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ABSTRACT 

Parameters of an electron storage ring which are relevant to 

brightness are defined. For the case of a FODO lattice scaiind laws 

and maximum beam brightness are calculated. 

I. Introduction ------- 

Electron storage rings are used more and more frequently as a 

source of light in a wide range of wavelengths for research in solid 

state physics, microbiology, technology and other fields. For many 

experiments it is desirable to have the light come from a point-like 

source or to have the brightness of an extended source as high as 

possible. 

Electrons circulating in a storage ring emit synchrotron light 

photons almost tangentially to the particle's trajectory at the point 

of emission with a root mean square angle of l/y, where y l mc2 is the 

total electron energy. 

Each electron as it moves around the ring oscillates transversely 

about an equilibrium orbit which usually runs through the middle of the 
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magnets. The amplitude of these oscillations is determined by the 

quantized emission of synchrotron radiation photons,, a damping mechanism 

due to the accelerating fields which restore the energy lost to radiation 

and the particular arrangement of focussing and bending magnets. As a 

result of these processes we get a stationary Gaussian distribution of 

electrons in the transverse plane. 

In tMs paper .the physics which leads to a certain electron density 

distribution is described and scaling laws as well as limitations to the 

beam brightness will be derived. 

UT. Definition of Relevant Storage Ring Parameters 

The magnet lattice of a storage ring is generally composed of a 

set of evenly spaced bending magnets on a circle. Between the bending 

magnets the magnetic focussing elements - quadrupoles - are located. 

The quadrupole fields are able to change the slope of a trajectory 

proportional to the distance of that trajectory from the center of the 

quadrupole. The equation for the particle trajectory in the horizontal 

plane then can be written as:l 

a’x, B -k&s) . x 

da2 B 
Cl) 

where xB is the distance of the particle from the ideal orbit going 

through the centers of the magnets and s,the coordinate along the tra- 

jectory. k(s) is the strength of the focussing elements being a positive 

or negative number where there are quadrupoles- and zero elsewhere. The 

strength multiplied by the length of the quadrupole is just the inverse 

of the focal length of the quadrupole k* 11 = l/f. Parameters of the 
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bending magnets do not appear in Eq. Cl) since we use a coordinate 

system @,y,s) which moves with the particles along the ideal orbit. 

Since kb) is a periodic function around the storage ring, the solution 

of Eq. (I) is: 

xp = a*JFGT l cos (J,(s) + 6) (2) 

with a an amplitude factor and 6 a phase constant. B(s) is the so- 

called betatron function and is the one and only periodic solution of 

the differential equation d2w/ds2 + k(s) l w - 1/w3=o Cw = m) which 

can be derived by inserting Eq. (2) into Eq. (1). The betatron phase 

9(s) is defined by Q(s) = t do/B(a) . 
0 

Equation (2) describes the trajectory of a single particle with a 

phase 6 at s=O. In a particle beam each particle has a different 

phase constant 6 and if we follow all particles with the same amplitude 

factor a around the ring we find for the envelope E(s) of all these 

particles: 

Eb) = +a- 

The total beam width then is just 2 l IE(s) 

In the remainder of this paper we are 

determining the amplitude factor a. If we 

(3) 

I* 
mainly concerned with 

take the derivative of Eq. 

(2) with respect to s and eliminate from both equations the phase 

*Cd+6 we get: 

a2 - ,i2 
2 + 2axgxi + yX6 (4) 

witha = -g'/2 and y = Cl+aZ)/B. Eq. C4) tells us that a particle 

with an amplitude factor a moves on an ellipse in the Cx,x') phase 
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space. The significance of the phase ellipse is that all particles 

with-amplitude factors a < amax move on similar ellipses within the 

ellipse defined by a-. The area enclosed by the ellipse amax is 
2 xa max - T l E: where E is defined as the emittance of the beam. For a 

Gaussian density distrfbution we define the beam emittance E for those 

particles which are within an envelope of 0: = <xi> = 4 f3a2 - BE (see 

Eq. (2)). 

There is another quantity - the n-function - we need to know 

before we can calculate the beam emittance. Particles with the right 

energy E. perform betatron oscillations about the ideal orbit. If, 

however, the particle has a different energy E = Eo+AE it performs 

betatron oscillations about a different orbit which is offset from the 

ideal orbit by n(s) l AE/EO. The n-function is the one and only periodic 
. 

solution of the equation of motion:' 

with l/p the curvature of the bending magnets. 

III. Ream Emittance in Electron Storage Rings' 

While the particle moves around the ring performing betatron 

oscillations there comes the moment when it emits a photon of energy 

6E. From that point on the particle oscillates about a new orbit which 

is offset from its previous orhit by -n(s)*GE/EO. Since the particle 

cannot make a jump in space we have for the variation of its betatron 

oscillation ampliiude 6x = 0 = 4x 6 - n(s) l 6E/E0 or 6xg = n(s)* dE/EO. 

Analogously, we have for the variation of the slope 8x; = n'(s) l 6E/E0. 
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The sudden variation of the betatron amplitude also changes the amplitude 

factor a. From Eq. C4) we have for the variation of a 

6a2 = 6*6(xi2) + 2a 2 
l 6 or, l $1 + Y-0 6(X6) 

withxg - xoB + 6xg and xi - x' + 6x(;, we get 
06 

+ 2aqq’ +yn2 (6) 

Here we have averaged over all possible amplitudes a particle can have 

when it emits 

linaar in xOB 

Equation 

a photon which leads to the disappearance of all terms 

or x;)~. 

(6) gives us the increase of the amplitude factor a due 

to the emission of one photon of energy 6E. With A the number of 

photons emitted per second with an average energy <6E2> we arrive at 

an increase of the amplitude factor a per turn 

d<a2> 1 
dt= 2 

cTOEO f 
'I&<cSE~>S'\ ds = L <&<6E2>&?), 

EO 
(7) 

where To is the revolution time, c the speed of light, <6E2> the average 

of the square of the photon energy and <d<6E2>J%'>s the average of the 

enclosed function around the whole ring. Due to the emission of syn- 

chrotron radiation we have a continuous increase in the beam emittance 

according to Eq. C7). This increase is counteracted by the particular 

way storage rings restore the lost energy which leads to a damping of 

the betatron oscillations according to 

d<a2> 
YE-= - -f <a21 
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where r is the damping time for transverse betatron oscillations. 

‘Equations (7) and (8) lead to an equilibrium state defined by 

<A<6E2>X> 
s - (9) 

where we have used cx = <a2>/2 = oz/S. With the well-known relation 

JV<~E~> = 55scPY/(24fi) (E: c = 3iky3/(21p() the critical energy of the 

synchrotron radiation 

radiation power for a 

and P 
Y 

= 2recEi/(.3(mc2)3p2) the instantaneous 

single electron) and T = 2EO/<P > , we get: 
YS 

55 hc 2 ~-bx=~- 
<ll/P3i~>s _ 

mc2 y" <l/p2> 
(10) 

8 

So far we have calculated only the horizontal beam size. In the 

vertical plane there is no quantum fluctuation in a plain ring with no 

vertical bending magnets. However, there is still damping leading to 

a zero vertical emittance. The vertical beam emittance in a storage 

ring, therefore, is determined by other effects, such as the emission 

of photons at an average angle <e2> = l/r2 to the direction of the 

particle's trajectory. This effect leads to a vertical emittance of 

4Crd d * 1.9x10 
-13 - 

By< 1 l/p3 1 >J<l/p2> which is very small in 

practical storage rings. Another effect is the coupling of horizontal 

betatron oscillations into the vertical plane due to rotational mis- 

alignments of quadrupoles. In a well-aligned storage ring this results 

in a vertical emittance of 

and is usually the most dominant effect in determining vertical beam 

emittance. 
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Iv. Scaling Laws for Magnet Lattice Parameters 

'In order to calculate the beam emittance according to Eq. (10) we 

need to know more about the function X(s). Generally this function 

has to be computed and averaged by a computer. With some simplifying 

assumptions on the magnet lattice, however, we can derive algebraic 

expressions which are good approximations for design purposes. We 

assume a simple FODO-lattice which is a series of focussing (F) and 

defocussing (D) quadrupoles equally spaced and the bending magnets (0) 

placed between them. We further assume infinitely short quadrupoles of 

focal length f and all the space between the quadrupoles filled with 

bending magnets (see Fig. 1). 

i---L-+-L--=- 

OF: liarizantally Focussing Quadrupole 
OD: Hahntally Defocussirtg Quadrupole I-” Ius., 

Fig. 1. FODO-CELL (schematic). 

The values of the betatron and n-function in the quadrupoles are listed 

in Table I. We use the parameter a = L/f and l/f = k- gq with a the 
P 

length of half a quadrupole.3 If 8 is the bending angle of one bending 

magnet (6 - L/p) we get4 

<a?> = P a4 
437 16 sin4 

2sin2 s 2 sin 8 - ; a2 5 - 2cos0 - 3 sine 7 > 

Z+co&-3 sin 8 
7 
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. 
TABLE1 

Horizontally Focussing Defocussing Quadrupole 

focal length (m) f -f 

betatron function B = L a(a+l) 

Axi 
B = L a(-1) 

Axi 

n-function L2 
n - 2p a(2a+l) L2. 

n = - a(Za- 1) 
2P 

Up to large bending angles (6 z 50 to 60') we can replace sin0 by 0 

and using the betatron phase advance per half cell sin JI = l/a we get 

<rw> = pe3 2(1 - 3/4 sin3$ + l/60 sin4$) 

sin2$ 
(13) 

l sin 2$ 

The quantity <S>/pfJ3 is shown in Fig. 2 as a function of J,. We 

observe that the beam emittance reaches a minimum for $ z 65'. 

IO0 

I 
0 20 40 60 80 100 

5-m JI (degrees) I6- 

Fig. 2. Beam emittance as a function of the 
betatron phase per half cell. 
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V. Beam Brightness 

The beam brightness is proportional to the inverse of the beam 

cross section at the source point of the synchrotron radiation. 

The beam width is a composition of the beam width due to betatron 

motion only and wherever n(s) # 0 due to the energy spread in the beam. 

Since both the particle distribution in the betatron phase space and 

the energy distribution are Gaussian we have for the total beam width 

u2 31 u2 + lj2 % 2 
x 6 ( 1 E (14) 

where 

( ) UC 2 = 1.92x10-l3 Y; 
<ll/P31>s 

E <l/P2> 
(15) 

8 

In the POD0 lattice assumed we always have n2(o,/E)2/~i 5 0.5. The 

total beam width varys somewhat depending on whether the source of the 

synchrotron radiation is close to the focussing or defocussing quadru- 

pole (see Table I). In the vertical plane we have assumed the emittance 

to be about 1X of the horizontal emittance. There is no contribution 

to the beam height due to energy spread since for a plane storage ring 

we have l$ 2 0. In the vertical plane, however, the meaning of focussing 

or defocussing is just reversed with respect to the horizontal plane 

which is important when we determine the vertical betatron function at 

the source point. In Table II the beam sizes are shown for the two 

extreme source points at the horizontally focussing and defocussing 

quadrupoles. _ 
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TABLE11 

Focussing 

1 
L aCa+l) E 
Ax-ix 

42' + La (2a+1)2 2 
2% 

4P2 ( )I 

1 
L d-1) EX + - 

4z-T 100 1 

Defocussing Quadrupole 

1 
L da-0 E 

@TX 

L4 a2(2a-1) 2 
231 

+- 
4P2 ( 11 

1 1 
% 

L a(a+l) 2 
E 100 

We now have all the quantities to calculate the beam cross section or 

the beam brightness. Using Eqs. (lo), (ll), (13), (14), (15) and Table 

II we get at the horizontally focussing quadrupole 

4 
(u,*u) = c 

YF 4 

l $ yi %J FF(a) 

P 

and at the horizontally defocussing quadrupole 

4 
(Ux l UyjD = cq l +j $ 5 FD 6-d 

P 

06) 

(17) 

where Cq= 55 l hc/(24J? mc2) = 3.84~ lo-l3 m) and the functions FF(a) 

and FD(a) are plotted versus the half-cell phase advance $ in Fig. 3. 

For any source point between the two quadrupoles the beam brightness 

can be calculated by interpolation. 
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I 
20 30 40 50 60 70 80 90 

s-n 9 (degrees) 1.11.1 

Fig. 3. Ream brightness as a function of 
the betatron phase per half cell. 

VI. Conclusion 

In a review of the influence of storage ring parameters the beam 

cross sections as a function of the betatron phase advance in a FOD0- 

cell lattice have been calculated. Some simplifying assumptions have 

been made to make the algebra manageable, however, the approximation is 

valid for a very wide variety of lattice structures and is, therefore, 

a useful tool in designing storage ring lattices and calculating expected 

beam brightness. From the scaling it is found that the maximum beam 

brightness is achieved for a focussing lattice with a phase advance per 

half cell of about 70° witha beam cross section of 

U 
L4(P14) 

X 
l uy (IIIIR~) z 0.24 l E2CGeV2) l 

p3 Cm31 

(182 
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