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ABSTRACT 

Strong interaction corrections to the nonleptonic weak interaction 

Hamiltonian are calculated in the leading logarithmic approximation 

using quantum chromodynamics. Starting with a six quark theory, the 

W boson, t quark, b quark, and c quark are successively considered as 

"heavy" and the effective Hamiltonian calculated. The resulting 

effective Hamiltonian for strangeness changing nonleptonic decays 

involves u,d, and s quarks and has possible CP violating pieces both 

in the usual (V-A)x (V-A) terms and in induced, "Penguin" type terms. 

Numerically, the CP violating compared to CP conserving parts of the 

latter terms are close to results calculated on the basis of the lowest 

order "Penguin" diagram. 
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1. Introduction 

In the standard six quark model with charge +2/3 quarks u,c, and t 

and charge -l/3 quarks d,s, and b the left-handed quarks are assigned 

to weak isospin doublets and the right-handed quarks to weak isospin 

singlets of the SU(2) 0 U(1) gauge group of weak and electromagnetic 

interactions. The mixing between quarks in doublets characterized, say, 

by their-charge +2/3 members, is describable by three Cabibbo-like angles 

el, e2, and e3, and by a single phase, 6, which results in CP violation. 

The nonleptonic weak interaction that can result in a net change in quark 

flavors is given to lowest order in weak interactions, and zeroeth order 

in strong interactions, by the product of a weak current of left-handed 

quarks, a charged W boson propagator, and another weak current of left- 

handed quarks. Neglecting the momentum transfer dependence of the W 

boson propagator, one has the usual local (V-A) X (V-A) structure of 

a current-current weak nonleptonic Hamiltonian. 

With the introduction of strong interactions, in the form of quantum 

chromodynamics (QCD), things become more complicated. Consider, for 

example, that part of the nonleptonic Hamiltonian responsible for decay 

of kaons and hyperons which we write in terms of the "light" quarks u,d, 

and s. As the strong interactions are turned on, not only is the lowest 

order (V-A) x (V-A) term involving u,d, and s quarks modified by gluon 

exchanges between the quarks, but there are diagrams involving virtual 

"heavy" quarks in loops which contribute to the strangness changing non- 

leptonic Hamiltonian. These alter the strength of the (V-A) x (V-A) 

terms and introduce new terms with different chiral structure, e.g., 

(V-A) XV. 
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It is the purpose of this paper to calculate the effective non- 

leptonic Hamiltonian for strangeness changing decays in the six quark 

model. We successively consider the W boson, t quark, b quark, and 

c quark as very heavy, and use renormalization group techniques to 

calculate (in the leading logarithmic approximation) the resulting 

effective Hamiltonian remaining at each stage. 

The-basic techniques for carrying out such calculations have been 

laid out previously. 1,2,3,4 They were even applied in the four quark 

model to get the effective Hamiltonian for strangeness changing decays 

with the charm quark (and W boson) taken as heavy. However, there is 

only one Cabibbo angle in the four quark model and no CP violating phase. 

It is the CP violating pieces of the effective nonleptonic Hamiltonian 

which are of special interest to us in this paper. 

In a previous paper' we have raised the possibility that the dia- 

gram in Fig. 1 (the so-called "Penguin" diagram) gives rise to a term 

HPenguin in the effective Hamiltonian that yields amplitudes for strange 

particle decay with important CP violating parts. Other analyses 3,436 

claim that such "Penguin" type terms make a major contribution to the 

amplitudes for K decay into pions and are responsible for the AI = $ 

rule. Assuming this we showed that in the six quark model the magnitude 

of CP violation arising from the contribution of the matrix element of 

HPenguin to the decay amplitude is comparable to that coming from the 

mass matrix. It followed that the six quark model yields predictions 

for the CP violation parameters of the kaon system (in particular E'/E) 

which are distinguishable from those of the superweak model. 
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Two questions could be asked about the validity of using Fig. 1 to 

estimate the ratio of CP violating to CP conserving amplitudes. First 

is the effect of multiple soft gluon exchanges. This has been answered 

in Ref. 7 where it is shown how the local four-fermion structure of the 

effective Hamiltonian is preserved despite the presence of multiple soft 

gluon exchanges. Essentially, due to gauge invariance such soft gluon 

effects go into corrections to the matrix elements of the local four- 
Penguin fermion operator H resulting from a calculation of the lowest 

order diagram in Fig. 1. Thus, to leading order in the large masses 

the ratio of imaginary (CP violating) to real (CP conserving) parts of 

the K + 27~ amplitude previously estimated by us is unchanged by the 

presence of multiple soft gluon exchanges. 

A second question is the effect of hard gluon exchanges. These are 

expected to alter the results of our previous calculations. This paper 

provides a detailed answer of the amount of this change. We systemati- 

cally analyse the QCD corrections to the effective Hamiltonian in leading 

logarithmic approximation. 

In the next section we describe the method by which the effective 

Hamiltonian for nonleptonic strangeness changing decays is to be calcu- 

lated in the six quark model. Our approach is pedagogical and emphasizes 

the underlying assumptions and the conditions necessary for the validity 

of the leading log approximation. We proceed by successively considering 

the W boson, t quark, b quark, and finally c quark as heavy. In Section 

III, numerical results are given. As expected, CP violating terms appear 

in the resulting effective Hamiltonian, both in the old terms of (V-A) x 

(V-A) form and in new "Penguin" type terms. In the former they are 
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quite small, but in the latter are large. The ratio of CP violating to 

CP conserving amplitudes in "Penguin" terms is comparable to that calcu- 

lated on the basis of the lowest order diagram in Fig. 1 for a typical 

set of parameters. Conclusions are then drawn in Section IV. Many of 

the details concerning the matrices of anomalous dimensions and their 

eigenvectors and eigenvalues are relegated to an appendix. 

II. Derivation of the Effective Nonleptonic Weak Hamiltonian 

In the standard model' where the gauge group of weak and electro- 

magnetic interactions is SU(2) Q U(l), the six quarks, u,c, and t with 

charge +2/3 and d,s, and b, with charge -l/3, are assigned to left-handed 

doublets and right-handed singlets: 

C’ 
; ( ) . , s' L 

. , (4 R ; (djR ; (c)R ; (SIR ; (t), ; (bjR ’ 

The standard choice of quark fields is such that' 

i 

d' 

S’ 

b' 1 i 

c1 -v3 -sls3 
i6 = 

YC2 ‘1’2’3 - s2s3e ‘1’2’3 + s2c3e 

c1s2c3 + c2s3e i6 
v2 ‘1’2’3 - c2c3e 

where c i =co&. , si=sinei, i E {1,2,3). Equation (1) define! 1 
3 the 

, (1) 

three Cabibbo-like mixing angles 13~ and the CP violating phase, 6. With- 

out loss of generality the angles Bi may be chosen to lie in the first 

quadrant. 10 

Weak interactions involving the charged hadronic current follow 

from the interaction term in the Hamiltonian density 
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-x;(x) = -L J;(x) W,(x) + h.c. , 
2Jz 

(2) 

where W- is the charge W boson field, Jc the charged weak current defined 
u 

by 

J;(O) = <(O>y,,(l- y5)d'(0) + :(OhJ1- y5)s”3) + t(Oh$l- y5)b'(0) 

= (cd'>V-A + (cs'>V-A + (:b')V-A , (3) 

and g is the gauge coupling constant of the weak SU(2) subgroup. With 

no strong interactions the lowest order weak current-current interaction 

at zero momentum transfer is described by the effective Hamiltonian 

density 

(4) 

so that the Fermi coupling GF/fi = g2/(8g). In particular the strange- 

ness changing piece of Eq. (4) is 

&As=l) = 2 
eff -ClS1C3(SuUa)V-A (c d ) 

fi B B V-A 

+ s1c2(c1c2c3 - s2s3e -iG)("aca)v-A("Bds)V-A 

+ sls2(c1s2c3 + c2s3e -? (:ata>v-A($d&j-A \ 9 c5) 

where we have made the color indices c1 and 6 on the quarks (which when 

repeated are summed from 1 to 3) explicit in preparation for the inclu- 

sion of the strong interactions. It is convenient to rewrite Eq. (5) as 
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&As = 1) = -GFI 
eff A (O(+) +Ob-)) + A,(Or)+Oz-)) 'i , 

2X? I c c 
(6) 

where 

4 ’ (“ada)V-A(‘fju&&A 1 - t”+ q-j, (7) 

and 

AC = S1c2(C1c2c3 - s2s3e -ib 
> (84 

At = S1s2(c1s2c3 + c2s3e -i6 
> (8b) 

Normal ordering of the four-fermion operators is understood. The space- 

time coordinates of all operators are suppressed. 

Now introduce the strong interactions in the form of quantum 

chromodynamics (QCD), the gauge theory based on the color SU(3) gauge 

group involving vector gluons interacting with quarks. The strong 

interactions modify the lowest order weak effective Hamiltonian from 

the form in Eqs. (4) and (5). We now proceed to derive in leading 

logarithmic approximation the form of the effective weak Hamiltonian 

in the presence of strong interactions with heavy W bosons and heavy 

t,b, and c quarks. 

First, we take the W boson as much heavier than any other mass 

scale in the problem and consider the S-matrix elements of the weak 

interaction between low momentum hadron states composed of light quarks 

and differing in strangeness by one unit. This is just the calculation 

performed in Ref. 11. Using the operator product expansion l2 (noting 

(+> that the operators Oc and 0:') are multiplicatively renormalized and 

do not mix with other operators at the one loop level) we have that to 
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leading order in the heavy W boson mass 

<IT(*I(x),T(0))I> = - &[A$:,g] <jOb+)(O)j> 

< lo;-' (0) I> , (9) i 
where u is the renormalization point of the strong interactions. The 

matrix elements of the right-hand side are to be evaluated to all orders 

in the strong interactions and to zeroeth order in the weak interactions. 

The Wilson coefficients A, (%) o$J/lJ, g) and Abf)(MW/u,g) depend on the 

choice of renormalization scheme. Of course, the renormalized operators 

o;+) and ,(') 
C 

also depend on the renormalization scheme in such a way 

that physical quantities are rendered scheme independent. We use the 

mass independent minimal subtraction scheme 13 where the renormalization 

group equations 14 are 

1-I & + B(g) $ - Y (+)(g))A;‘) (2, g) i 0 . (10) 

The y(&) characterize the anomalous dimension of the operators 0 e> with 
q 

The function B(g) has the perturbation expansion: 15 q=c or t. 

B(g) = -(33- 2Nf) , (11) 

where Nf (which equals 6 here) is the number of quark flavors. A 

standard one, loop claculation 11 shows that y(') (g) has the perturbation 
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expansion: 

y (+I (g> = 2- + @(g4) 
41T2 

y(-> (8) = - 82 + 8(g4) 
27r2 

. 

With the running coupling constant g(y,g) defined by 

ii 
.&y = 

/ BE, 
g 

(124 

(12b) 

(13) 

and g(l,g)=g, Eq. (10) has the solution 

In a leading log calculation the coefficients A p1 , aM&J,g)) can be 

replaced by their free field values Aq given in Eq. (8) because the 

running fine structure constant c1 = g2/47r is small at the mass scale of 

the W and because the value of their first dependent variable being 

unity implies no other large logarithms can be generated by higher order 

strong interactions. Using Eqs. (11) and (12) 

y(+)(x) = ,a(') 
i3 w 

- + terms finite at x=0 
X 

, 

with 

,(+) = 6 
33-2Nf 

,(-1 = -12 
33-2Nf - 

(15) 

(164 

(16b) 
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Choosing p above the onset of scaling, Eq. (15) may be substituted back 

into Eq. (14) t o obtain the result: 16 

2 ,(+I 
a (I$$ 

= 

i 1 a (v2> 
A . 

4 

At this stage our effective weak Hamiltonian density is 

dAs = l) 
eff = 

2 a(-) 
a (Q 

f- i 1 a (v2> 
A 0(-) c c + AtO;-) . 

)i 

(17) 

(18) 

The matrix elements of the above effective weak Hamiltonian density are 

to be evaluated to all orders in the strong interactions and to zeroeth 

order in the weak interactions. Note that Xeff does not explicitly 

involve the W boson field. We want to to derive an effective Hamiltonian 

without explicit dependence on the heavy W boson, t quark, b quark and 

c quark fields. Equation (18) is the first step towards this goal. 

We now proceed to consider the t quark as very heavy and eliminate 

it from explicitly appearing in our effective weak Hamiltonian for 

strangeness changing processes. What happens to the operators 0 69 and 
C 

(+> Ot- is different, w and we consider the more complicated case of Ot 

first. 
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We assume that mt is much greater than all other quark masses, the 

momenta of the external states, and the renormalization point mass, u. 

The work of Appelquist and Carrazone 17 tells us that to order l/m: all 

the dependence of amplitudes on the heavy t quark mass can be absorbed 

into renormalization effects and hence into a redefinition of the 

coupling constant, mass parameters, and scale of operators. This 

suggests the following factorization: 

<lo(+ t = F B;+) (5, ,)<jOil>’ + 8( 2) , (19) 

where the primed matrix elements are evaluated to all orders in an 

effective theory of strong interactions 18 with 5 quark flavors, coupling 

g'(mt/p,g) and mass parameters m:,mi, . . ..m 7:. Thus, 

<Ioil>* = <IOil> (g',u,m:, . . . ,$I . 

To carry out the expansion of Eq. (19) in leading log approximation we 

find that six linearly independent operators Oi are sufficient. We 

choose them as follows: 

Ol = (:ada+,-A (fe($&A 

O2 = (Sad&-A (iBua)v-A 

O3 = (:ada)v-A ($,uB)V-A + l l * + (gBbs)v-A 1 
O4 = (s,d,JvmA (;BUa)V-A + . l . + ($ba)V-A 1 
O5 = (:ada)v-A + l -a + (gBbB)v+A 1 
'6 = (SadslvvA 

c 
(;8Ua)V+A + . . . + (gBba)v+A 1 - (20) 
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These operators are sufficient since they close under renormali- 

zation at the one loop level. The operators Ol and O2 already occur to 

zeroeth order in strong interactions: we read off from Eq. (7) that 

By-) E By (1,O) = +1 

(5 
B2 f By (1 0) , = t-1 (214 

The operators 03, 04, 05, and 06 are generated by the strong interactions 

through "Penguin" type diagrams, so that in free field theory 

. (21b) 

However, the operators Oi are not multiplicatively renormalized at 

the one loop level, i.e., they mix among themselves. As shown in the 

appendix, the renormalization group equation their coefficients 

B(')(m /p g) satisfy is i t ' 

. ,e> mt 
j ,Yg = 

i 1 

0 . (22) 

Here y ,T is the transpose of the anomalous dimension matrix of the 

operators Oi in the effective theory of strong interactions with 5 quarks 

and coupling g'. It is the eigenvectors of y IT that correspond to 

operators which are multiplicatively renormalized. We write the co- 

efficient functions Bi N(r)(mt/u,g) of these multiplicatively renormalized 

operators as 
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E$"(:,g) = c V;; B:f) (2,g) , (23) 
j 

and denote the corresponding eigenvalues of y IT by y;. The matrix y' 

is found in the appendix along with its eigenvalues and the matrix V. 

For the g(') i (mt/p,g), the renormalization group equation corresponding 

to Eq. (22) is 

( 
u & + f3(g) T$ + YtW mt e + Y (?) (Ed - y;(g'))Ejq $, g) = 0 . 

(24) 

The solution to this equation may be found with the aid of the running 

coupling constant g(y,g) defined by1 

Rn y = 'yg) ['-:lz)] dx , 

g 

(25) 

with g(l,g)=g. Note that this is not the usual definition of the 

running coupling constant (Eq. (13)), but the integrand in Eq. (25) 

for small x has the same leading behavior given by l/B(x) as the 

integrand in Eq. (13). Setting y = mt/u, it is now easily shown that 

the solution of Eq. (24) is 

. ?$+)(l,g) . (26) 

,f3' is the beta function in the effective theory with 5 quarks and 
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coupling g'. This beta function has the perturbation expansion 

93 
f3'(g') = -(33- 2Nf) 5 + a(g'5> (27) 

481r 

with Nf = 5, and we write 

YfW 2a; 
--=- f finite terms at x= 0 . (28) 

B’ w X 

Choosing u as before, above the onset of scaling, we may use Eqs. (15) 

and (28) to get 16 

We have used g'(l,g) M g(m,/p,g>, which is valid in a 

calculation since the running fine structure constant 

t quark mass. Finally, using the linear relationship 

eigenvectors 'iii and the Bi we have 

leading log 

is small at the 

between the 

(30) 

Notice that the factor [a(m:)/a(n2) lwa 
c+> 

out in front of the summation 

in Eq. (30) combines with the earlier factor 

(16) to give [a(M.$/a(m:)la(i) 

[cr(M$/a(p 
2 ,w 

) 1 in Eq. 

In leading log approximation the co- 

efficients Bf')(l,g) can be replaced by their free field values as given 

in Eq. (21), since no large logarithms can be generated from QCD loop 

integrals with the first argument of Bi (+I (y/u, g> set equal to unity 

and because we assume the running fine structure constant is small at 

the t quark mass. 
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(+> The case of the operators Oc is much simpler. The charm quark 

field which appears explicitly in these operators is of course not directly 

affected at this stage of considering the t quark as very heavy and the 

O(+) are 
C 

just multiplicatively renormalized: 

,(,(+) (> = Bcf) 
C 

. (31) 

Note that the matrix elements on the right-hand side are again to be 

evaluated in the effective five quark theory with coupling g'(mt/u,g). 

The coefficients B (+) (m,/p, g> satisfy 

v 6 + B(g) -$ + YtW n-y&- + Y (+) (g) _ y’ c+> 
t 

(gl))B(i)(;, g) = 0. 

(32) 

The anomalous dimension y 1(+-j (g') is that of O(') and is a function of 
C 

the coupling g' in the effective five quark theory, while y (')(g) depends 

on g, the coupling in the six quark theory. 

Solving Eq. (32) in the same manner as Eq. (24), gives 

In leading log approximation B 

field value of +l. 

can be replaced by its free 

Our effective weak Hamiltonian density is now free of explicit 

dependence on the heavy t quark field and has the form: 
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,&AS = 1) 
eff = 

(34) 

All operators on the right-hand side are to have their matrix elements 

evaluated in the effective theory with five quarks, coupling g'(mJu,g) 

and masses m' u ' mi , . . ..m io 
The next step of considering the b quark as very heavy is similar 

to what was just accomplished for the t quark, with the addition of some 

indices. This time the matrix elements of the operators Oi of Eq. (20) 

evaluated in the effective five quark theory are to be expressed in terms 

of matrix elements of 

p1 = (zada)v-A ($,'-$)v-A 

p2 = (S,ds)v-A (;BUa>v-A 

p3 = (iada)v-A ($-)&-A + l . . + (cBcB)v-A 1 
p4 = (zads)v-A 

C 
(G8ua)v-A + "a + (CBCa>v-A 1 
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p5 = (Sada)V-A [ (i@u,&+~ + . . . + (+&+A 1 
'6 = (~ads>v-A (;B'Ja>v+A + . . . + (:BCa)V+A (35) 1 

evaluated in an effective theory with four quark flavors (u,d,s, and c). 

The coupling and masses 

g"(m&/u,g') and m:, . . . 

write 

<IOk/>’ = 

where the prime (double prime) denotes evaluation in the effective five 

in the effective four-quark theory are denoted by 

, m" c, respectively. To leading order we may 

p$$g’) <P,>” , (36) 

(four) quark theory. The C$n//p,g') can be shown to obey an equation 

of the form 

'jk 'mn 

+ yjk(g’) 6 - $k y;&“) mn ]c;:($g') =o , (37) 

with y' and y" being anomalous dimension matrices of the operators 

Ol ,...,06 and PI, . . . . P6, respectively. 

Defining the linear combinations of coefficient functions 

(38) 

as corresponding to operators which are multiplicatively renormalized, 

. i.e., do not mix with other operators, the renormalization group equations 

diagonalize into the form 
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( + Yp') - Yp?) 

l 5: yq$3’)Vjk = 0 . (39) 

The matrices W and y" together with the eigenvalues of the latter are 

found in the appendix. 

With the aid of a new running coupling defined by 

F, 

Rny = 
--‘(Y&‘) 1 _ y’(x) 

/ 
b dx , 

J 
g’ 8’ b) 

very analogously to Eq. (24). We leave out these equations may be solved 

(40) 

some of the details and skip to the solution in the leading logarithmic 

approximation: 

(41) 

For reasons stated before, in a leading log calculation the coefficients 

Ct(l,g') can be replaced by their free field values: 

c; E Ci(l,O) = Lp, l (42) 

(5) The operators Oc are multiplicatively renormalized and the expansion of 

their matrix elements gives results like those in Eq. (33) with appropriate 

changes. 
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Our effective Hamiltonian now takes the following form at the 

four-quark level: 

The final step of considering the charm quark as very heavy is more 

questionable from the phenomenological viewpoint. It also involves a 

technical point which is easy to miss. When we proceed to expand the 

matrix elements of the operators PI,..., P6 evaluated in the effective 

four quark theory in terms of matrix elements of operators evaluated in 

an effective three quark theory, it is natural to define2 

Ql = (: ada) V-A ‘;B~,$ v-A 

Q2 = (zads>v-A (;BUa)vmA 

Q3 = (Gada)v-A (&-&-&+ + (~Bds)v-A + (:BsB)v-A I 

Q4 = (~ad8)v-A (‘B~~>v-A + (aBda>v-A + 6~~~)v-A 3 
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Q6 = (~ads)v-A ('Bua)V+A + (aBda)v+A + (+a)v+A I 
(44) 

These operators close under renormalization at the one-loop level, but 

they are linearly dependent: 

Q4 = -Q, + Q, + Q, . (45) 

Hence we must then use only 5 operators, 19 which we choose as Ql,Q2,Q3, 

Q,, and Qg. 

Expressing matrix elements of the operators evaluated in the 

effective four quark theory in terms of matrix elements of operators 

evaluated in the effective three quark theory, we write 

<IPnl>" = c 
r=1,2,3,5,6 

<jQ,]>"' , (46) 

with g"' and rnr , rnx' , rnz' representing the coupling constant and quark 

masses in the effective three quark theory. The linear combinations 

(47) 

are the coefficients of multiplicatively renormalized operators. The 

diagonalized renormalization group equations are 

(48) 

and have the solution in leading logarithmic approximation after re- 
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expressing the 5's in terms of D's, 

In leading log approximation the Dpn(l,g") can be replaced by their free 

field values, Dz. These are 6 np' 
except when n=4, in which case Di=-1, 

Di=l, Dz=l, and Dz =Dt=O. 

Because we are considering the charm quark as heavy, the operators 

O(+-) are 
C 

no longer just multiplicatively renormalized at the one loop 

level and we must also expand 

<lo(‘) I>” = 
C 

CD;+) (2, g") <1Q,l>"' . 
r 

(50) 

The renormalization group equations obeyed by the Dr (')(m~/~~,g") are 

CCC &&- + B"(g") + + yE(g"> rn: & + y"(*) (g"))6pr- YakT (g"' > 1 r C 

(51) 

The coefficients corresponding to multiplicatively renormalized operators 

are just as in Eq. (47), and the solution to Eq. (51) with the usual 

approximations is 

1 
-a” (2) 

c X 
P,9 rq 

(52) 
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The free field values, ,;+) z f) (l,(I), are Dt') = ?l, Di') = +l, and 

all others zero. 

We are finally ready to collect all our results and write the pre- 

viously advertised effective Hamiltonian in the "light" three quark sector. 

It is the following sum of Wilson coefficients times local four-fermion 

operators which do not explicitly involve the heavy W-boson, top, bottom, 

and charm quark fields: 

a&AS = 1) = 
eff 

. (Bi” [ ?$+I A, + B;-' [$a(-'At))Qr} . (53) 
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All summations are from 1 through 6, except those over p,q, and r which 

run through 1,2,3,5, and 6. 

III. Numerical Results for the Effective Nonleptonic Hamiltonian 

We are now in a position to perform the arithmetic operations made 

explicit in Eq. (53) and to examine the resulting Wilson coefficients of 

the operazors Q,,Q,,Q,,Q,, and Q6 in the effective Hamiltonian for non- 

leptonic, strangeness changing interactions. Since the matrices, V,W, 

and X, as given in the appendix, are composed of irrational numbers and 

since various fractional powers of u(M2) with M2=$,mE , etc. are 

rampant, quantitatively rather little is transparent about these co- 

efficients in general. We then are forced to proceed by choosing a 

parametrization for u(M2) and values for the W and quark masses, sub- 

stituting in Eq. (53), and reading off the coefficients of the Qi for 

that particular set of choices. 

Moreover, our outlook is basically qualitative. We have calculated 

the QCD effects in the leading log approximation. While we have some 

confidence that at the first step MW is a large enough mass for this to 

be a credible procedure, by the last step of considering mc a heavy mass 

we have used this approximation beyond the region where it can be rea- 

sonably justified. 

On the positive side, what is carried out here is well defined and 

systematic. The degree of accuracy is obviously no worse than any of 

the earlier calculations 3,4 which involve only the "heavy" charm quark 

(and W boson) in leading log approximation. Not only is the accuracy of 

the calculation expected to be better for the b and t quarks, but their 
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effect was not taken into account previously. With regard to CP viola- 

tion they play a dominant role as we shall see presently. 

To investigate the effective nonleptonic Hamiltonian numerically we 

first of all need to decide on the running QCD fine structure constant 

a (Q2>, the values of the heavy quark masses, and p 2 or alternately a(u2). 

In leading log approximation 

a(Q2) = 
12Tr 1 

33-2Nf Rn (Q2/A2) 
, (54) 

where we take A 2 = 0.1 GeV2, a value consistent with recent data when 

QCD is used to parametrize the breakdown of scale invariance in deep 

inelastic neutrino scattering. 20 When the leading log approximation is 

valid, the calculation is insensitive to the precise value of A. The 

number of quark flavors is Nf =6 for the fine structure constant we have 

called a(Q2), while a'(Q2), a"(Q2), and a"'(Q2) have Nf=5,4, and 3 

respectively, as they pertain to effective theories with those corres- 

ponding numbers of quark flavors. 

We take mc to be 1.5 GeV and mb to be 4.5 GeV on the basis of $ 

and T spectroscopy. 21 The t quark mass is unknown at this time, and 

we use values of 15 GeV and 30 GeV to get an idea of the sensitivity of 

the results to this quantity. For MW we take the value 85 GeV, con- 

sistent with the value obtained within SU(2) @ U(l), given the recent 

measurements 22 of sin20 W' In evaluating Eq. (53) we do not differentiate 

between s and mb, m" and m 
C C’ 

etc., again consistent with our leading 

log approximation philosophy. 

Finally a value is required for a(p2) (or more exactly a"'(p2)). 

We want to choose p to be a typical "light" hadron mass scale or inverse 
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size, where a(U2) is of order unity. We let c,(u2) =0.75, 1.0 and 1.25 

to check the variation of 

to this choice. In fact, 

interaction cannot depend 
3 

the resulting effective nonleptonic Hamiltonian 

the values of S-matrix elements of the weak 

on the choice of the renormalization point n, 

or equivalently a($). The matrix elements of the four-fermion operators, 

Qi, also have an implicit u dependence which exactly compensates that of 

their coefficients which we have calculated. We are left to make a choice 

of p, hopefully close to the typical light hadron mass scale of the pro- 

blem, so that "hard" gluon effects are contained as much as possible in 

the Wilson coefficients and not the matrix elements of Qi, but high 

enough that their calculation in leading log approximation makes some 

sense.23 

In terms of the operators, Q1,Q2,Q3,Q5, and Q, defined previously 

in Eq. (44), th e nonleptonic Hamiltonian involving u,d, and s quark 

fields has the form: 

&AS=l)= -kscc 1 
eff fi 1131 

(-0.87 + 0.036dQl 

+ (1.51 - 0.03WQ2 

+ (-0.021 - 0.012~) Q, 

+ (0.011 + 0.007dQ5 

+ (-0.047 - 0.072~)Q 1 6l ’ 

when m t= 15 GeV and a(u2> = 1 and where 

2 -i6 T = 
s2 + s2c2s3e hlC3 ’ 

(55) 

(56) 

along with the other masses specified previously. Values of the co- 
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efficients for all six cases corresponding to a(u2) =0.75, 1.0 and 1.25 

and m ,=15 GeV and 30 GeV are found in Table I. 

Referring back to Eq. (5), we see that before accounting for the 

effects of QCD, the coefficients of the usual four-fermion operator Q,, 

as well as the "Penguin" induced operators Q,,Q, and Q 6 were all zero. 

In the sector involving u,d, and s quarks the strangeness changing weak 

Hamiltoncan then just involves Q, with unit coefficient. Thus the pre- 

sence of strong interaction QCD corrections has brought in the operators 

Ql,Q3,Q5 and Q6, changed the coefficient of Q,, and given all coefficients 

an imaginary (CP violating) part through the quantity r, which enters 

through "Penguin" type diagrams involving a heavy quark loop. 

The portion of the nonleptonic Hamiltonian involving only the opera- 

tors Q, and Q, is the traditionally calculated (V-A) X (V-A) four-fermion 

piece with neglect of all "Penguin" effects. The sum of coefficients of 

Q1 and Q, is proportional to the coefficient of an operator transforming 

purely as 1=3/2, which cannot mix under strong interaction renormaliza- 

tion with Penguin contributions which are pure I= l/2. As a consequence, 

one simple check of the calculation is to note that the quantity T, 

arising from "Penguin" contributions, always has the same magnitude and 

opposite sign in its contribution to the coefficients of Q, and Q,. 

The combination of operators Q, -Q, transforms purely as 1=1/2, 

while the combination Q,+Q, has an 1=3/2 piece. The ratio of coeffi- 

cients of Q,-Q, and Q,+Q, is a measure of AI=1/2 or octet enhancement 

by QCD, as first calculated in Reference 11. Our inclusion of 

"Penguin" operators and their mixing makes little numerical difference 

for the coefficients of Ql and Q,. Slightly more important in comparison 
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with earlier work is our taking into account not only the heavy W boson, 

but each heavy quark successively in computing the leading log QCD 

effects. As a result the earlier Ca(M$/cr(u 
2 a(+-) 

) 1 is replaced by 

(+I 
EaO+/a(m~~la - [u(m:)/cr'(%2)la 

1(+1 
Ca(%2)/a"(mE2) la 

II(k) 

even if all Penguin effects are neglected. Numerically the coefficient 

of Q,-Q, is enhanced by a factor of 2 to 3 and that of Q,+Q, suppressed 

by 0.6 to 0.7 for our choice of masses. In agreement with all earlier 

results this is in the correct direction, but much too small to explain 

the high degree of accuracy of the AI=1/2 rule in nonleptonic decays of 

strange particles. 

The Penguin terms Q3,Q5 and Q, transform as purely 1=1/2 on the 

other hand. Our calculation indicates their coefficients are smaller 

than those of Q, and Q,, typically by an order of magnitude for Q,. 

However, arguments can be made that the (V-A) x (V+A) structure of Q, 

leads to enhanced matrix elements, 24 by one order of magnitude or more, 

when the nonleptonic decays involve pions in the final state. Rather 

extensive analyses of strange baryon and meson decays seems to support 

the hypothesis that the matrix elements of the operator Q, make major 

contributions to such decays and can quantitatively account for the 

success of the AI=1/2 rule. 3,4,6,25 

As already noted, through strong interaction effects each operator 

in the effective Hamiltonian has a coefficient with an imaginary as well 

as real part. This‘imaginary part, which in each case enters through 

Imr and is then proportional to s2c2s3 sin6, leads to CP violation in 

decay amplitudes. 
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This is in addition to CP violating effects which occur in the mass 

matrix in the six quark model. We recall that for the K"-K" system, 

calculation of the contribution to the mass matrix given in Fig. 2 leads 

Irn M12 
E = 
m- 

Re M12 
= 2s2c2s3 sin6 P(3, , 11) (57) 

with - 

P(e2'd = , (58) 
4 cll+s 4 
2 2 

when s 1 and s3 are considered as small quantities. Here n = m:/rn: and 

Ml2 is the element of the K"- 3' mass matrix defined by 27 

c <K"IHWIn)<nlHWIKo> 

M12 = <KOIHW/Ko> + + '** (59) 
n %. - mn 

When 6=0 and there is no CP violation we define the real decay 

(6 = 0) amplitude A0 for K" -+ ITIT (I=O) by 

<~IT(I=O)I~~=~)IK~> = AA'=') e 
i60 

, (60) 

where 6 0 is the I=0 strong interaction ITIT phase shift. A similar 

(6 = 0) 
definition applies to the amplitude A2 for K" -f ITT (1=2). 

When s2c2s3sin6 # 0 and CP is violated, an inspection of the 

coefficients of the operators Q, and Q 2 immediately shows that the ratio 

of their imaginary to real parts is N 10 
-2 s2c2s3sin6. This is not true 

for the "Penguin" type operators Q,,Q, and Q, where the corresponding 

ratio is N s2c2s3 sin 6. If these later operators contribute at all 
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significantly to K" decay, clearly they will yield the largest CP 

violating effects in these amplitudes. We recall in particular that 

matrix elements of Q, are supposed to be especially large and important 

in decays like K" -+ RIT involving final state pions. 

Let f be the fraction24 of the K" -t ITIT (I=O) amplitude arising from 

the "Penguin" type operator Q,. Then the total amplitude for K" -t ITT 

(I=O) when Sf;O is to a good approximation, 

AO 
z A@=‘) 

0 + ifA(G=o) ImC /ReC 6 6 ' (61) 

where C 6 is the coefficient of Q, in the effective nonleptonic Hamiltonian. 

Defining 

5 = fImC6/ReC6 , (62) 

we have 

*0 
x A(6 = O) eiti 

0 
, (63) 

since 5 is small. 

The standard convention that A0 is real 
27 may be accomplished by 

redefining the phases of the K" and K" states: 

IK"> + ewiSIKo> 

I K0> -+ e+iE 1 p> 

At the same time 

Irn M12 Irn Ml2 -f +25 E em+ 25 . 

Re M12 Re M12 

In standard notation 
27 the CP violation parameter 
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. Irn r12 + iImM12 
E = 1 

%YL 
. 

2 + i(ms -y) 
(64) 

Experimentally 28 1/2(pS-I'L) z -(ms-mL). Within the convention A0 real 

Imr12/ImM12 can be neglected. 27,29 Using 2ReM12 = ms-mL, we have 

M 1 E - ein'4 (~~+25) . 
2& 

(65) 

The phase angle IT/~ in Eq. (65), which originates in the KL and KS mass 

and width values, has the precise value 29 43.8'+0.2', just as in the 

superweak model. 30 

The other CP violation parameter 

. 
E' 22 1e 

i(62 -tie> Im A2 
. (66) 

fi AO 

CP violation from the "Penguin" type operator Q, (with 1=1/2) cannot 

enter the amplitude A2 which involves a 

the redefinition of K" and E" phases to 

-is e . The experimental 711~ phase shifts 

+1/20 yields 

AI=3/2 transition. However, 

make A0 real gives A2 a phase 

6. and 62 together with A2/Ao z 

E' M - eia’4 (-5) - 1 
(67) 

2oJz 

The experimental value 29 of the phase angle, which we have approximated 

by v/4 in Eq. (67), is 37'5 6O. Combining Eqs. (65) and (67) gives 

E’ z 1 -25 - 

E 20 Em+25 ' 
i 1 

(68) 

Values of the parameter 5, which enters the CP violating parameters 



-31- 

E and c' are given in Table II for the different choices of m t and 

a(n2) discussed previously. Also, in Table II is the usual contribution 

to CP violation from the mass matrix, Ed, calculated with 02=15'. 

Although obtained in a very different manner the results in our 

earlier paper and those calculated here for 5 are quite comparable 

quantitatively. However, since in our earlier paper we calculated the 

ratio of -imaginary to real parts of the single lowest order "Penguin" 

diagram, while here we have done an all orders leading log calculation, 

there is no obvious direct comparison or simple approximation in which 

the latter results should go over into the former. Nevertheless the 

agreement not only in sign but also roughly in mangitude for 5 is 

gratifying and lends additional support to our earlier conclusions5 on 

CP violation in the six quark model. 

The parameter cm in Table II is calculated to zeroeth order in QCD. 

The QCD radiative corrections to ReM12 have been calculated 2,31 in the 

4 quark model using the leading log approximation and were found to be 

negligible. In view of this it is perhaps not unreasonable to assume 

that QCD radiative corrections to sm are also small. In what follows 

we shall make this assumption. 

The parameter s;/(s,c,s, sin&) is always negative and of order unity. 

As such, 25 is comparable in magnitude and opposite in sign to cm, leading 

to comparable contributions from decay amplitudes (25) and the mass matrix 

(cm) to the CP violation parameter E. However, the phase 6 may be freely 

adjusted to fit the experimental magnitude and sign 10 of c and no quanti- 

tative test of the contribution from sm or 25 is possible from E alone. 

But in s'/e the common factor s2c2s3 sin6 cancels out and predictions 
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dependent on only 25/'zrn follow. In Table II values of E'/E are given 

for the different choices of mt and cr(n2) discussed previously with 

e2=15' and f=O.75. The sign of E'/E is positive and Table II indicates 

that values of 0.5~10~~ to 2x10 -2 are typical for E'/E. 

IV. Conclusions 

In <his paper we have derived the effective Hamiltonian for strange- 

ness changing nonleptonic decays in the six quark model. The QCD correc- 

tions were calculated to all orders in the strong coupling in leading log 

approximation by successively considering the W boson, t quark, b quark, 

and c quark as heavy and removing them from appearing explicitly in the 

effective Hamiltonian. At the last stage we remain with an effective 

Hamiltonian which is a sum of local four-fermion operators involving 

u,d, and s quark fields times their corresponding Wilson coefficients. 

Our calculation follows a well defined and systematic path to the 

effective nonleptonic Hamiltonian. While the interaction corresponding 

to the "Penguin" diagram in Fig. 1 may be incorporated by hand into an 

extra term in an effective Hamiltonian, 596 then one does not know how 

to take into account higher order QCD effects correctly. 32 In fact, as 

this paper has examined in detail, the "Penguin" type terms in the weak 

nonleptonic Hamiltonian originate at the same level as do the QCD correc- 

tions to the usual (V-A) x (V-A) four-fermion terms and the two kinds of 

operators even mix with each other. 

In the resulting Hamiltonian there are five linearly independent four- 

fermion local operators. Two of these are the usual (V-A) x (V-A) operators, 

but with coefficients that have been changed by QCD effects. Numerical 
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evaluation gives an enhancement of the combination transforming as 

I= l/2, but only by a factor of 2 to 3. As already concluded by others, 11 

this is in the right direction, but is inadequate in magnitude to explain 

the success of the AI= l/2 rule for strange particle nonleptonic weak 

decays. The other three operators are Penguin-like, purely 1=1/2, and 

arise through QCD diagrams involving heavy quark loops. Although their 

coefficients turn out to be small upon numerical evaluation, it is 

arguable 3'4 that they have enhanced matrix elements for weak decays 

involving final state pions. If important portions of such amplitudes 

come from these Penguin-like operators, an explanation of the AI= l/2 

rule is then possible. 

The QCD corrections result in imaginary, CP violating parts to the 

coefficients of all five operators. For the Penguin-like operators the 

imaginary part of their coefficients .is about the same magnitude as their 

real part times s2c2s3sin6. Assuming these operators make a dominant 

contribution to the K + ITIT (I= 0) decay amplitude results in comparable 

contributions to CP violation in the K" -E" system from the mass matrix 

and the decay amplitude itself. Both these contributions are proportional 

to s2c2s3sin6, the magnitude and sign of which may be fixed to give the 

observed value of the CP violation parameter E. 

However, in the quantity E'/E the factor s c s 2 2 3sin6 cancels out and 

we predict real values ranging from +0.5x 10 -2 to +2x 1o-2 from our 

calculation and choice of parameters. The smaller values correspond to 

larger values of mt or u(uL). Using a larger value of e2 or a smaller 

value of A can also give smaller values of E’/E. 
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The present experimental value is E'/E = -0.003* 0.014, but experi- 

ments now planned 33 should be capable of measuring or limiting E’/E to 

the level of a fraction of a per cent. As such they would be capable of 

distinguishing the six quark model 34 with important Penguin-like contri- 

butions to K + HIT decay from the superweak model, 
30 where E'=O, as ex- 

planations of the violation of CP invariance. 
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APPENDIX I 

In this section we outline the derivation of the equations and give 

numerical results for the quantities which appear in Section II. In 

Section II a rather fundamental role was played by the renormalization 

group Eqs. (22), (32), (37), and (48). To get Eq. (22), for example, one 

d merely app_lies p q to both sides of Eq. (18) using 

p -$ <joy/> = i 1-I $ + B(g) & + C Y,(g) mq& 1 <lo(’ t q 4 
= -y@)(g) <lo;‘)/> 

lJ 2 <IOil>’ = 
i 
!-.I & + B’(g’) $T 

= - C YfjCg’) ‘l”j 
j 

I>’ , (A. 2) 

, (A. 1) 

and 

& + B(g) 7& + v,(g) m,-&- ,)B;')i$,g) . 

(A.3) 

In Eqs. (A.l) and (A.3) the partial derivative with respect to 1-1 is at 

constant g and m 
4' where q E Iu,d,...,t), while in Eq. (A.2) it is at 

constant g' and m', where q E {u,d,...,b}. 

The y(')(g)q and the matrix y' 
kj (g') (2) arise because the operators Ot 

and Oi are local four-fermion operators and require renormalization. 

The renormalization of the operators 0 (2) 
'2 

at the one-loop level was con- 

sidered in Ref. 11 where it was shown that the y (-+I w are given by Eq. 

(12) l From Eq. (16), with Nf=6, it follows that 
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,(+) = 6 
21 ’ 

,(-I = 12 
-21 l 

(A.41 

At the one-loop level the operators 0. undergo a renormalization 
J 

0; = c 2 
k jk Ok (A. 5) 

where a superscript "0" denotes a bare unrenormalized quantity. Zjk is 

the matrix renormalization which arises because of the composite nature 

of the local four-fermion operators 0.. 
J 

The matrix yij(g') is defined by 

. (A.6) 

Note that the Z 
3 

are a function of the coupling g' since the renoramli- 

zation of the operators 0. 
J 

is calculated in the effective 5 quark theory 

with that coupling. A straightforward calculation of the "infinite part" 

of the one-particle-irreducible diagrams in Fig. 3, using Landau gauge, 

gives 

12 

yfj(g') = 5 
8n 

-1 3 0 
3 -1 -l/9 

0 0 -11/g 

0 0 2219 
00 0 

, 0 0 -5/9 

0 0 0 ’ 

l/3 -l/9 113 
11/3 -219 213 

213 -519 5/3 
0 1 -3 

5/3 -519 -19/3 

+ a(g’4) . 

(A. 7) 

In the calculation of the renormalization of the local four-fermion 

operators, O., 
J 

the masses of the light up, down, and strange quarks was 

set to zero. If this was not done the operators 0. would not close under 
J 

renormalization at the one-loop level -- a transition color magnetic 
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moment term must be added. However, the presence of such an operator 

does not alter the Wilson coefficients of the local four-fermion operators, 

0 ., 
J 

from their value calculated with the light quark masses set to zero. 

The transition color magnetic moment operator itself is explicitly propor- 

tional to a light quark mass yielding small matrix elements. Also the 

Wilson coefficient of the magnetic moment operator is expected to be 

small. These facts justify our approximation of setting the u,d, and s 

quark masses to zero. 

The matrix y$(g') can be diagonalized by the transformation 

c 

k,R 
v;; y$g’) Vkj = 6ij y; (g’) (A. 8) 

where 

vk 

and 

= 
,J -. 2089 -.23161 1.0843 .081196 -.10082 .82414 

.032942 0 . 10426 .93924 0 -.3322 

.61688 0 .21323 -.34513 0 .28045 

0 -.69483 0 0 .70576 0 
0 .69483 0 0 .' .70576 0 

.15042 .23161 -1.253 .16684 -.10082 .42681 

y; k’) =8’2 
8a2 

: 

-6.8954 

-4 

-3.2429 
1.1166 

2 
3.1327 

+ @(s14) 

(A. 9) 

(A.lO) 

Combining (A.lO) with the perturbative expansion of B'(g') in Eq. (27) 

yields the a! of Eq. (28): J 
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a: = 

-.8994 

- 12/23 
-.42299 

. 14564 

6/23 
.40861 

Note that ai = a 1 c-1 and a' = a' (+I 
4 where 

y';::(y) = 2a'(+) + terms finite at x=0 
X X 

and 

y’(+)(g’) = I2 -Bi- + a(g’4) 
47r 

(A.ll) 

(A.12) 

(A.13a) 

y’(-)(g’) = I2 
- 5 + @(g14) . (A.13b) 

21T 

The case where the bottom quark is treated as very heavy is similar 

to the above and we simply state results: 

2 
y;n(g") = 5 

87-r 

-1 3 0 0 0 0 
3 -1 -l/9 113 -l/9 l/3 
0 0 -11/g 11/3 -2/9 2/3 

0 0 2319 l/3 -419 4/3 
0 0 0 0 1 -3 
0 0 -4/9 413 -419 -20/3 

ygp”) is diagonalized by the transformation 

c W--l 
R,k 

nR -&g") wkm = 6nm y;(g") 

1 

+ @(g”4> 

(A.14) 

(A.15) 

where 
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Wh = 

0 .67552 0 0 .70598 0 

0 -.67552 0 0 .70598 0 

-.13011 -.33776 -1.2092 .14075 -.11766 .47246 
. 18274 .33776 1.1043 .067129 -.11766 .80199 

\ 

-.02959 0 

-.65316 0 .064119 .96326 0 -.30023 .14969 -. 34859 0 .23908 I 

and 

-7.0428 

-4 

-3.501 

1.0974 

2 

2.8909 

(A.16) 

+ tqg"4) . (A.17) 

It follows from (A.17) and the perturbative expansion of B"(g") that 

a” = 
n 

-.84514 

- 12/25 
-.42012 

. 13169 

6/25 

\ .34691 

Again al; = a ,I(-> and at = a I'(+> . 

(A.18) 

When the heavy charm quark expansion is performed only the five 

operators Q,,Q,,Q,,Q,, and Q, defined in Eq. (44) are required. We fi ad 

that 

-1 3 0 0 0 

8/3 -2/3 2/g -l/9 l/3 

-11/3 11/3 22/9 -219 213 

0 0 0 1 -3 

-1 1 2/3 -l/3 -7 (A.19) 
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The matrix Y"F(g"') is diagonalized by the transformation 

c 
-1 

X np 'ZL T(g"t) xrq = 6nq r'p"') , 
w 

(A.20) 

where 

-.71436 .052633 .84853 .69088 
.71436 - .052633 .56569 - .69088 

x = -.030949 - .16552 -.28284 -1.1481 np , (A.211 

.018728 -1.0044 0 .23229 

.049722 .35726 0 - .17486 

and 

2 
,;(g"') = 5 (A.22) 

Note that these eigenvalues check with those of Ref. 3 where the effective 

Hamiltonian, for strangeness changing nonleptonic decays was calculated in 

the four quark model using a different operator basis. The fourth eigen- 

value corresponds to the multiplicatively renormalized isospin 3/2 operator 

3Q,+2Q2-Q3. Finally 

ai' = 

-.80246 

-.41732 

.11957 

6127 

.29774 

(A.23) 
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TABLE I 

Coefficients of the operators Q,,Q,,Q,,Q, and Q, defined in Eq. (46) 

in the effective Hamiltonian, reef, = (-GF SlC1C3/fi > ( C CiQi) 9 for 
i 

strangeness changing, nonleptonic weak decays. Tz sz+s2c2s3e -i6 
/c1c3. 

Parameters cl 

a(p2) = 0.75 

mt = 15 GeV 

ah21 = 1.00 
mt = 15 GeV 

a(p2) = 1.25 

mt = 15 GeV 

a(u2> = 0.75 
mt = 30 GeV 

a(p2) = 1.00 

mt = 30 GeV 

a(u2) = 1.25 

mt = 30 GeV 

-0.72 
+0.035.r 

-0.87 
+0.036~ 

-1.00 
+0.036-c 

-0.71 
+0.042~ 

-0.86 
+o.o43T 

-0.99 
+o.o43T 

c2 

+1.40 
-0.035T 

+1.51 
-0.036~ 

+1.61 
-0.036~ 

+1.39 
-0.042~ 

+1.50 
-0.043T 

+1.60 
-0.043T 

c, 

-0.013 
-0.015T 

-0.021 
-0.012T 

-0.028 
-O.OlOT 

-0.013 
-0.017T 

-0.021 
-0.013-C 

-0.027 
-O.OllT 

c5 

+0.007 
+0.008~ 

+0.011 
+o.o07T 

+0.015 
SO.006~ 

+0.007 
+o. 009r 

+0.011 
+0.008~ 

+0.014 
+0.007-c 

'6 

-0.025 
-0.059T 

-0.047 
-0.072-c 

-0.069 
-0.085~ 

-0.025 
-0.076~ 

-0.047 
-0.093T 

-0.068 
-0.109.r 
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TABLE II 

Values of the quantity 5, which leads to CP violation in 

K" + 1~71 decay amplitudes; Ed, the contribution to CP violation 

from the mass matrix calculated with e2=15'; and the resulting 

ratio of CP violation parameters, E'/E for e2=15' and f=0.75. 

Parameters 

a(p2) = 0.75 

mt = 15 GeV 

a(u2) = 1.00 

mt = 15 GeV 

a(p2) = 1.25 

mt = 15 GeV 

a(p2) = 0.75 

mt = 30 GeV 

a(v2> = 1.00 

mt = 30 GeV 

a(p2) = 1.25 

mt = 30 GeV 

S/fs2C2s3sin6 

-(O 423+s2)-1 . 2 

-(O 651+s2)-1 . 2 

-(0 811+s2)-1 . 2 

-(O 326+s2)-1 . 2 

-(O 505+s2)-l . 2 

-(0 624+s2+ . 2 

Em/s2c2s3sin6 

10.4 

10.4 

10.4 

18.2 

18.2 

18.2 

E ’ /E 

l/50 

l/80 

l/100 

l/80 

l/120 

l/150 
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FIGURE CAPTIONS 

Fig. 1. "Penguin" type diagram. 

Fig. 2. Diagram contributing to the K"-Eo mass matrix. 

Fig. 3. Diagrams entering the calculation of the renormalization 

of the local four-fermion operators (represented by the 

square box) through QCD effects. 
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