SU(3) space. It is also possible to form 

such a magnetic field from constant vector potentials with different 

SU(3) orientations for different space time indices as discussed by 

Brown and Weisberger.13 The two cases are distinguished by the former 

being produced by sources at infinity (a solenoid), while the latter is 

produced by a nonvanishing finite current. We consider here only the 

first choice of potentials. By allowing only the 8 direction of the 

field to be present, many of the non-abelian features of the problem 

drop out. Firstly, due to fggi = 0, graphs of the form of Figure 2c 

vanish, so that the external field does not couple to itself. In addi- 

tion, a quark of definite color i (i = 1,2,3) remains that color in this 

magnetic field, while a non-diagonal orientation of the field in SU(3) 

space would lead to the quark color constantly changing. Similarly, 

gluons keep their color unchanged. This leads to a situation like that 

encountered in the evaluation of the electron magnetic moment when other 
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charged particles are present, such as in the W boson contribution to the 

electron anomaly.14 Indeed, that contribution is also afflicted with the 

same infrared divergence in the limit MW + 0 that afflicts the quark color 

magnetic moment. The only complication is that there are several charge 

arrangements possible. There exists a well developed procedure to handle 

this situation in the mass operator formalism." Associated with the graph 

of Figure 3 we have 

hE =-ig2~dx~dx'~i(x')~v(Ta)ikS~(xf,x)~~(Tb)jp~~(x~D~~(x',x). (2.2) 

kj In this expression sA (X ',x) is the amplitude for a quark color k at 

position x to propagate in the presence of the external field to position 

x' with color j, D;~(x',x) is the analogous amplitude for a gluon, and 

the $'s are wave functions appropriate to a quark in a constant magnetic 

field. Due to our choice of the external color field, the quark and gluon 

propagators are diagonal in color space. The quark propagator is determined 

by the equation 

gy,Aa(Ta)jk - mdjk) si'(X' 9X) = 6jk64(xf - x) (2.3) 

Because AiTa is diagonal, this matrix equation breaks into three separate 

equations, with the only distinction between them being the coefficient 

of AV for the particular quark color i, ,g T8 
( > 

. Thus, introducing a 
ii 

covariant derivitive 

(2.4) 
e = 

a g T8 ( ) aa 
, 
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we can write the equation for the propagator of a quark color a as 

(2.5) 

Before the equation the gluon propagators satisfy can be determined, 

the question of gauge must be settled. Because there is an external 

magnetic field present, it is most convenient to use a background field 

gauge,15 working with quantum fields Q = A - A ext . The calculation 
lJ IJ 1-I 

is by far the simplest in the generalized Feynman gauge, characterized 

by a gauge fixing term 

- $ + gfabc A; Q; 
2 

9g.f. = > 

In that gauge the gluon propagator satisfies 

1 / 
fl,' gvv+ 2ie, F,,,, Da =A 

va gw 

(2 06) 

(2.7 

where we have again used the fact that T8 is diagonal to write separate 

equations for each color gluon. 16Knowing that I$ is determined through 

( . a 
-- 

lYp axu 
ea8L-m JI, = 0 

> 

then determines all components of the mass operator. In order to obtain 

useful forms for the propagators along with relations useful in explicit- 

ly evaluating the mass operator, we begin by considering the propagator 

of a spin zero field of charge e in a constant magnetic field described 

by a vector potential as in Eq. (2.1). We find that 

c 
",'- m2)D(x',x) = 64(X’ - X) (2.9) 
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is formally solved by 

D(x',x) = -i is f12 ( 
2 -m +ie 

)I x> 
0 

(2.10) 
co 

/ 

2 
= -i ds e -ism U(S,S) . 

0 

To explicitly evaluate the last term we introduce a complete set of states 

that are labelled by po,p3,p2 ani 

n= 0 

where 

<pOp3P2+> = H,(c) 

5 = &s xL-z ( ) 

n, where n=0,1,2, . . . , satisfying 

Po~3P2n><POp3p2n I (2.11) 

-h2 
e 2 e-ipot eip3x3 eip2x2 ; 

(2.12) 
. 

Introducing the notation 

27,; = I+no2 . , 
(2.13) 

IT2 = 

We are now in a position to evaluate 

2 

U(S1,S2) = <x' e 
-is1n,, - is2 n," 

e 

m 

the generalized expression 

x> ; 

x e-is1(p32 - pt) e- ieBs2(2nf 1) . 
(2.14) 
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Inserting the matrix elements from Eq. (2.12) into Eq. (2.14) and 

performing the sum over n with the use of Mehler's formula, 

m 
c 
n= 0 

Hn(x) H,(Y) = 

,+ 2 

2xyz-z2 x2+y ( 
2 

> 

l- z2 e 

one is left with three Gaussian integrals. Their evaluation is 

straightforward and yields 

U(s14 = 
-ieB 

16n2sl 

ix: 

4s1 
e 

x; = (x; - x37 - (x; - xof ; 

x2 = (x; - xlf + (+ - ?>’ I ; 

ieB (x1+x$(x2-x$ . 

2 
Qe(xl ,x) = e 

(2.15) 

@ew’X) ; 

(2.16) 

Later on we will want to use this equation in the other direction, that 

is start with a product of the exponentials and end with a matrix 

element of an operator, so we rewrite the above as 

ix; ix: 

4w 5 
2 

1 l6 iwlw2 <x, e- 
I 

iw,IIi 4.6 Lf 
Qe(x' ,x) = x> ; e e e 

6 

A = l+(eBw2)2 ; B .-& tan -1 = eBw 2 - (2.17) 
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We now must determine the quark and gluon propagators in terms of the spin 

zero propagator. This is particularly simple for the gluon propagator, as 

the formal solution of Eq. (2.7) is 

D,,V (x’ ,x) = _ i [ ds [e- 2eSF]yy <x’ 1 eisn2 Ix) (2.18) 

0 

where in the last step we have used the fact that the color field is 

constant, 

[ n,, Fpv 1 = O (2.19) 

Thus outside of an x independent factor, the gluon propagator is propor- 

tional to the scalar propagator. The quark case is more complicated, due 

to the Dirac structure. To solve Eq. (2.5) we rewrite it formally as 

SA(X' ,x) = <x1 fl+rn 
I( ) 

tiB 
-m 

2 Ix> ; 

Using 

This becomes 

(2.21) 

co 

S,(x',x) = - i J ds e-lsm ' 2 <x'[(ff+ m)eisn21x> eisM 

0 (2.22) 
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Introducing the explicit form for n allows us to write, after some 

manipulations, 

OD 

1 SA(X' ,x) = -- 
/ 

ds eBs - ism 
2 

1 

161~~ 7 sin(eBs) e m-2s 

0 

2 
ixlI 

i eB x 
2 
1 

X Y-XII + 
eBs isM 

sin(eBs) e Y'X 
B 

e4s e4tan(eBs) 
1 

X Qe(x’ ,x> e 
isM 

which in the inverse form becomes 

(2.23) 

-- 4w 4w2 2. 1 167~ 1w1w2 

y’xII 
e e @,(x',x) = 2w1<x' y* Ill, e -wln; - 

6 e x> 

3 3 
ixi ix; 
3y 

e4w2 
2. 161~ 1w1w2 2w2 e -iBM 

y*xl e @,(x',x) = 

6 6 

x <x1 
2 

ye II1 e 
-iwlnll 

e (2.24) 

SECTION III 

With these expressions we are now ready to evaluate the mass 

operator. Defining the charges to be el for the initial quark, e2 for 

the intermediate quark, and e3 for the gluon, we have, introducing an 
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integration for each propagator, 

z 
t stanz y*xll+y’x~ 

e- 2t 1 ,itM y + cx) o (xI ,x) 
V e2 

. 
w ' 

z = e Bs. 3 

The exact gluon propagator has been kept, but the quark propagator has 

been approximated by a form in which only the Oe2 and the ext(itM) terms 

are kept as modifications to the free propagator, which is valid to first 

order in the external field. Then, using Eq. (2.17) and Eq. (2.24) we 

can write this, defining I/I(X) = <nix>, as 

AE = 2 i F f 7 jdxldx' eWitm2 --$--z : <nix'> <x'lYP 

0 0 

w2 
2 2 

; v*n,,- -e 
-iBM -itM 

m-- yye 
-iwI7,, e-iB 17L 

tfi 

1 L+ 1 1 -= 
w s t ; -= 

w2 
t+ z 

stanz (3.2) 
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But now completeness allows us to perform the x and x' integrations 

trivially, and we are left with the expression 

m co 
a 

AE = 2 dt -itm 2 z ww2 - - 
sinz fi m-f Y-n,, ( ) 

"-2 -- e 
tfi 

2 
-iwn,, -2e3sF 

e 
[ 1 

e 
W 

(3.3) 

It is important to note that the n in this expression refers to a 

charge el particle, so' that it can be applied onto the states n . 

This follows from the Q's in Eq. (3.1) combining into @ due to 
el 

el = e2 + e3. The mass operator is particularly simple when evaluated 

in the ground state of the system, where n=O and the spin is parallel 

to the magnetic field, for then 

ni In> = -m2 In> 

17: In> = M In> = elB In> 

y l "II In> = -m In> 

y*"I In> = 0 

In that case we end up with the expression, after transforming.s+-is, 

m 03 

AE= z e-m2(t-w) z w2w 
sinh z 

. 



where we have dropped a term corresponding to Pig. 1.a. For B= 0, this 

gives the usual ultraviolet divergent self energy correction. A straight- 

forward expansion in B, using the fact that 

z 
sinh z = 1 + @(B*) 

A = 1 + @'(B*) 

f3 = w-k&T-B2 ( > 

then yields the expression 

co 
-e Barn 1 2 (l-u>* 

AE= ;, 
/ s 

-m s 
ds udu e U 

(1-u) ; 

0 0 

S 
LIZ - 

s+t 

(3.6) 

(3.7) 

Performing the s integration exposes a logarithmic divergence at u= 1, 

which is the same divergence as encountered in the Feynman diagram 

evaluation. In the region u-l, we are able to set 

B = w . 0.8) 

However, due to the divergence encountered abov,e, although the term 

z/sinh(z) is formally of @-(B*>, we must leave it in. 
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Then Eq. (3.7) is replaced by 

hE = -';I f ds si;h z iudu e-m2s (?)* (leu) 

0 0 

(3.9) 

At high s, l/sinh (z) behaves as exp(-eBs), and has the effect of 

softening the u-t1 behavior of the integrand. Explicit integrations 

gives, up-to constants irrelevant to our discussion 

- e Ba 
AE = 3 

*am m 

Summing over all charge configurations and pulling out the matrix 

element of T8 then leads to the result in (1.1) 

SECTION IV 

The result (3.10) has a counterpart in the very high field 

correction to the electron massll 

2 
AE = 

(3.10) 

(4.1) 

This illustrates the fact that the strong field limit of QED, which 

requires eB>>m*, is always obtained in QCD, due to the relevant limit 

being gB>>XL, which is always satisfied for gluons of mass A=O. 

Similar behavior is encountered in the effective Lagrangians of the 

two theories in intense constant fields17 

-L B* + (eBj2 Rn eB 
pQED = 2 24~~~ 2 

-L B2 - ll(gB)* 
4PQCD = 2 481~~ 

Rn @ 2 
u 

(4.2a) 

(4.2b) 
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Due to the weakness of practicably attainable magnetic fields in 

QED, however, the typical features of the strong field limit are not 

observable. In QCD, on the other hand, this behavior is seen in the 

lowest order of perturbation theory and for any field strength. The 

ideal place to see this effect is in the spin splittings of hadrons. 

However, it must be recognized that, outside of the fact that the color 

magneticfield inside hadrons is certainly not constant, there is also 

another scale in the problem that is set by confinement, namely the 

radius of the hadron. This finite radius will act by itself to cut off 

the infinity in color magnetic moment, so two cutoff effects exist in 

hadrons. The confinement scale is of the order of an inverse Fermi, 

200 MeV. As spin splittings, which characterize the magnetic field 

present, are also of this order, both effects will in general have to 

be taken into account. However, the cutoff coming from the magnetic 

field has the unusual feature of field dependence. If one replaces the 

constant field in (2.1) with a dipole field, we see that the anomaly 

depends on the separation of the quarks, a feature that has been discussed 

by Schnitzer.ll The ideal testing ground for these ideas is the behavior 

of very massive quark anti-quark systems, where one may argue that a 

Coulomb potential determines the properties of at least the lowest 

states. Then a calculation of radiative corrections to hyperfine split- 

tings could be carried out using standard QED techniques, with the 

effect of the moment being position dependent giving rise to deviations 

from a positronium-like spectrum. This question is presently under 

investigation. * 
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Figure Captions 

l.a, Diagram leading to a fini'te contribution to the quark color 

anomalous magnetic moment. 

1.b. Diagram leading to an infrared singularity in the quark color 

anomalous magnetic moment. 

m 

2.a. Graphical expansion of the quark propagator in the external field. 

2.b. Graphical expansion of the gluon propagator in the external field. 

2.c. Example of a graph not contributing due to color orientation of 

the external field. 

3. The QCD mass operator. 
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Fig. 1 
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Fig. 2 
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Fig. 3 


