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ABSTRACT 

Using the experimental value of the 
Et -KS mass difference, we 

derive constraints on charged-Higgs couplings in gauge theories of the 

weak and electromagnetic interactions. These bounds severely restrict 

the possible magnitude of charged-Higgs effects in K and D meson decays.' 

Our results are based on the observation that charge-Higgs exchange 

contributions to K"- go mixing are of order l/g whereas the corresponding 

W-boson contribution is only of order rnE/g . 
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1. Introduction 

The extremely small value of the KL-KS mass difference1 imposes 

severe constraints on gauge theories of the weak and electromagnetic 

interactions. The small K" -go mixing implied by this mass difference 

(as well as the absence of strangeness-changing neutral-current decays) 

led Glashow, Iliopoulos and Maiani2 to introduce a fourth (charmed) quark 

which, when incorporated into the original Weinberg-Salam model, 3 cancels 

unwanted strangeness-changing neutral-currents due to Z" exchange. 

Gaillard and Lee4 then computed the contribution to K"-K" mixing coming 

from the two W-boson exchange graph of Fig. 1 to estimate the mass of 

the charmed quark. In a six-quark model, the analogous calculation limits 

the size of the mixing angles through which the t quark couples to s 

and d quarks. 5 The QCD corrections to the Gaillard-Lee calculation have 

been computed in the leading-log approximation 6,7 and are quite small. 

It is our purpose to examine the constraints imposed on the Higgs 

sector of a weak and electromagnetic gauge theory by the small measured 

value of the % -KS mass difference. In the standard Weinberg-Salam 

model with one Higgs doublet, only a single physical scalar remains after 

spontaneous symmetry breakdown, the neutral Higgs particle. Since the 

neutral Higgs field is the same field which gives the quarks their masses 

(through a non-vanishing vacuum expectation value), the redefinition of 

quark fields which diagonalizes the quark mass matrix will also diagonal- 

ize the couplings of the neutral Higgs boson. Hence, the neutral-Higgs 

couplings will be flavor conserving. However, in a model with more than 

one Higgs doublet, Higgs mediated neutral-current interactions can change 

flavor and so can contribute to K"-ko mixing. Since we seem to have at 
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least three doublets of quarks and leptons, it is perhaps not unreasonable 

to consider multiple doublets in the scalar sector as well. 

The first constraint imposed on models with two or more Higgs 

doublets by the small %-KS mass difference is that strangeness-changing 

interactions due to neutral-Higgs exchange must be suppressed. This can 

be done by requiring that certain Higgs Yukawa couplings vanish. One 

can impose this "naturally ,,8 by invoking some kind of discrete symmetry. 

We will consider two such models. For simplicity we will restrict our 

discussion to models with two Higgs doublets. It is straightforward to 

extend our results to other models and to cases in which there are three 

or more Higgs doublets. 

We have already noted that when one scalar field gives the quarks 

their masses, then the transformation which diagonalizes the quark mass 

matrix will also diagonalize the couplings of the neutral component of 

that scalar field. Glashow and Weinberg' noted that this argument can 

be made separately for charge 2/3 quarks and for charge -l/3 quarks, since 

by charge conservation the mass matrix can never mix these two types of 

quarks. They thus pointed out that strangeness-changing neutral Higgs 

exchange can be avoided in a model with more than one Higgs doublet if 

the neutral component of one scalar field is coupled to charge 2/3 quarks 

and the neutral component of one other scalar field is coupled to the -- 

charge -l/3 quarks. The coupling of the charged components is then 

determined by SU(-2) 0 U(1) symmetry. Weinberg has discussed Higgs- 

induced CP violation in this model when three or more Higgs doublets are 

10 
present. Since we are interested in the magnitude of Higgs couplings 

we will, for simplicity, restrict our attention to the model with only 
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two Higgs doublets in which case there is no CP violation coming from 

charged-Higgs propagators. (However, as usual CP violation can still 

arise in the six-quark version of this model from a complex phase in the 

Kobayashi-Maskawa matrix. 11) I n any case, as mentioned above, the exten- 

sion of our results to the case discussed by Weinberg is straightforward. 

In the second model which we will consider, flavor-changing neutral- 

Higgs exchange is avoided by requiring that only one of the two Higgs 

doublets couples to the quarks. Since this one scalar field must give the 

quarks their masses, non-diagonal neutral-Higgs couplings are eliminated 

in the standard way. This model has been discussed by Haber, Kane and 

Sterling. 12 The two models we are considering are described in more 

detail in Section II. 

Although flavor-changing neutral-Higgs couplings have been eliminated 

in these two models at the tree level, there can still be significant 

flavor-changing interactions from charged-Higgs exchange. To lowest 

order, these will contribute to K" -K" mixing through the diagrams of 

Figs. 2 and 3. Both of the scalar doublets in these models can have 

non-vanishing vacuum expectation values and we will label the magnitudes 

of these by 5 and n. Then the charged-Higgs couplings to quarks will be 

of order g(mq/MW)(E/n) where mq is a quark mass and MW is the W-boson 

mass. Clearly, large values of (s/r)) would be required to produce signi- 

ficant charged-Higgs exchange effects for "light" (u,d,s,c) quarks. 

There is no a priori reason why Higgs couplings cannot be large in models 

with multiple Higgs doublets, and it has been shown 12 that large Higgs 

couplings are not in contradiction with data on particle decays. Naively, 

one would expect that W and Higgs exchange processes would be comparable 

when 
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(1.1) 

(1.2) 

However, ?n the case of K"- go mixing the Higgs exchange diagrams of 

Figs. 2 and 3 are in fact much more important relative to the two-W 

exchange process (Fig. 1) than this simple discussion would indicate. 

Let us compare, for example, Figs. 1 and 2 in the four-quark model. 

Individual diagrams like Fig. 1 are of order l/4; however, when con- 

tributions from c and u quarks are added, there is a cancellation related 

to the GIM cancellation of flavor-changing Z” couplings and the final 

result for two-W exchange is of order m:/$. In Fig. 2, on the other 

hand, this cancellation is spoiled by the presence of quark masses at 

the Higgs vertices, so the result for two-Higgs exchange is of order 

tC/d4bch$)4(l/~~, - not of order (~/n)4(mc/MW)4(m~/$). Thus, the 

Higgs diagram is a factor g/mf 1 ar g er than one might naively have 

expected. This fact enables us, in Section III, to derive a bound for 

(s/Q) 2 which indicates that (5/r1)~ must be smaller than Eq. (1.2) by an 

order of magnitude or more for a large range of Higgs masses. We should 

point out that a large Higgs contribution to K"-K" mixing such as we 

have found is a general feature of any model in which the order l/g 

contributions to the charge-Higgs exchange graphs (Figs. 2 and 3) do not 

cancel. Thus, the small KL -KS mass difference will impose severe con- 

straints on the parameters of any such model. 
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The QCD corrections to the Higgs-exchange contribution to K"-2' 

mixing, which are discussed in Section IV, are much larger than those 

for the W-exchange graph of Fig. 1. This is due to the different struc- 

ture of the Higgs vertices. Although the QCD corrections to our bound 

on (E./n).2 are fairly large, their effects on its phenomenological impli- 

cations are small because similar QCD corrections effect all Higgs ex- 

change pracesses involving quarks. Some phenomenological implications 

of our bound are discussed in Section V. 

II. Models with Two Higgs Doublets 

We consider models with two Higgs doublets 

Tl = T2 = . (2.1) 

For a general Higgs potential, the vacuum is characterized by two vacuum 

expectation values 13 

<;,> = 

where T-I, 5 and E are real and positive. In order to identify the Gold- 

stone bosons of these models we define rotated fields 

$1 = COS a 5l + e -is 
sin a T2 

4, = -sin a $1 N + e-l' cos a z2 (-2.3) 

where 
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sina = cosa = . (2.4) 

Then we find that only 0, has a non-vanishing vacuum expectation value 

<$,> = <$,> = 0 . (2.5) 

In the language of Georgi and Nanopoulos, 14 $1 is the "true" Higgs. The 

charged components of $, are the charged Goldstone bosons which join 

with the charged gauge bosons to make the massive W'. One of the neutral 

components of 61, Im(+y), is the neutral Goldstone boson which becomes 

part of the massive Z". The remaining physical scalar particles are the 

charged components of 0, and three neutral scalars which are formed from 

linear combinations of Re(+y), Re($y), and Im($;). Note that the charged 

components of (p,, which are the charged Higgs particles we are interested 

in, are necessarily mass eigenstates 15 since the only fields they could 

mix with, $i, are Goldstone bosons and would not even appear in the 

Lagrangian in unitary gauge. Because of this absence of mixing, the 

charged-Higgs propagator when only two doublets are present can have no 

complex phase factors, and CP violation will not occur through charged- 

Higgs exchange (except for the phase factor in the Kobayashi-Maskawa 

matrix'l). 

Let us define quark fields which are weak interaction eigenstates by 

(2.6) 
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The first model which we mentioned in the introduction is obtained by 

imposing the discrete symmetry 

(2.7) 

4, = . (2.8) 

The most general Higgs-quark interaction Lagrangian consistent with this 

discrete symmetry, and of course with W(2) @U(l) invariance, is 

+ Hermitian conjugate (2.9) 

where xl and A2 are three-by-three coupling constant matrices. From 

Eq. (2.2) we see that the quark mass matrices are 

"2, = -Xl n 
. 

Mb 
= A2 e-lE 5 . (2.10) 

These are diagonalized by defining mass eigenstates 

42 L,R = TL,R 4Y’ 
L,R 
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d 

CB L,R = ' 0 = 'LR%R , , 
b 

L,R 

so that 

-1 = TL Mb TR 

-1 = VL Mb VR 

The combination 

K = -1 TLVL = 

(2.11) 

. (2.12) 

i 

c1 -slc3 -s1s3 

i6 i-6 
s1c2 '1'2'3 - s2S3e clc2s3+s2c3e 

i6 i6 
s1s2 c1s2c3 + c2s3e ‘1’2’3 - C2C3e 

(2.13) 

is the usual Kobayashi-Maskawa matrix 
11 

where s and c refer to the sine 

and cosine of the respective angles. Since the lowest-order contribution 

to K"- E" mixing does not involve the neutral-Higgs particle, we will 

only write down the Yukawa interactions of the charged components of +2. 

Identifying the eigenvalues of the quark mass matrix with the quark 

masses and noting that 

(2.14) 
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we find 

Lz? = -$- 4': ?L[: MqdK(l - y5) + $ KM9(l+y5) 1 Ed 2 + H.c. 
Int. 

Mw 

, 
1 

(2.15) 

where M w and M g are given by Eq. (2.12), and K by Eq. (2.13). 

The second model discussed in the introduction is obtained by 

imposing the discrete symmetry 

This excludes Yukawa couplings of T2 to the quarks and gives the Higgs- 

quark interaction Lagrangian 

+ H.c. (2.17) 

This is evaluated in exactly the same way as for model one above. The 

charged-Higgs interaction Lagrangian is 

22 Int. 
= s-&-e-- 0; & [: MqlK(l- y5) - t KM&+y5) 

i 
+ H.c. 

2VGl$ 
(2.18) 

In both of these models, significant Higgs couplings to light quarks 

can occur for S/n >> 1. In model one, there is also the possibility 

n/c >' 1. In this case charged-Higgs couplings are suppressed by factors 
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of ms/s and md/MW in "light" quark processes while on the other hand 

when 5/n >> 1, there are Higgs couplings proportional to (mc/MW). At 

any rate, the KL -KS mass difference does not provide a good upper bound 

for (dS). For these reasons we will focus our attention in the text on 

the possibility that C/n >> 1. Then, the dominant contributions to 

K0 -K" mixing come from the couplings which are the first terms in Eqs. 

(2.15) and (2.18). Thus, for the purposes of the next section, the two 

models are in fact identical and the bounds derived are equally valid for 

both models. The experimental upper limit on Do-Do mixing can be used 

to obtain an upper bound for n/5. This is discussed in Appendix II. 

Finally, we note that charged-Higgs couplings similar to Eqs. (2.15) 

and (-2.18) will also appear in the lepton sector. If S/n >> 1 (or 

II/~ >> 1) th ese can produce significant charged-Higgs effects involving 

leptons. However, even if large charged-Higgs couplings occur in the 

quark sector, they can be virtually eliminated from the leptons by inter- 

changing the roles of Tl and ;2 for leptons. Thus, significant charged- 

Higgs couplings to quarks can be considered either with or without the 

analogous ItlargeU couplings to leptons. 

III. K" -%O Mixing 

We will begin by discussing K"- 2' mixing in the four-quark model 

and then extend our results to include b and t quarks. Thus, at first 

we will use the couplings of Eqs. (2.15) and (2.18) with s2=s3=0. As 

we mentioned in the introduction, Gaillard and Lee calculated 4 the effect 

of two-W boson exchange (Fig. 1) on K"-zo mixing. Their result is ex- 

pressed in terms of an effective Hamiltonian 



-12- 

The matrix element of this effective Hamiltonian between K" and E" states 

is evaluated to determine the K" -E" mixing from two-W exchange. Since 

the estimated matrix element of Eq. (3.1) (calculated by inserting the 

vacuum in all possible ways) is close to the experimental value for 

K0 -ii" mixing, 4 we will require that the contributions to K"-go mixing 

coming from charged-Higgs exchange be no larger than the two-W boson 

contribution of Eq. (3.1). Since the Higgs and W contributions will add 

together we are in the end allowing the total K"-go mixing to be twice 

as large as that given by Eq. (3.1) alone. Of course, the estimate of 

the matrix element of Eq. (3.1) is only approximate so our bound for 

(s/d 2 will not be exact. However, since the Higgs contribution of Fig. 

2 is proportional to (C/Q)~ we will find that an error of a factor of x 

in the estimate of the K"-Eo matrix element of Eq. (3.1) will only be 

reflected by an error of roughly & in our bound. Our bound is severe 

enough so that such factors will not appreciably change the phenomenolgical 

implications we will discuss. 

The effective Hamiltonian for K" -E" mixing due to Higgs exchange 

is calculated from the diagrams of Figs. 2 and 3. As we mentioned in 

the previous section, we will not consider here the possibility n/S >> 1 

which we discuss however in Appendix II. We will neglect terms propor- 

tional to mu, md and ms relative to those proportional to mc (current 

quark masses are to be used for these parameters). The results are then 

identical for the two models we are considering. For the diagram of 

Fig. 2 we find 
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x;rH = -5$-i----$--r mz (:r Ilbc) 

X (;y,(l- y5)d)(??1 - u,)d) (3.2) 

where 

s 
d4k Il(mc)-= - k2 = 

E (~IT)~ (k2+m2c)2(k2+M$2 
(3.3) 

The complete expression for I1 is given in Appendix I. Thus for 

we have 

X (sy,(l-vS)d)(“y~(l-ys)d) - (3.4) 

If we require that this effective Hamiltonian be no larger than the two-W 

exchange contribution of Eq. (3.1) we obtain the bound 

(3.5) 

Of course, we must still add in the contribution from the mixed diagram 

of Fig. 3. However, as we will see, this will give a stricter but not 

very different bound than Eq. (3.5), so Eq. (3.5) is a good approximation 

to the actual bound derived below. 

We now turn to the mixed diagram of Fig. 3. In the two models of 

Section II we find (when n/S >/, 1) 



X (&(.l-y5)d)(~~'(l-yg)d) . (3.6) 

Expressions for I2 and I3 are given in Appendix I. To leading order in 

114 and l/g, the effective Hamiltonian is then 

where 

4-, 4. 
2 
Mw ) [ (4 - 4) 

Rn " 
( ,2 

C 

(3.7) 

C.3.8) 

Note that A is a positive quantity. Adding together Eqs. (3.4) and (3.7), 

we obtain the total result for charge-Higgs K"-K" mixing in the four- 

quark model 

s(4) 
Higgs = s:cf -& ($j -$ [($ + 2A($] 

X (iyu(l - y5)a)(?U - y5)d) - (3.9) 

If we now require that the complete expression (3.9) be no larger than 

the W-exchange term of Eq. (3.1) we find the bound 
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( ) I 2 

n s 
C 

(3.10) 

This bound is plotted as a function of MH for s = 85 GeV and mc = 1.5 

GeV in Fig. 4. The shaded area on this plot shows the values of (C/Q)~ 

allowed by the bound. Also shown by the dashed line in this figure is 

the appro@mate bound of Eq. (3.5). It can be seen that the result of 

Eq. (3.5) is a fairly good approximation to the complete bound of Eq. 

(3.10). 

In the six-quark model, the bounds of Eqs. (3.5) and (3.10) would 

still apply unless an unlikely cancellation takes place between c and t 

quark contributions. However, the contributions of Figs. 2 and 3 with 

t quarks in the loops are enhanced by factors of rn: so even with modest 

mixing angles one can obtain bounds for in the six-quark model 

which are even more restrictive than those of Eqs. (3.5) and (3.10). 

Of course, in the six-quark case our bound will involve mixing angles 

which are not presently known so actual numerical values can only be 

given by assuming values for these mixing angles and also for the mass 

of the t quark. The complete expression for the effective Hamiltonian 

coming from Figs. 2 and 3 with both c and t quarks in the loops is, 

&+) 222 
Higgs 

= 3 (yg -$ ($1 (c1s2c3 + c2s3cos s> sy2 

x [$ I1(mt) ($ 

+ (clc2c3 - s2s3 

+ 812(mt) + 2 I (m ) M2 3 t rnz 

w I 
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+ 812hc) + +j 13(mc> Mw 1 rnz + 2(clc2c3- s2s3 cos 6) 
X s1s2s1c2(c1s2c3+c2s3cos 6) + 81 

5 

( &,(l-V,)d)(&V(1-~5)d) . (3.11) 

The integrals I1 - I6 are given in Appendix I. Since we are not concerned 

here with small CP violating effects we have set e i6 = cos 6. Equation 

(3.11) is quite complicated but it has simpler forms for various values 

of the angles and t-quark mass. For example, if 

(.c1s2c3 + c2s3 cos fS)2simz << (ccc - 2 2 4 
123 

s2s3 cos 6) c2 mc 

then the terms involving the t quark are negligible and our bound is just 

given by the four-quark bound of Eqs. (3.5) and (3.10). If 

then the term proportional to rnt will completely dominate the effective 

Hamiltonian. In the six quark model two-W exchange graphs also contain 

the heavy t quark. This has been used to derive bounds on the mixing 

angles5 for a given mt. When s3 << s2, for example, those bounds have 
m 

the simple form 16 tan28 2s<. Thus, Eq. (3.13) can be satisfied with- 

out violating these bounds on the angles coming from two-W exchange. 
17 

When Eq. (3.13) is satisfied we obtain the following bound on 

(s/d 2 

(3.12) 

('1'2'3 + C2S3COSc3)2s;m~ >> (c1czc3 - s2s3 cos S> 2 ct mS 

(3.13) 
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f 2 

0 1 
n ' Il(mt> 

[ 
-44 12Cmt) - 13(mt) 

2 

+ @W 4 2 T2(mt) + 13(mt> 
> 

2+ 
I1 bt)mc 

I 4v2a2m4 ' 
(3.14) 

t 

where 
2 

2 2 s2 
a = (-cls2c3 + c2s3 cos a> --y . 

5 

(3.15) 

The results of this bound for mt = 15 GeV and mt = 30 GeV are shown in 

Figs. 5 and 6 respectively. Various values of the angular factor a are 

chosen. 18 Note that the bound in the six-quark case is extremely re- 

strictive. For quick order of magnitude estimates (when Eq. (3.13) is 

satisfied) one can also use the bound 

(3.16) 

where 

B = 
g(g + 2) + 2mt 4 Rn m: 

(I+-mf12 ($-mE)3 2 l ( 1 
(3.17) 

Since the right-hand side of Eq. (3.16) is always larger than the right- 

hand side of Eq. (3.14) this expression gives a valid bound for (C/n)2 

but it is not as restrictive as. expression (3.14). Note that for 

% ;,B"l. >> m 

Finally, if the parameters of the six-quark model satisfy neither 

condition (3.12) nor condition (3.13) the entire expression for the 

effective Hamiltonian (3.11) must be considered. Note that in this 
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regime, if cos 6 < 0, it is possible for the last term in Eq, (3.11) to 

be negative; 19 so for certain values of the parameters a cancellation 

between c and t quark contributions could occur. However, in most cases, 

the intermediate region between conditions (3.12) and (3.13) would lead 

to bounds more restrictive than Eq. (3.10) but not as restrictive as Eq. 

(3.14). 

The Ease n/S >> 1 is considered in Appendix II where a bound is 

derived from Do-E0 mixing. 

IV. Strong Interaction Corrections 

The bounds derived in the previous section were based on a considera- 

tion of the lowest-order diagrams in Figs. 2 and 3. It is the purpose 

of this section to discuss briefly the effects of strong-interaction 

corrections which we assume are described by quantum chromodynamics (QCD). 

Let us consider Fig. 2 in the four quark model with massless up, down 

and strange quarks. We have shown that the amplitude for the lowest- 

order diagram in Fig. 2 is reproduced by the tree approximation to the 

matrix elements of the local four-fermion operator given in Eq. (3.4). 

QCD corrections 

114 3 by using 

to this diagram can be included, to leading order in 

a modified effective Hamiltonian density 20 

-&QCD> 
HH 

X (&,(l- -y5)d)( -&k - y5)d) . (4.1) 

Roughly speaking, the effect of QCD corrections will be to change the 

parameter mc in Eq. (3.4) to a running charm mass evaluated at the Higgs 
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mass scale and to multiply the entire expression (3.4) by a factor coming 

from the anomalous dimension of the four-quark operator 
( 

syP(l-y5)d 
1 

( &'(l- y5)d . > This latter factor is the product of a term coming from 

loop momenta p2 satisfying 4 < p2 < rnt where all four quarks are relevant, 

and a term coming from loop momenta smaller than m2 
C 

where only three quark 

flavors act. 

In the mass independent minimal subtraction scheme 21 A(s/v , 8,) 

obeys the renormalization group equation 22 

v & + B(gs) $- - 
S 

y+(g,) + 4ym(g,,) A($ gs) = 0 9 (4.2) 

The quantities y+(gs) and ym(gs) are the anomalous dimensions for the 

operator (sy$l- rS)d)(?U - Yj)d) and the quark mass operator respec- 

tively. They have the perturbative expansions: 

g: 
Y+(Q = - 

4n2 
+ ok;) 

9: 
Y,k,> = - - 

2n2 
+ @Yg~) . 

The beta function, B(gs), has the perturbation expansion 
23 

Bks) = -(33- 2Nf) 
48a2 

(4.3a) 

(4.3b) 

(4.4) 

where N f (which equals four here) is the number of quark flavors. Using 

the running coupling constant g,(y,g,) defined by 

E,(Y&,> 

Rny = 
J 8% (4.5) 
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the solution to Eq. (4.2) is 

A(Y$.gs) = A(l,;($gs)) exp[-"(F.i_ldr y+(x);(;(x) ] . 

53 

(4.6) 

In a leading-log calculation A(1 ,g(.MH/u,gs)) may be replaced by its free 

field value of 1 since as = E~/~IT is assumed small at the mass of the 

Higgs. Using the perturbation expansions in Eqs. (4.3) and (4.4) gives 

A($,gs) ", [I'$]'"';' . (4.7) 

S 

There is another "large" mass scale in the problem - the charm 

quark mass. The matrix elements of (sv,(l-y5)d)(sy"(l-y5)d) have a 

hidden dependence on the "heavy" charm quark mass coming from loops 

involving virtual charmed quarks. This dependence was calculated in 

Ref. 6, and in the leading logarithmic approximation, it has the form 

< 

r 

-6125 

6127 <+y,(l -y5)d)(+“(l- yg)d)j>’ - (4.8) 

The primed matrix elements are evaluated in an effective theory of strong 

interactions 24 with three quark flavors (u,d and s) so virtual charmed 

quarks will no longer appear. cl: is the strong coupling parameter 

appropriate to this theory. 

Introducing a renormalization group invariant running charm quark 

mass &,(y, gs, mc) defined by 
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L 
i,(Y,P,) 

~c(Y,gs,mc) = mc exp 
I- 

v,(x) 
dx- 1 9 (4.9) 

gS 
B (4 

so that in leading-log approximation 

-( 53 m --$ gs ,mc c ?J ) 

our QCD corrected effective Hamiltonian density becomes 

&QCD) w 22 g4 
irH slcl 2Yr2 

12/25 

, (4.10) 

(4.11) 

The matrix elements of this effective Hamiltonian density are to be 

evaluated to all orders in the effective theory of strong interactions 

with three quark flavors. 

Unlike the case of the two W-boson exchange graph 637 in Fig. 1 the 

QCD corrections to Fig. 2 are not negligible. This happens mostly 

because the effective Hamiltonian density in Eq. (4.1.1) contains four 

factors of the running charm quark mass which is small at the scale of 

the Higgs mass. The net result of this is an increase in the value of 

our upper bound for (E/~I)~. However, in any weak hadronic process in- 

volving Higgs exchange the QCD corrections will change the quark mass 

parameters in the couplings to running masses at the scale of the Higgs 

mass. Thus a corresponding increase in (c/n)2, from the value estimated 
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in the absence of strong interactions, will be required to make Higgs 

exchange comparable to W exchange in any weak hadronic process. 

V. Conclusions 

In this paper, we have derived bounds on charged-Higgs couplings 

using the small experimental value for the KI,-KS mass difference. We 

were able-to get a good bound because the diagrams in Figs, 2 and 3, 

which give the charged-Higgs contribution to K"-K" mixing, are dominated 

by loop momenta of order MH or MW while, due to a cancellation between 

the contributions of different quark flavors, Fig. 1 is dominated by 

loop momenta only of order m or mt . C 

For simplicity we have restricted our attention to the models which 

after spontaneous symmetry breakdown contain only a single physical 

charged Higgs. The bounds derived can easily be applied to possible 

phenomenological applications of these models. 

Consider, for example, the possibility of charged-Higgs exchange 

making a significant contribution to the decay amplitude for K + HIT. 

At the tree level charged-Higgs and W-boson exchange contribute 

through the diagrams shown in Fig. 7. In the second model where all 

the couplings are proportional to S/n, the ratio of charged-Higgs to 

W-boson exchange amplitudes arising from the tree level diagrams in 

Fig. 7 is given by Z(E/n)2(msmd/~), where Z is a ratio of matrix 

elements: 

Z 
<2nj(s(l-y5)u)(;(1+y5)d)IR) 

= -- 
<2nl(~u~(l-v5)u)(;y~~l-y5)d)/K) ' 

(5.1) 

25 2 
It has been argued that Z could possibly be as large as about 10 . 
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Using this and the bound in Eq. (-3.5) we have that the magnitude of the 

ratio of charge Higgs to W-boson exchange is less than ab,out lo2 times 

(msmd/Mpc) . For reasonable current quark and Higgs boson masses this 

is negligible. At the one loop level we focus our attention on the 

contribution to K -f HIT coming from the diagrams in Fig. 8 Csometimes 

called "Penguin" diagrams). The amplitudes arising from these diagrams 

are pure AI=1/2 and Fig. 8(.a) has been proposed to explain the AI=1/2 

enhancement of weak IASl =l nonleptonic decays.25 The amplitude corres- 

ponding to the Higgs,contribution in Fig. 8(b) can easily be related to 

the amplitude for the W-boson contribution 26 in Fig. 8(.a) using the 

Fierz identity 

(&+y5)c)(&1-y5)d) = - + (~v,(l-Y5)d)(cyU(1+y5)c). (5.2) 

We then find that the ratio of charged-Higgs to W-boson contributions, 

R, is given by 

R= 
1 5 2 mt En (g/m:) 

-7 11 0 
(5.3) 

where 1~ is a typical light hadronic mass of order .5 GeV. The bound of 

Eq. (3.5) gives 

(5.4) 

Thus for a Higgs IMSS above 25 GeV the W-boson contribution certainly 

dominates. A similar analysis can be performed with a t quark in the 

loop using the six-quark bounds of Section III. Higher-order QCD correc- 

tions are not expected to change our conclusions since they contribute to 



-24- 

the bound on (5/r1)~ and to the Higgs contributions to the K + 2?~ decay 

amplitude in roughly the same way. 

As a second example we consider non-leptonic Cabbibo allowed D 

decays. Here, we would not expect that the scalar-pseudoscalar matrix 

elements would be greatly enhanced over the vector-axial vector matrix 

elements. In model two (or in model one when n/E + 1) the ratio of 

Higgs to W contributions in non-Cabbibo suppressed D decays (.from diagrams 

analogous to Figs. 7(a) and 7(b)) is about (mcmu/M$(,~/n)2 and using our 

bound (.3.5), we find that the Higgs contribution can only be about mu/MD 

times the W contribution. 

In model one, a similar analysis can be applied to the case 

(n/c.> " 1. The present experimental upper limit for Do-Do mixing 

gives rise to the bound in Eq. (A2.9) of Appendix II and rules out (for 

a large range of Higgs masses) significant Higgs effects in Cabbibo 

allowed non-leptonic D decays, but not in K decays. 

Many other applications are of course possible, but we hope these 

simple examples are sufficient to illustrate the usefulness of the con- 

straints on charged-Higgs couplings which we have derived. While, for 

simplicity, we have only considered two models for the Higgs sector in 

this paper it is clear that in any model (unless the Higgs couplings are 

arranged in such a way that the leading contributions coming from the 

diagrams in 'Figs. 2 and 3 cancel, 27,28 as in the case of the two-W boson 

exchange graph in Fig. 1) the KI,-KS mass difference will impose severe 

constraints on possible charged-Higgs couplings. 
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APPENDIX I 

In th5s appendix we tabulate the integrals used in the text, giving 

both exact expressions and approximations for heavy boson masses when 

useful. 

k2 

(k2+m)2(k2+g)2 1 

1 

(.k2+m2)2(.k2+M$ (k2+M$ 1 

1 = 
16s2 (~-m2)2(F(-M$ 

1 

(m2-M$(m'-$1 I 

(A1.2) 
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k2 

Ck2+m2)2(k2+b$(k2+$) 1 
1 = 

16n2 

I4 = J d4k 

E (21d4 

k2 

(k2+m~)(.k2+m:)(k2+bf$2 

(m2, - m:)(Mfj-mt)2 

+ 4 

(4 - 2) (4 - rnt) 
(A1.4) 

I5 = 1 

(k2+mz)(k2+m:)(k2+g)(k2+M$ 1 
1 = 

16r2 

(A1.3) 

2 

+ mt Ln (-H$rn~) rnt Rn (M$m~) 

Cm:-M$Cm~-+(m:-rn~) + (mf-M$(mE-M$(mt-rnt) I 
(A1.5) 
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k2 

(k2+mt)(k2+m:)(k2+g)(k2+M$ 

mt En Cm$$ mz Rn (mt/+ 3 
Cm:-I+ (m:-4) (mt-rnp) 

+ 
(mt-M$(mE-g)(mf -m:) I 

(A1.6) 
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APPENDIX II 

DO -Do Mixing 

In model one there is a possibility of significant charged-Higgs 

couplings when (n/c) >> 1. The K"- ??' mass difference does not provide 

a strict bound on (n/C)L since, for (n/C) >> 1 the leading contribution 

cancels out from the Higgs exchange graphs in Figs. 2 and 3 when the 

amplitudes corresponding to different quarks in the loop are added 

together. A better bound can be achieved by studying Do-Do mixing. 

We begin by considering the four quark model where s2= s3=0. 

Experimentally' 

I-(Do + ijo + K+IT-) I .16 
I'(D" -t Kr) 

which implies that 29 

(.A2 .I> 

AmD-<.6rD . (A2.2) 

Estimating the total width for D decay by assuming that the charm quark 

decays to free particles that dress themselves into physical states with 

unit probability gives 

5G2m5 
rD = 

192n 
; ac 8.6 x 10 -13 GeV . (A2.3) 

In the case (n/S) >> 1, the two charged Higgs exchange graph will dominate 

over the graph with one Higgs and one W-boson exchanged. The usual box 

diagram with two-W bosons in the loop also contributes to Do-Go mixing. 

However, since in this case the loop is dominated by small momenta of 

order the strange quark mass there is no justification for a local 



-3o- 

effective Hamiltonian formulation. On the other hand, the two-Higgs 

exchange diagram is dominated by large loop momenta of order the Higgs 

mass and gives rise to an effective Hamiltonian density 

%H = cY~(l+Y5)u)(cY'l(l+Y5)u) 

(82.4) 

The contribution to the DL -DS mass difference given by the matrix 

elements of the effective Hamiltonian in Eq. (A2.4), evaluated by 

inserting the vacuum in all possible ways, is 

4 m2 
-+ x 10 -16 GeV . 

% 

(A2.5) 

Requiring that this contribution be no larger than the experimental 

upper limit gives the bound 

(~2.6) 

In the six-quark model the box diagrams with a virtual b quark in 

the loop will also contribute to Do -5' mixing. Then, bounds on (r1/5)~ 

can be derived for a given value of the mixing angles much as was done 

in the latter part of Section III where K"-K" mixing was discussed. 
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FIGURE CAPTIONS 

1. The two-W. exchange contribution to the effective Hamiltonian for 

K" -go mixing. 

2. The two-Higgs exchange contribution to the effective Hamiltonian 

for l$O -iZ" mixing. 

3. The mixed Higgs-W exchange contribution to the effective Hamiltonian 

for K" -go mixing. (The diagram with Higgs and W propagators 

exchanged is not considered separately as it is automatically 

taken into account in the effective operator formalism.) 

4. The shaded region shows allowed values for (5/n)2 in the four-quark 

model coming from our bound of Eq. (3.10). The dashed line shows 

the upper limit for given by the approximate bound of 

Eq. (3.5). 

5. The upper limits for (&I/~I>~ in the six-quark model 

Various values of the angular factor a = (c1s2c3 + 

are shown. 

for mt =15 GeV. 

s2 
c2s3 cos 6) 7 

1 

6. Same as Fig. 5 but for mt=30 GeV. 

7. Tree level contributions to K decay coming from W (a) and charged- 

Higgs (b) exchange. 

8. "Penguin" diagrams contributing to K decay through W (a) and 

charged-Higgs (b) exchange. The cycloid-like line represents a 

gluon. 
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