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ABSTRACT 

We examine the infrared behavior of the effective coupling in 

quantum chromodynamics (QCD) using: Slavnov-Taylor identities, re- 

normalization group and Schwinger-Dyson equations. We show that the 

effective coupling ansatzed solution g(q2/u2 ,g,(p)) = (p 2 2 x/2 /q ) gR(?d 

in the infrared limit q2/p2 + 0 where p 2 is the Eculidean subtraction 

point; A = (d-2)/2 where d is the space-time dimension, can satisfy 

the above equations. 
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Some time ago it was discovered that non-Abelian gauge theories had 

the unique characteristic of controllable short-distance behavior known 

as asymptotic freedom cl]. This result led to the conjecture of in- 

frared slavery; i.e., the property responsible for the confinement of 

quarks and the resulting spectrum of color singlet state [21. 

In the intervening time period many interesting physical mechanisms 

have been-proposed in an attempt to prove the infrared slavery conjecture 

from the QCD Lagrangian. Such attempts have so far been inconclusive 

c31. In this letter we present a different viewpoint based on a self- 

consistent approach C4l. This means that rather than attempting to 

identify any particular physical mechanism as dominating the QCD vacuum 

state we use the non-perturbative Schwinger-Dyson equations and Slavnov- 

Taylor identities of QCD to obtain the self-consistent behavior of the 

effective coupling in the infrared region C51. 

QCD is a relativistic and renormalizable field theory of colored 

quarks and gluons based on the classical non-Abelian Lagrangian: 

xaB 
where F a = a Aa 

pv ?Jv 
- ay”; + gf AbAC and DaB a 

abc u v lJ 
= 6*au- igAE 2 

where A‘s(x) is a colored gauge field, q,(x) is a quark field (quark 

flavor indices are suppressed) a color indices, where repeated indices 

are summed. xa are W(N) colored matrices C)ia,~bl = 2if 
abc c X with fabc 

the structure constants of SU(N) and g the universal coupling constant. 

As is well known for the quantization of QCD one must add to the 

Lagrangian in eq. (1) a gauge fixing term 9 g.f. and a Faddeev-Popov 

ghost term 9 . We initially choose 9? lim a+O, the 
g g.f. 
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covariant Landau gauge, for pedagogical simplicity. Several problems 

however arise with this gauge choice and will later be shown to be 

resolved by using the axial gauge 9 g.f. = &(n l A)2; lim a-to. We 

shall also initially ignore the effect of the quark Lagrangian term 

which will be treated later self-consistently. 

The invariance of the QCD Lagrangian eq. (1) under non-Abelian 

gauge transformations leads to Slavnov-Taylor identities for the Green's 

functions of QCD C.51. They are the non-Abelian generalization of Ward- 

Takahashi identities in local Abelian gauge theories. In the Landau 

gauge, ghost-gluon and ghost-quark scattering-like kernels which appear 

in the Slavnov-Taylor identities for the one particle irreducible triple 

gluon and gluon-quark-antiquark vertices have been shown to vanish for 

incoming ghost momentum going to zero [3,51. Using this result as well 

as an initial approximation of dropping the ghost self-energy term 

2 ib(q ) in the infrared region, the Slavnov-Taylor identities considerably 

simplify in the infrared region. We obtain Abelian-like Ward identities 

for the one particle irreducible (IPI) triple gluon (fig. l(a)) and 

gluon-quark-antiquark (fig. l(b)) where internal color symmetry is taken 

to be unbroken: 

(2) 

qll-( a ??q@2’43) = gR ta - S%12)] 

The IPI ultraviolet renormalized Green's function with n external 

gluons Rr b-d = .p/2 Cd satisfies the renormalization group 
l.y..?J, 3 l- Ly.4, 

equation in the Landau gauge: 



[ 
v $+ B(gR) $-- (4) 

R 
nYkR)l$n) . . . 11 

ln 
(41Js--yqn,gR) = 0 

2 agR where 1-1 is the Euclidean subtraction point mass; S(~,)=F! - au is the 

Callan-Symanzik function; Y(gR) the gluon anomalous dimension and 

l/2 gR(d = '3 g the renormalized coupling. The renormalization constants 

Z3 and Zl are defined by normalizing the gluon propagator and triple 

gluon vertex at the subtraction point n2 to their bare amplitudes (zeroeth 

order perturbation terms). Upon multiplying both left and right hand 

sides of eq. (2) by the gluon propagators D 
n2'3 

(q2) and D 
V2u3 

(q3) and 

taking the limit cc-+0 we obtain upon substituting the normalized forms 

the simple Abelian-like relation Z1 =Z3. Using this relation we find the 

relation B(gR) = gRy(g,). Therefore, only one independent function B(gR) 

remains in our infrared self-consistency scheme. 

The effective coupling g(t,gR) function is next introduced by the 

defining equation: 

a;(t,gR) 
at gR 

= BG); gt”,gR) = gR (5) 

where t is a dimensionless variable given implicitly by t = J- 
dx - 

gR 
B(x) l 

More specifically if we take t = 3 Rn q2/p2 we obtain: 

. (6) 

Using this.equation and the relation g,v(g,) = B(gR) we obtain a 

general solution to eq. (3): 
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n 

rR n FI1...Pi 
= 

Pl...Un c 
gR i=l 

F(i-2(t,) ...;-2(tn)) Ti (7) 

v l ..lJ 
where Til 

n are tensors constructed out of tensor elements gU,F1., 
1J 

4-i' 4j 
; i,j =l... n where for example the gluon propagator solution in 

Landau gauge is: 

q?y 

the 

lim a + 0 . (8) 

In order to construct an infrared effective triple gluon IPI longi- 
L 

tudinal vertex P u;&3(qlq2q3) we impose the following constraints: 

(a) Boson and Lorentz symmetry, (b) renormalization group solution eq. 

(7), (c) Abelian-like Ward identity eq. (2), and (d) absence of kine- 
T 

matical singularities. The, transverse gluon vertex T p;;;,3(41 42 43) is 

similarly determined by the homogeneous version of eq. (2): 
T 

abc qlU1rP1V21J3 (ql q2 q3) = 0. We therefore construct the most general gluon 

vertex satisfying all of these constraints using the kinematically 

singularity-free elements p.. 
=J 

- g2(q2) - 9-2(q2)) / hi2 i j 
i- 45); where 

<< 1: 

r 

+ p13 
L 

91.43 gn1!13 - q3111q1U3 3 

x (41- q3jv + cyclic permutations 
2 i 

(9) 
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where 

L 

q1 T; abc 
ul nln.12'3 - q3u2q3113 

and 

X 
q2 ' '3'1~~ - q1'q3q2~3 1 - '1~ '21-1 '3~ )] 3 12 

+ n2o13o23 + n3%2'12 H q1*q2gn1u2 - 41P292P1 > 

X 
q2 ' q3q1p3 - q1 l q3q2~3 )i 

+ cyclic permutations (10) 

* 
where n 1' n2, n3 are unknown constants. In the limit of any one of the 

incoming momentum qi~ 
i 

going to zero with others held fixed (q1+q2+q3= 

0) we observe r pp2p3(%-q3,93) = "D;lU 2 3/aq3,,l and rT + 0 and where 

TL + 0 by construction. The differential version of the Slavnov-Taylor 

identity eq. (2) is thus satisfied. 

The Schwinger-Dyson equation for the gluon vacuum polarization 

u34 tensor nab (q3,a) is given in fig. 2 and obeys the transversality 

,,a) = 0 where IT 

V3 5 
93 q3 l 

Unlike QED the vacuum polarization is gauge dependent. We 

will initially consider only the terms figs.2(a) and 2(b), treating the 

remaining terms later. Using eq. (2) it is then straightforward to show 

* Note that the total triple gluon vertex is normalized at the Euclidean 
point q1 2 = q; = q$ = ,2, only in so far as the Slavnov-Taylor identity 
eq. (2) is satisfied. 
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that the terms figs. 2(a) and 2(b) will obey the transversality condition 

q31J3r 
u3";(q3,u) = 0. This can be seen by either regulating the denomina- 

tors with a small mass g2 + 0 or by analytically continuing in space-time 

dimension n where integrals of the form I- dnk(k2)B= 0 . Such a proof is 

analogous to that given in QED. 

After replacing unrenormalized coupling propagators and vertices by 

their renormalized counterparts according to the standard renormalization 

-l/2 -1 prescription, i.e., g = Z3 gR, D = Z3DR, T = Z3 rR, etc. we obtain a 

vacuum polarization equation: 

Ocda (-ql,-q2,-q3) DCC' ( ) D;$;(q2) 
RulJJi '1 

c'd'b 
x r 

R'1U2'13 
(91'42'43) (11) 

where 

n,(q;,a) = Z;lgi/ i2(qi) - 1 and Zil < m 

Imposing the weak constraint condition q3g 2--2 (4:) * 0 as q2/V2 3 + 0 one 

observes that the left-hand side of eq. (11) goes to zero as q3 + 0. 

Substituting the limiting forms for the propagator eq. (8) and vertices 

eq. (9) and eq. (10) as q3 + 0 into the right-hand side of eq. (ll), one 

obtains a self-consistency condition using dimensional regularization: 

(s2) (d/2)-1 g2cq2> m = 0 
1 

l 0 
(12) 
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This constraint follows from the longitudinal vertex solution eq. (9) as 

the transverse vertex eq. (10) vanishes when any single momentum is II 

taken to zero. A solution to this constraint condition which exhibits 

singular infrared behavior is: 
* 

(13) 

2 2 
-91/f' 

Other solutions are also possible, for example g2 = e gi which is 

infrared non-singular and a Coulomb-like charge as qt + 0. 

Next we substitute our infrared singular solution (eq. (13)) into 

the vacuum polarization eq. (11) using eq. (9) and eq. (10) in order to 

ascertain its self-consistency for small but non-vanishing values of q3. 

We find after straightforward although rather tedious algebra and after 

evaluating Feynman type integrals via the standard n-dimensional re- 

gularization techniques the expression: 

L12 3 
( 2 n-4 -+ cf) + TQcl + q2c2 + n3c3 = -1 

43 
1 

(14) 

where co # 0, c;),c1,c2, and c3 are dimensionless constants; q:/u2 << 1 

and where we have set d= 4, i.e., A =l and have already factored out the 

transverse tensor (g P3G 2 n3 4 q3 - q3 q3 ) from both sides. Explanatory 

comments on eq. (14) are appropriate here. In obtaining eq. (14) we 

have taken the lim a+0 and subtracted out a term with coefficient l/a. 

The remaining term, i.e., the left-hand side of eq. (14) which is 

* Such a solution is strictly only valid for the region q2/p2 << 1, as 
we know from the "asymptotic freedom," short distance behavior: 
E2 (q2> - l/Rn (q2/n2) for q2/p2 >> 1. 
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independent of a has been shown to remain transverse. The term 

2 
Y- cO 2 x which arises from the sum of infrared divergent integrals of 

; a+6 > 2, originates from the 

longitudinal vertex eq. (9) contribution to eq. (11). It is clear that 

eq. (14) cannot be consistent unless the terms in the parenthesis 

multiplying n2/q2 disappear 3 . 

Let us suppose that we are able to eliminate the cO/(n-4) term 

which leads to an infrared divergent vacuum polarization. It is then 

possible to adjust the underdetermined transverse parameters nl, n2, and 

n3, i.e., nl = -$)/cl; n2=O; n3 = -l/c3; etc., so that eq. (14) is 

satisfied. Knowledge of the longitudinal vertex solution eq. (9) is 

therefore not sufficient in order to satisfy the vacuum polarization 

eq. (11) with solution eq. (13) for g2. Using the equations available 

in this paper one can therefore only show that the ansatzed solution 

eq. (13) for g2 satisfies a necessary condition eq. (12) although not a 

sufficient condition eq. (14). In order to determine ni from QCD itself 

it is necessary to understand the global properties of the total triple 

gluon vertex. Such information however is contained in the infinite 

hierarchy of coupled Schwinger-Dyson equations for the triple gluon, 

quadruple gluon vertex, etc. A truncation procedure for these equations, 

similar to our analysis of the vacuum polarization function may help 

determine the ni parameters. 

To understand the origin of the infrared divergent l/(n-4) term 

let us examine the infrared content of the right-hand side of the vacuum 

polarization eq. (11). This can be done by looking at the small inte- 

gration momentum ql << q3 region, where q3 is also small but finite: 
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where q ,1 
<< (T << q 3 restricts the integration strictly to the infrared 

region. Thus, in order that IT ? (43) 
U3p3 

contains no infrared divergent 
0 

7T , (43) = $- 
n3U3 . s 

dnq r : 
1 u11Q3 1 (0,+q3,-q3) D ? (91) 

'"1% 

x D 

l/(n-4) term we find the constraint: 
J 

dnql Dllr~; (q,) < a, 1imn-t 4. 

0 
Substituting the Landau gauge propagator eq. (8) and i2 eq. (13) we 

observe that this condition is not met, giving rise to a l/(n-4) infrared 

divergent term in the Landau gauge. 

In order to ameliorate this problem let us instead choose the axial 

gauge gg = &(n* A)2 where n is the gauge direction vector, lim cc + 0. 

In this gauge the Slavnov-Taylor identities eqs. (2) and (3) are exact 

as Faddeev-Popov ghosts are absent. The full gluon propagator is how- 

ever more complicated (ignoring color indices): 

n3 4 
+ aq3 q3 /(n* q3) 

2 lim CL 3 0 

where 

i 

n.13 4 G,"' 
gp3p; _ 93 n + q3 

2 U3 l-5 
Pp3p; ~ 4 + n q3 q32 

n. 43 (n l q3) 
I q; \ 

and 

It is straightforward to show that by choosing the solution: 
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A = i2(q$ /g; ; B=O, the Slavnov-Taylor identity eq. (2) is satisfied 

with the triple gluon vertex eq. (8) and eq. (9) (after dropping the 
L 

F abc 

pl'2'3 
term). In terms of the general vacuum polarization term: 

+ 
(q;)2 lJ3 ?J; 

b l q3j2 

n n 
) 

our solution corresponds to ITS = l/A; r2=0. Our propagator also obeys 

the same renormalization group eq. (4). 

Substituting our axial propagator into the infrared convergence 
0 

criterion J- d"q 1D 
VG (q 1 ) C m lim n + 4, we observe that this criterion 

0 

is satisfied due to the vanishing of the angular integral / 
dQ P"l"'=O. 

q1 
This can be seen by evaluating the integrals: 

s 
dQ b ql,,( 

41 Ul 1 
+ n ,q )/no ql F 2n n ,/n2 

Pl Pl p1 Pl 

and 

s 
da q1 q1 ,/(n- q112 = -g +2n n,/n2 

91 Pl % VG Pl Pl 

The rest of the arguments leading to our self-consistency condition eq. 

(14) are retained in the axial gauge. The right-hand side of the vacuum 

polarization equation however does induce a new ITS term. We conjecture 

that such an induced term will not give rise to an infrared singular B 

term propagator which could potentially violate our infrared convergence 

criterion. The remaining quadruple gluon terms figs. 2(d) and 2(e) may 

be treated in a similar manner to our I.P.I. triple gluon term through 
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the use of the I.P.I. quadruple gluon Slavnov-Taylor identity, and may 

be shown to be transverse. The basic conclusions of this letter are 

not altered by inclusion of these terms in the vacuum polarization 

equation. Details will be published elsewhere. Finally, returning to 

our q3 + 0 consistency condition we find in the axial gauge with our 

propagator solution the same self-consistency condition as in the Landau 

gauge, eq-. (12). 

It is instructive to examine the quark self-energy equation fig. 

3(b) in the Landau gauge (albeit its difficulties) and in the infrared 

region. We can take advantage of the effective coupling's infrared 

singular behavior by making use of,the renormalized version of eq. (3): 

Pa (p,p+q) = gRta 
a sil (P) 

VR 
ap , lim q -f 0; where S=Z2SR and TV& = Z;'T",. 

!J 

We obtain in the case of zero bare mass quarks the equation: 

x (q2) (d/2)-1 dq2 lim ti2 -f 0 (15) 

where C2(R) = (N2-1)/2N, K is an angular integration constant and 15~ iS 

an infrared cutoff regulator. Substituting the quark propagator 

sR = i(fiARb2) + B,(P')> one obtains uncoupled first order differential 

equations if we use the approximation C(p) X S-'(p) = Z;%il which ignores 

the kinetic term $. One easily solves these equations obtaining the 

(p2 S2) = p/f31 l~g)log P2/S21/(P 
2 -2 B2’Bl 

solutions A R ' 16 > and BR(p2) = 

4 constant, where p = 1/(21~) x Z2 -l/rC2(R)~2g~ and S1,S2 > 0 are constants. 

To understand this result let us compare the electron propagator's 
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infrared behavior in QED: Sunren = Z2$/(p ) 21+Y;y=:u ; 2n . . . . One 

2 l+Y can define Z,,.,.(p) 2 Z2/(p ) thus absorbing the soft coherent 

infrared photon cloud into the wave function renormalization leaving a 

renormalized single particle pole state. By analogy our QCD quark pro- 

pagator can be rewritten as Sunren = Z2 where S = Z -l (PhuP2 
QCD 

(P) 'R R 2QCD 
and where Z i;CD(p) = P2AR(p2,62). One therefore observes that unlike 

QED the s‘oft coherent gluon cloud cannot be renormalized away but in fact 

2 confines as 6 -+ 0, leading to no on-shell renormalized quark state. 

The second important property to note is that the solution BR(p2) = 

constant violates Chiral symmetry Cy5,S -5, # 0 and therefore realizes 

the PCAC phase. One thus obtains a dynamical Goldstone boson in the 

axial vertex r-z as a consequence of our infrared solution [3,4al. Next 

using the product SRTL = -iy,,(l/$) lim q + 0; 62 
P 

+ 0 it is straight- 

forward to observe that the quark term fig. 2(f) vanishes in the 

lim 62 + 0. Inserting an explicit bare quark mass, i.e., # -t 3-m does 

not alter this conclusion. We expect the quark propagator in the axial 

gauge to behave in a similar way to the preceding results. 

Similarly the Schwinger-Dyson equation for the ghost self-energy 

b ren(k2), fig. 3( ) a may be solved in the infrared region k2 + 0 by making 

use of the effective coupling's eq. (13) infrared singular behavior and 

the Landau gauge's simplifying properties for the ghost-ghost-gluon 

vertex [33. Solving we obtain bren(k2) w z3(k2,62), lim k2 + 0; 

lim s2 -f 0 where ??,(k2,S2) = z3 Rn k2/S2. One therefore observes that 

our initial approximation of dropping bren(k2) in the Slavnov-Taylor 

identities is inconsistent (due to its infrared divergent behavior as 

CT2 + o>, confirming again the lack of a simple self-consistent infrared 

scheme in the Landau gauge. 
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The S function in the infrared region is obtained by substituting 

i* = (lJ2/q2) "g; into eq. (5) t o obtain B(gR(p)) = - 4 @-d - Solving 

for gR(p) we observe that the quantity gR@)n x/2 x/2 = &$q&-J is a 

renormalization group invariant where uO is an arbitrary mass point. 

In particular for d=4, gR(~G> is dimensionless and A = g~(~&C may 

be identified as a dynamical mass. This may also be seen explicitly 
gR 

by noting-that A = u x exp - 
/ 

dg 
B (Ed 

is the dimensionally transmuted 

mass. Note also that by setting no = A we see that A is defined as the 

scale for which gc(A)=l. Substituting our expression for gR(p) in terms 

of I\ we may rewrite g2 as follows: 

-2 2 g(q)=vA ; 
7 

USA lim q2/v2 + 0 (16) 

Finally let us note that the choice of the Euclidean subtraction point 

n is arbitrary and does not affect the values of physical quantities 

such as hadronic masses. In consequence with this observation some 

convenient choices for p are p = A or 1-1 = A/N. The choice n = A/N can 

be shown to correspond to the well-known topological expansion of diagrams 

in the asymptotic lim N + co. Details of these and other results reported 

in this letter will be published elsewhere. 

In conclusion we have shown in this letter that confining infrared 

behavior of the effective coupling is consistent with the QCD Lagrangian. 

In particular a self-consistent set of Green's functions in the axial 

gauge can be constructed. Using these Green's functions one can then 
* 

calculate the spectrum and scattering amplitudes of this theory. 
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FIGURE CAPTIONS 

Fig. 1 (a) Full gluon propagator. 

(b) Triple gluon IPI vertex. 

(c) Gluon-quark-antiquark IPI vertex. 

(d) Four gluon IPI vertex. 

(e) Full ghost propagator. 

(f) Full quark propagator. 

Fig. 2 (a)-(f) Schwinger-Dyson equations for gluon 

vacuum polarization tensor. 

Fig. 3 (a) Schwinger-Dyson equation for ghost self-energy. 

(b) Schwinger-Dyson equation for quark self-energy. 
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