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The expression for Tl in Eq. (6) is missing one term. The correct 

result is 

= T3(l++3) = 1 1 1 1 
T1 X2X3(1-X3) Y2Y3(l-Y1) x3(1-XII2 Y3(1-Yl)2 

1 

x2(1-x,)2Y2(l-Y,)2 
; 

the lowest anomalous dimension term in Eq. (7) and (8) is then (-e 
-II) 

not (ell-e-lj). This correction only makes minor modifications in the 

prediction for GM '(Q2) f or typical initial wave function conditions. 

Figure 2' illustrates the predictions for Q GM 4 '(Q2) assuming an initial 

wavefunction condition Cp(xi,X> Q 6(x1-1/3)6(x2-1/3) with h2 = 2 GeV2 

and various QCD scale parameters A2 = 1, 0.1, 0.01, and 0.001 GeV2. The 

ratio GM p (~'1 /Gus is a sensitive measure of the nucleon wave function. 

For the initial condition $(xi,h) a 6(x1-1/3)6(x2-1/3), the ratio 

-GMp(Q2) /cMn(Q2) = 1 at Q2 = x2, and decreases asymptotically to zero 

as 

(log Q 
2 2 yo-y3 

/A > = (log Q2/A2)-32'gB. 
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Fig. 2. Prediction for Q4G&(Q2) for various QCD scale parameters A2 
(in GeV2). The data are from Ref. 8. The initial wavefunction 
is taken as (x A) 
factor (l+m,,/Q >-2 $ 2 

0: 6(x1- 1/3)6(x2- l/3) at X2=2 GeV2. The 
is included in the prediction as a repre- 

sentative of mass effects. 
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ABSTRACT 

The form factors of baryons at large momentum transfer are computed 

in quantum chromodynamics to leading order in as(Q2) and m2/Q2. Form 

factors for processes in which the baryon helicity is changed or in which 

the initial or final baryon has helicity greater than one are suppressed 

by factors of m/Q. We also give QCD predictions for general exclusive 

scattering processes at large momentum transfer. 
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In this letter we present a new analysis of exclusive processes 

involving baryons produced at large transverse momentum. This analysis 

is an extension of our earlier work on meson form factors in quantum 

chromodynamics (QCD).1'2 Here we will describe QCD predictions for the 

electromagnetic form factors of baryons, for ratios of form factors, and 

for transition form factors (e.g., Y*P -t A) , all at large Q2. We will 

also outline the analysis of other large momentum transfer exclusive 

processes in QCD. 

The analysis of baryon form factors in QCD is in essence identical 

to that for mesons. ' Leading terms (in l/Q2) involve only the three- 

quark component of the baryon's wave function (in light-cone gauge, A+=O). 

When the leading logarithms in each order of perturbation theory (i.e., 

(as logQ2)n) are surmned, the form factor has the form (-q2 E Q2): 

? , 

Fg(Q2) = i[dXiI ~~‘yil e'(Xi,Q) Tg(Xi,Yi,Q) ~(Yi,Q) . (1) 
0 0 

Here CB = (ncolor+1)/2ncolor = 2/3, us = 4r/810gQ2/A2, B = ll- 

(2/3)n flavor I J 
TB = f (xi , Yi> 

is the minimally-connected amplitude for y*3q -+ 3q (Fig. l(a)), 3 and the 

symbol for symmetric integration over the constituents' longitudinal 

5 (k"+k3)i/(pi+pi); 5 xi=l) is 
i=l 

l 
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The effective wave function $(xi,Q) is the three-body qqq Fock state 

wave function integrated over transverse momenta ]kl (i) I2 < Q2 [CF = 

(nz-1)/2nc = 4/3]: 

(2) 

Only baryon states with Lz =O contribute to the leading power. The factor 

(log Q2)-(3/2)CF/B is due to vertex and fermion self-energy corrections 

in TB which are more conveniently associated with 4, rather than TB. As 

in the meson case, the leading behavior of (p for large Q2 is determined 

(in A+ =O gauge) by planar ladder diagrams with the transverse momenta in 

successive loops strongly ordered X2 << (ki)2 << (kf)2<< . . . << Q2. Three- 

and four-gluon couplings play no role in this order (other than in standard 

vertex renormalization) since they destroy the strong ordering. Conse- 

quently, defining 5 = loglogQ2/A2, we can derive an evolution equation 

for T(xi,Q) (relating it to T(xi,x) for some X<Q): 

X1X2X3 i ~ ~(Xi,Q) ' ~ ~ ~(xi,Q) I = ildyil V(Xi,yi) TCYi,Q) ‘3) 

0 

where 

is the interaction between each pair of quarks due to exchange of a single 
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gluon (Fig. l(b)). The Kronecker delta Shigj is l(0) when quark helicities 

are anti-parallel (parallel). As in the meson case, the infrared singu- 

larity at yi=xi is cancelled because the baryon is a color singlet. (In 

detail, the cancellation is due to self energy corrections on the external 

quark legs.) 

Any solution of the evolution equation can be expressed in terms of 

the eigenfunctions of V 
m 

~(Xi,Q) = X1X2X3 c an Tn(xi) e 
9,s 

n=O 

3 'F s-w 
26 'n x1x2x3 n = v +n T - (4) 

The coefficients an may be determined from the soft wavefunction: 

an (log $rn = / Cdx,l Tn(xi) $(xi,X) 

The leading eigenvalues y, and eigenfunctions Tn(xi) for helicity l/2 

and 3/2 baryons are given in Table I. (See Ref. 2 for further details.) 

In practical applications it is usually simpler to integrate the evolu- 

tion numerically (beginning with $(xi,X) at 5 = loglogh2/A2) as opposed 

to using expansion (4). However, from Eq. (4) and Table I, we can find 

the asymptotic wave function for very large QL: 

(log Q2/A2)-2'38 b-4 = l/2 
9(x i' Q) + C ~1x2~3 (5) 

(log Q2/A2)-2'8 Ihl = 312 

where C is determined by the qqq wave function at the origin, and h is 

the total helicity. Since asymptotically $ is symmetric under inter- 
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change of the xi's, Fermi statistics demands that the corresponding 

flavor-helicity wave functions must be completely symmetric under particle 

exchange -- i.e., identical to those assumed in the symmetric SU(6) quark 

model. 6 

The magnetic form factor GM(Q2) for nucleons is given by Eq. (l), 

where Tb is computed from the sum of all minimally connected diagrams 

for y*3q-+ 3q (see Fig. l(a)). We find (h1=h3=-h2=h) 7 

TB = 64r2jCB “,~Q2’j~~ ej Tj(Xi,yi) f (Xitt Yi’i (6) 

where 

1 1 1 1 
Tl = T3(1"3) = 

x2x3(1-x3) Y2Y3(1-Y1) x3(1-x$2 Y3(l-Yl)2 

1 

x2(1-x1)2 y,(l-y1)2 
; 

1 1 
T2 = - 

x1x3(1-x1) Y1Y3(1--Y3) 

and e. 
J 

is the electromagnetic charge (in units of e) of particle j. 

Convoluting with wave function (4), we obtain the QCD prediction for the 

large Q2 behavior of GM: 

32n2 ai(Q2) 
GM(Q2) = y-- Q4 & bn,m (log $)'n-ym[l +o(as(Q2) ,da)] 

(7) 

For very large Q2, the n=m=O term dominates and we find 

321~~ 
GM(Q2) -f yj-- 

a2 (Q2) 
c2 s 

Q4 
(-e- ,,I (8) 

where e,, (e-,,) is the mean total charge of quarks with helicity parallel 
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(anti-parallel) to the nucleon's helicity (in the fully symmetric flavor- 

helicity wave function). For protons and neutrons we have 

ep = 1 
II 

ep =0 -II ei = -eF,, = -l/3 (9) 

The constants C are generally unknown for baryons; however, by isospin 

symmetry C 
P 

= Cn and thus QCD predicts the ratio of form factors as 

Q2 -t-. The ratio Gs(Q2)/Gi(Q2) is a sensitive measure of the nucleon 

wave function. For the initial condition $(xi,X) c: 6(x1- 1/3)6(x2- l/3), 

the ratio -G:(Q2)/GE(Q2) z 1 at Q2=A2, and decreases asymptotically to 

zero as 

(1% Q 
2 2 yo-y3 

lA > = (log Q2/A2)-32'g" . (10) 

Both the sign and magnitude of the ratio are non-trivial consequences of 

QCD; they depend upon the detailed behavior of TB and +(xi,Q) as Q2 -f 0~. 

For comparison, note that in a theory with scalar or pseudo-scalar gluons, 

diagrams in which the struck quark has anti-parallel helicity vanish. 

Thus scalar QCD predicts a ratio G$G$ + ep/ef; = -l/3. 

The predictions for GM(Q2) in the subasymptotic domain depend on 

the n,m # 0 terms in Eqs. (4) and (7). Figure 2 illustrates the pre- 

dictions for Q4Gp(Q2) M assuming an initial wave function condition 

$(xi,h) 0: 6(x1- 1/3)6(x2- l/3) with X2=2 GeV' and various QCD scale 

parameters A2 = 1, 0.1, 0.01, and 0.001 GeV2. Due primarily to the 

factors of as in Eq. (6), the theoretical curves fall faster than the 

data8 -- though not as fast as a full power of 1/Q2. Non-leading terms 

could well be important for Q2 2 25 GeV2. These corrections can and in 

fact must be computed before a definitive comparison with the data is 

made. 9 
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As is the case for mesons (see Footnote 6 of Ref. l), form factors 

for processes in which the baryon's helicity is changed (Ah # 0), or in 

which the initial or final baryon has h> l,are suppressed by factors of 

m/Q, where m is an effective quark mass. (Crossing and the Ah=0 rule 

imply that form factors for particles with opposite helicity dominate 

for q2 timelike.) Thus the helicity-flip nucleon form factor is pre- 

dicted to-fall roughly as F2 N mM/Q6, and the elastic ep and en cross 

sections become (-t = Q2 -tm> 

do 
2 2 

ha s +u2 
dt + t2 2s2 [ 1 +t) (11) 

Cross sections for transitions such as ep +- eA (IhAl = l/2) are also given 

by Eq. (11) (with GM as in (7) and (8) but with C2 -t CpCA in the latter); 

quark charges are still those given in (9). Cross sections with IhAl =3/2 

are suppressed (by m2/t). The reaction e+e- + A+A- is dominated by 

* baryons with lh,] = l/2, the cross section for production of lh,l = 3/2 

pairs or deltas with IhAl = 3/2 and l/2 is suppressed. Most of these 

predictions test the vector nature of the gluon. For example, transitions 

ep + eA (IhA] = 3/2) are not suppressed in scalar QCD. 

The techniques outlined above for studying asymptotic form factors 

can clearly be extended to the computation of any exclusive process 

involving large transverse momentum exchange between color singlets. 

Thus the fixed angle amplitude for a process AB -+ CD is (to leading 

order in a,(p:)) 
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CM AB-KD = Cdx,l $‘(x p )&x P )T (x p2>+ (x P )@B(Xb’PL) C c' I D d' I H i' I A a' I 

where the momentum transfer between constituents occurs through a single 

hard scattering amplitude TH (with all internal legs off-shell by N p:). 

The wave functions $A, $B, . . . are just those described above and in 

Ref. 1. The amplitude TH falls as (11~~)~~~ where n is the total number 

of constituents, in agreement with dimensional counting rules. For p, 

sufficiently large, the wave functions tend to their asymptotic form 

(Eq. (5) for baryons) and the cross section becomes: 

2 (AB-tCD) (13) 

where for mesons yi=O, -4/3B (for lhl = 0,l) and for baryons yi = -2136, 

-218 (for Ihl = l/2, 312). The normalization is, in principle, fixed 

by form factor data. Contributions due to the pinch singularities 

discussed by Landshoff 10 are suppressed by Sudakov form factors. 11 

Consequently, these contributions fall faster than any power of t and 

can be neglected relative to (13) except possibly when s >> Itl. 

It should be emphasized that the specific integral power Q -4 pre- 

dicted for GM in Eq. (7) reflects both the scale invariance of the 

internal quark-quark interactions, and the fact that the minimal spin 

l/2 color singlet wave function contains 3 quarks, Thus both the dynamics 

and symmetry properties of QCD are directly tested. Furthermore, the 

spin dependence of quark-quark interactions can be tested at short 
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distances by studying the helicity dependence of elastic and transition 

form factors. We also note that it should be possible to relate the 

normalization and structure of the wave function $(x,A) at large distances 

to wave functions used in the study of baryon spectroscopy. 
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Table I. Eigensolutions of the evolution Eq. (3) for lhI = l/2 

(;"+) and lhl = 3/2 (T"') baryons.5 A procedure 

for systematically determining all Tn is given in 

Ref. 2. 

b n N 

I 
-1 

213 
1 

513 
7/3 
512 

1 
0 

312 
312 
7/3 

1716 
17/6 

120 
1260 
420 
756 

34020 
1944 

120 
420 
420 

5760 
3024 

34020 

a00 
Cd al;) Cd b-d 

a01 a20 - - - - 

1 

2 
2 

2 

1 -1 
-3 -3 
-7 -7 8 

1 -1 -413 
-7 -7 1413 

-3 

-712 
-712 

1 

-3 
-712 7/2 
-712 2 

-1 -413 

all (n) ,ai1;’ - - 

4 8 
413 

14 14/3 

712 712 
8 2 

413 
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FIGURE CAPTIONS 

Fig. 1. (a) Representative diagrams constituting TR for baryon form 

factors. The arrows indicate the quark helicity. 

(b) The one-gluon interaction in Eq. (3). 

Fig. 2. Prediction for Q4Gg(Q2) for various QCD scale parameters A2 

(in GeV2). The data are from Ref. 8. The initial wave function 

is taken as $(x,X) 0 6(x1-l/3)6(x2-1/3) at A2=2 GeV2. The 

factor (l+m,2/q2)-2 is included in the prediction as a repre- 

sentative of mass effects. 
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