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ABSTRACT 

A comparison is made between several models of lattice QED, in 

2+1 dimensions, which have been shown to exhibit confinement for small 

couplings. We also compare two different approaches which have been 

employed to study this phenomenon: the variational and path integral 

methods. The reasons for differences in the results are explored. 

The importance of compactness for low-coupling confinement is demon- 

strated. 

Submitted to Physical Review D 

* Work supported by the Department of Energy under contract~number 
DE-AC03-76SF00515 



-2- 

1. Introduction 

There have been several approaches to the problem of confinement 

in 2+1 dimensional compact QED, for small coupling constant. All 

approaches yield a static potential energy E(D) N yD between a q: pair 

a distance D apart, where y vanishes nonanalytically with the coupling. 

This means there is confinement (but there are differences in the 

results). Since the approaches, and the models themselves differ widely, 

we think it is worthwhile to try answering the following questions: 

How are the confinement mechanisms related? How much of the difference 

between the various results is caused by making different approximations 

in each case? There is also the question of periodicity. In one 

approach, 3 heavy use is made of the periodicity of the Hamiltonian as 

a function of magnetic field, whereas in the path integral approach 

of Ref. 1, the apparent cause of confinement is the presence of multi- 

pseudo-particle solutions, and these exist for non-periodic field 

potentials as well (those possessing degenerate minima). One would 

like to know whether periodicity is really necessary for confinement. 

What follows is an investigation of these points. We will begin 

by describing the main features of the approaches we will be referring 

to, but first a word about notation: our convention for electric and 

magnetic fields vary in different parts of the paper. To prevent 

confusion we will give their definitions in terms of the vector poten- 

tials Ai, whenever necessary. Ai are always normalized to satisfy 
- 

canonical commutation relations with Ai. We will always be working 

in the temporal Ao=O gauge. Other conventions used are: 

1) The lattic indices i,j run over 1,2. 
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2) Greek indices )J, v, etc. run over 1,2,3. 

3) The 3 direction is the time direction (real or imaginary). 

4) Summation over like indices is sometimes implicitly used. 

5) A,,, Ai are lattice difference operators. 

6) c, 2 are unit vectors in the directions p, i, respectively. 

1.a. The path-integral method 

This approach was implemented in two different ways which converge 

at a certain point. 192 Polyakov used a Georgi-Glashow QED, which we 

call model I. The Euclidean action is 

+ +(DV;)2 + $ &2-n2)2 3 

F 
VV 

= e(auZv - avQ + e2Lp xiv (l.a.1) 

where ; is the isovector Higgs field, and $ are the non-Abelian gauge 
lJV 

fields for the SU(2) gauge group. Fa are derived from vector potentials 
WV 

Aa, where a is the isospin index. n,X are constants; e is the gauge 
P 

coupling, and has dimension (length) -% . Du are covariant derivatives. 

Model I contains a pseudo-particle solution, the 't Hooft-Polyakov 

monopole. By a suitable gauge transformation, A 192 
u 

are gauged away far 

from a monopole, and one is left with the vector potential A = A3. u IJ 

Only a U(1) subgroup of the original SU(2) symmetry remains. Polyakov 

computes the correlation function 

F(C) = <expie Au dxu> 

C 

for small e. C is the Wilson loop. He considers only the multi-monopole 

contributions to the path-integral. F(C) is thus expressed as a correla- 
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tion function in a magnetic monopole gas, in the dilute gas approxi-' 

mation. The monopoles have a long-range Coulomb interaction, but a 

screening occurs that makes the Green's function of the gas short range. 

In fact, the kZ =0 pole in the correlation function 

J 
e ik*x <T(B(o) B(X))>d3x 

where B is the magnetic field, disappears when an infinite set of 

Feynman graphs is summed. Instead of the massless vector Boson A 
u' 

one gets a pole corresponding to a massive scalar field, (b. F(C) is 

expressed as a path-integral over this field: 

F(C) = J[d$] exp[-$ ne2/a3x[(V(0-n))2-2M2 cos@l\ 

where 

1 
J 

-t + 
n(x) = T d;f l "-y3 

S 1;: -YI 
(l.a.2) 

S is the area bounded by the contour C. It is unambiguous if one chooses 

a planar C. 

This path integral is computed using a stationary point. The 

result is an area-law decrease, 

F(C) = emYA (l.a.3) 

where A is the area of S and y is a constant. 
1 

The second model in which the path integral approach was used is 

- compact QED on a spacetime lattice. 2 The Euclidean action is 

B c (1 - cos 8 
r4.w 

pv(T)) (l.a.4) 

where 0 
lJV 

is a dimensionless multiple of the electromagnetic field tensor. 
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We call this model II. The B-+= limit is considered. Using a Villain 

approximation, a monopole partition sum is derived, and the results are 

a lattice version of those in Ref. 1. The discreteness of spacetime 

in this model eliminates short distance problems; in particular, the 

self-action of a monopole is computable. But the long distance behavior 

is not affected by discreteness, so (l.a.3) is still true. B corresponds 

to l/e2a, where e is the coupling in Ref. 1 and a is the lattice spacing. 

In both models I and II the static energy of a quark-antiquark pair at 

large separation Da is read off (l.a.3) and is 

where y vanishes non-analytically with the coupling. The treatments in 

Refs. 1 and 2 are valid for small couplings e; we further know compact 

QED confines for large e.4 Hence these models cannot have a phase 

transition. 

1.b. The variational approach 

This approach to the problem is a Hamiltonian formulation on a 

two-dimensional lattice: with the following compact QED Hamiltonian: 

H = 3 g2 I c c -t P,i 
where E-t 

p,i 
is the electric field on a link 3 + $+i, 

% 
is the magnetic 

field on a plaquette, and we have set the lattice spacing, a, to be 1 

for convenience. g corresponds to e in Ref. 1. In terms of the vector 

- potentials we define 

E-t = 
P,i 

h3 A-t 
g 3 P,i 

% 
= g cij Ai A; j , 

(l.b.1)' 
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We name this model III. 

The separation energy E(D) is computed variationally in a special 

sector of Hilbert space. Let (Iv}> be a state with a well-defined 

magnetic field configuration, B-t at site $. 
P 

Working in this basis, the 

wave function is 

xwp = <~EyIJI> (l.b.2) 

where I$> is that part of the qq state belonging to the photon sector. 

The Hamiltonian is periodic in each 3 with a period 27r. An operator 

%, conjugate to B+, is defined as follows: 

E-t 
p,i 

= E AT.++E! 
fj j P P,i 

E-i 
p,i 

is the Coulomb static field and we choose it to be that generated 

by a static q< pair a distance D apart. Aj are lattice difference 

operators. The above-mentioned periodicity then means that 

[exp (2aiLQ ,H] = 0 

Therefore Gt = 
P 

exp (2niL+) are good quantum numbers, and so are L$ up 

to integral fluctuations. Choosing then a sector in which 

G;: 
= exp (21~i.i~ ) 3 ,% = srt + integer (l.b.3) 

We can label the trial wave function as 

xmpp . 

This is a Bloch-type wave function, with "wave numbers" %' 
The 

natural choice for EC is that which will screen the Coulomb field and 

squeeze the electric flux links into a string, which runs in a straight 
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line between the quark and antiquark. Then the question of confinement 

translates itself into the question: will the string be stable? As is 

well-known this approach to confinement is equivalent to using the 

Wilson loop. Making this choice, one must now determine the shape of 

x inside a single potential well. x is chosen to be a sume of Gaussians. 3 

xtrial({B;; ~$1) = e 

1 -- 
a2 

, (B;:-2~9) A&~,-2906 

x e (l.b.4) 

and As, is a Green's function, determined variationally to be 

Ap7 = $ c eii.Cs'-s) (4-2coskx-2cosky) -s (l.b.5) 
it+0 

up to corrections of orders g2 and e-const/g2 . g is the discrete lattice 

momentum. The variational computation then gives for E(D) an expression, 

derived from a partition sum 

(l.b.6) 

This is a partition sum of a 2-dimensional Coulomb gas on the lattice, 

interacting with an imaginary external field. The charges of the gas 

- have the interpretation of being tunnelings between the different B- 

vacua, i.e., they appear in the sum as a result of overlap integrals 

between different terms in (l.b.4). If one wants to push the tunneling 
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interpretation further, one can say that the magnetic charges are 

electric vortices; a tunneling means a change of B with time, which 

causes an electric field circulation, by Faraday's law. In Sections 

2 and 3, we will examine the relation between these tunnelings and the 

monopoles of the other approach. 

l.c. 

In what follows, we will compare the various aspects of the different: 

procedures - the "variational" (or "tunneling") approach and the "path 

integral" (or "monopole") approach. The plan of the paper is as follows: 

in Section 2 we discuss classical monopoles in a certain continuum model, 

in order to gain a better understanding of the relation between model I 

and the other two models - in which no exact monopole solutions are known. 

In Section 3 the mechanisms for screening and confinement are explained 

and compared in the two approaches. In Section 4 we explore the impor- 

tance of compactness for screening and confinement. In Section 5, a 

numerical comparison is made between the results of Refs. 2 and 3, and 

an attempt is made to explain the different long-distance behavior of 

the Green's functions. In Section 6, the treatment of Ref. 2 (namely 

a spacetime discretization) is applied to model III, and comparisons 

are made with both Refs. 2 and 3. In Section 7 we present concluding 

remarks. 

2. Monopoles in Interacting QED 

To better understand the connection between the approaches, and also 

between models I and II, we will demonstrate how classical monopole 

solutions arise in certain interacting QED models. Models II and III 
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are such models. Consider a generalization of. model III for Euclidean 

time: 

c ~ V@;) (2.1) 
P 

Again we have set a=1 for convenience, so the problem is now devoid of 

dimensional quantities. The convention for the fields is now as follows: 

B-t 
P,i = g Eij a3 A;: j 

, 

B-t = B-t 
P P,3 

= g ~~~ Ai A; j 
, 

(2.1)' 

Note we have passed from a 2+1 dimensional notation, in which there are 

two electric-field components and one magnetic component, to a 3 dimen- 

sional notation where there are three magnetic field components. We 

choose a field potential V having two degenerate minima: 

V(B) = 2~r(B-IT) e(B-IT) (2.2) 

(see Fig. 1). This is a piecewise quadratic function. To find a 

classical solution of the equations of motion, we should solve a set 

of difference-differential equations. However, in order to make our 

point as simply as possible, we will replace the spatial lattice by a 

continuum for the remainder of this section. The action is now, 

1 Action = - 
a2 I 

d3x c 
i 

(Bi(x))2 + + 
/ 

d3x V(B) (2.3) 
g 

where 

a,, B,, = 0 

The last follows from (2.1)'. The equations of motion obtained from 
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this action are 

a;B -I- c 
i 

a: V'(B) = 0 

c E 
ij ij ai B. = 0 ) a B = 0 

3 lJ u 

(2.4) 

(2.5) 

We seek a monopole solution. From (2.2) and (2.4) 

a;B + c 
i 

a;(B-2ne(B-n)) = 0 

S2B = 2n(af+ac) e(~- 7~) (2.6) 

(0) Imagine a configuration, B , in which B= 2~ in an infinitely long 

tube, becomes B= IT on some surface K at the end of the tube, and is 

everywhere < IT outside this tube (Fig. 2). Obviously, the R.H.S. in 

(2.6) is nonzero only on K and T, and singular there. It is equivalent 

to an infinite current-solenoid terminating near the point P, which will 

generate another configuration, B (1) , similar to the first. It will 

have the same T but a different K. Thus we can find an approximate 

monopole solution to (2.7) by iteration, which presumably will converge. 

From the first iteration B (0) onward, B behaves like a monopole field 

far from the tube, and from (2.5), all three components will behave like 

i?/r3. We have used a singular field potential; for a potential V(B) that 

varies smoothly near B=YT, like a cosine potential, the current solenoid 

may develop a thickness. 

Note that the equation (2.6) has no length scale, so the width of 

the monopole tube is arbitrary. The monopole point P is also arbitrary, 

but the tube must be along the 5 direction. 
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One can presumably find such monopole solutions for any potential 

V(B) possessing degenerate minima. This condition is satisfied in 

particular for periodic potentials, but periodicity is not required. 

This leads to the question raised in Section 1, of whether periodicity 

(compactness) is necessary for confinement. We will investigate this 

point in Section 4. 

3. Screening and Confinement Mechanisms 

In both approaches confinement is achieved by screening. The 

monopole picture in 2+1 dimensions is as follows: 

The Wilson quark loop is an (imaginary) current loop C, producing 

a magnetic field. This field is the same as that of a narrow magnetic 

dipole sheet on the area S bounded by C, except..on S itself. On the 

lattice, this sheet is one spacing thick. The energy of the loop 

increases only as the loop perimeter. However, the loop is immersed 

in a magnetic monopole gas, which interacts directly with the dipole 

sheet, thus adding a term proportional to the area of S to the action. 

The gas becomes polarized, and monopoles of opposite polarity accumulate 

on the two sides of the sheet, screening both the magnetic field away 

from the sheet and the monopole-monopole interaction (Fig. 3). This 

gives the correlation function a finite range, whose inverse is inter- 

preted as a mass of a scalar field. The mass vanishes nonanalytically 

with g. This effect causes the action to increase by an amount propor- 
- 

tional to S. Thus 

<exp (ie 4 
C 

A,, dx,,) > 

decreases according to an area law. 
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This picture can be projected into a static one, in the 2 space 

dimensions. Here the current loop becomes a quark-antiquark pair a 

distance D apart, creating a Coulomb electric field. The electric field 

in this picture is simply related to the loop magnetic field by 

Ei = E.. B. 
13 J (3.1) 

where B 3=B remains magnetic. Unlike in Section 2, E now includes a 

longitudinal part. The Coulomb field is purely longitudinal; a monopole 

adds an electric vortex in this picture. Vortices of opposite circula- 

tions accumulate on both sides of the q< line, focusing the electric 

flux to a narrow tube, which causes confinement (Fig. 4). This same 

spatial picture of confinement in the monopole approach can be seen in 

the mechanism of Ref. 3. There one has vacuum tunnelings rather than 

monopoles, but these are known to be related. Specifically, we saw 

such a relation in Section 2. The sense in which electric vertices 

are present in Ref. 3 is the following one: if we isolate a single- 

gas-particle term in the partition sum (l.b.6), i.e., a configuration 

% = 6;n', its contribution to <L;t> is in g2 A;;;* This shows that in 

the Hamiltonian approach, too, the "gas particles" are associated with 

electrical vertices. The i results from the fact that in the Hamiltonian 

formulaism one has real, rather than imaginary time. In both approaches, 

screening makes the correlation function of the gas well behaved at large 

spatial separations. But in the monopole approach the screened propa- 

- gator decreases exponentially with distance (it developes a mass), whereas 

in Ref. 3 the decrease is a power law. In Section 5 we will discuss this 

discrepancy, and show how it might be an artifact of certain unjustified 

approximations made in Ref. 3. 
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4. Compactness 

4.a. The case of a non-periodic potential 

In all three models I, II, and III the action is compact in some 

way. In model I it is compact through the non-Abelian group in which 

U(1) is embedded; in model II, it is periodic in all three non-vanishing 

components of 8 
W' 

In model III, the action is periodic only in B. 

If the action were not compact, the theory would not necessarily confine 

for large g. What happens to the small-g arguments for confinement in 

such a case? If V(B) is non-periodic, Is-+-} are no longer well defined 

quantum numbers, since Lp (defined in 1.b) no longer commute with the 

Hamiltonian. To put it another way, the fluctuations of L; around EC 

are no longer discrete. Therefore, even if V(B) has a (finite) number 

of degenerate minima, (l.b.4) is no longer a reasonable trial wave 

function. Since no set {ES) is favored now, one should take the one 

leading to lowest energy, i.e., the vacuum assignment, and confinement 

is lost. Formulating this in the Wilson loop language, where the loop 

C is the rectangle shown in Fig. 5, one has for Euclidean time of 

duration T, 

(D-1)i 
-ig c A1 ($1 

(D-1)i 
ig A1 ($1 

I? (Cl = <Ole $=o eDHT e lo> 

(D-1)i 
ii3 -F A1 ($1 

and as T+=, F(C)+1 unless <Ole p=o lo> = 0. The latter is true 

- for any quark positions only if the vacuum wave function is periodic, 

which in turn means V(B) must be periodic. Thus there is no area-law 

and no confinement for non-periodic V(B). But consider a potential with 

a finite number > 1 of degenerate minima. There are still tunneling and 
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monopoles in the theory, and one can argue that in a path integral 

calculation of F(C) these will cause screening and confinement, for 

g << 1, as describe in Section 3. We will now demonstrate, for a 

particular double-well potential, how the screening mechanism breaks 

down, thus affirming that for small'g, too, periodicity is needed for 
* 

confinement as can be deduced from the general argument above. 

4.b. An example 

Let us choose a particular non-periodic potential, and demonstrate 

how screening breaks down, even though V(B) has two degenerate minima 

and therefore tunneling and monopoles. 

The breakdown will appear in a different way than in 4.a. Working 

on a space-time lattice, one cannot have two tunnelings of the same 

signature, at the same spatial point and two consecutive times. This 

is because the potential we have chosen has only two minima. One does 

obtain a monopole gas, as in Ref. 2, but the monopole charges m(r) do 

not vary independently, and we show that ruins screening. 

We employ here the following convention for the fields: 

Ei = a3Ai 

B = E ij hi A. 
J 

(4.b.l) 

The potential we choose is (Fig. 6) 

' 
V(B) = -am3 

-.!-a3B2 -T 
2 a3(B-B )2 

+e O ),a = lattice spacing 

(4.b.2) 

* Note however that just because screening does not appear in the usual 
way does not prove lack of confinement. 
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for large Bo. It has two minima, and is non-compact. It corresponds 

to a free photon in two limits: B + 0 and B + 0~. For small B, V(B) 

can be expanded around l/2 B 2 and gives, for example, a 3-photon coupling 

proportional to 

_ 1 B2 a3 
Bie 2o 

Thus this potential has no strong coupling limit. But we choose it 

because a monopole gas can be derived exactly from the Path-integral. 

In that monopole gas, Bo, corresponds to l/g in Ref. 2. 

Setting a=1 for convenience, the correlation function is 

ie c A (r) J (r) 
F(C) = <e -usr u u > =/WI explie c Au(r) Jv(r) 

\ rv 

- i c E:(r) - c V@(r))/ 
r,i r 

where r is the lattice site, and Ju is 2 

1 if the link r + r+G is on C 

J,,(r) = -1 if the link r+j + r is on C 

0 otherwise . 

For the potential (4.b.2), 

-XV@(r)) 
r e 

(4.b.3) 

Therefore the integrand in (4.b.3) is Gaussian, and the path integration 

can be performed exactly. The result is, up to perimenter-law factors, 
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F(C) a (v .co N $jexp [ 5 $ ‘i($) Nr’ 
r rr' 

A2 
- i(eBo) c Nr 2 (6y,o e,(x,t)> (4.b.4) 

r A 1 l fl tiN 

r r ' "r+jwnr 

If we choose the curve C as in Fig. 6. es(x,t) is 1 on S and 0 

outside. The interpretation of (4.b.4) is a (dilute) monopole gas, 

where Nr are the monopole charges. They arise from tunneling between 

vacua which have B(r) = Bonr, nr = 0 or 1. This implies a constraint 

on the monopole charges, which is the Kronecker delta. It is this con- 

straint that ruins the screening, as we will show. The external source 

coupled to Nr in (4.b.4) is the same as in Refs. 2 and 3. Defining 

A2 
'I, = 2 @y 0 

A , e,kt)> eBo (4.b.5) 

We get by the usual resummation techniques, 

F(C) Oc (y g gj@r) F 'Nr,nr+g-nr 

x exp i c (+r - nr) Nr (AllOr) 2 (4.b.6) 
r 

Without the constraint, this would give (cos +r) factors, whose normal 

ordering in a diagram expansion give the Greens function a mass, similar 

- to the mechanism in Ref. 3. However, due to the constraint, 
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= F F exp ii F (4, - ‘lr) (nr+3 - nr)j 
r 

= n C exp (-iCnrtm,-~r-~+~r_j-~r)) 
r n r r = ni 1 + exp [i($,-;- +r+nr-Or-3)] 
r 1 

This introduces a derivative coupling of the $r field, and the self-energy 

will vanish as momentum + 0. Thus, screening breaks down. 

5. A Detailed Comparison: Models II and III 

Models II and III differ in two respects: time is continuous in III 

while discrete in II, and the action in III is periodic only in B, not in 

the electric fields. In addition, the approximations used in Refs. 2 and 

3 are different, although similar in nature. The strength y of the linear 

confining potential comes out different in the two papers; in Section 6 

we will show this is mainly an artifact of the different treatments of 

time. In 5.a we will compute the numerical coefficients in y, based on 

Refs. 2 and 3. 

A major qualitative difference in the results concerns the nature 

of screening: in Refs. 1 and 2, the screened Green's function of the 

monopole gas drops exponentially at large distance, whereas in Ref. 3 

it drops as a power. In 5.b we will demonstrate how the approximations 

made in Ref. 3 may be responsible for this. 
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5.a. Numerical comparison for the linear potential 

In both approaches, the separation energy for a q;i pair a distance 

Da apart (a is the spatial lattice spacing) is 

E(D) - YD (5.a.l) 

behaves for small g as 

1 
Y - 6 exp -d - 

( 1 g2a 
(g2a)C aB2 (5.a.2) 

where c,d,6 are numbers. We will compare them for the two approaches. 

From Ref. 2 we found* 

Y = * = * exp (-r2v0/g2a) 
IT na 

where M is the screening mass, and v. is quoted as being 

vO * 0.253 . 

Thus, 
1 c2 = Yj 

d2 = 2.50 

&2 = 1.80 

where the subscript refers to Ref. 2. In Ref. 3, 

71 2-4 -2 2 TfJ 
Y * ya exp - - 

( 1 g2a 

- where 

(5.a.3) 

* There are some wrong factors of IT and 2 in Ref. 2. In Ref. 1, the 
formula (V.24) for y is nuclear; we have obtained there y = 8Te2M. 
Banks et a1.2 -- rely on Polyakov for y. 
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J = ;Lm 2 2 2 (4 - 2cos T - 2cos y-$ 

nl =-L n2=-L 

Tc IT 

1 

JJ 

5- =- 
4s2 

dkl dk2 (4- 2coskl-2cosk2)- ' * 0.64 

-ll -IT 

Thus, 

c3 = 0 

d3 = a25 * 6.33 

63 = 1.87 

5.b. The long-distance behavior of the Green's function 

The Green's function of the gas has different long-distance behavior 

in Refs. 2 and 3. In Ref. 3, A;;, is that given by (l.b.5) and normal- 

ordering the diagram expansion modifies it to 

iz*c"-') ((4-2coskx-2cosky?+ u2/g2)-l (5.b.l) 

2 -s2*()/g2 The latter is actually an equation for u2. Au 
2 

whereu =e . 
PP' 

behaves as 1/1$'-$13 at large distances, which is enough to eliminate 

volume divergences. However, this behavior differs from an exponential 

falloff. One would expect such a falloff when the 3 dimensional monopole 

gas of Ref. 2 is projected on the two spatial dimensions, as described 

in Section 3. 

The trial wave function x is chosen to have a Gaussian form in 

Ref. 3. Actually, for a smooth field potential V(B), a Gaussian would 

only be accurate near the bottom of the potential wells. But it would 
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be difficult to compute the integrals with a non-Gaussian wave function. 

However, an approximation is made in Ref. 3 even in deriving the As, 

that extremizes <xlHlx>. 

We have found that changing this approximation can make A$, well 

behaved to begin with at large distances. We suggest that such effects 

may combine to make the photon propogator drop exponentially, as in 

Ref. 2, but cannot prove it. 

Defining as in Ref. 3 

A*, = 1 
PP v e c 

z 

We start by assuming that y. is finite, and seek to show that this leads 

to self-consistent results. Thus, there is no need to freeze out the 

degree of freedom CB+ as done in (l.b.4), so we remove the &-function 
Tt p 

from Xtrial' Also, since g, is well-behaved at large distance, we can 

use the cluster expansion. This consists of expanding the exponential 

factor in (l.b.6) around exp IT2 A EN: -9'0; p 1 , where A0 = A$,. For 

no external sources c+= p 0, one must minimize <xIH(x> = E({y$]) as a 

function of the y$- s. In the first approximation to the cluster ex- 

pansion, this gives the equation 

4Tr 2 
iyi2+ -e 

g2 

-a2A0k2 = 0 

at d2 =0, which has no solution. In the second approximation the 

equations becomes 

4n 2 
i yi2 + - e -n2Ao/g2 -2s2Ao/g2 

g2 
YO (5.b.2) 
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which admits the solution 

YO 2Ao/g2 + o(1) 

Had we neglected all e -const/g2 terms in (5.b.2) we would obtain y -2 
0 = 0 

as in Ref. 3; it is this approximation that we have changed. Further- 

more, for z2 small compared to yil we can expand 

n2A0/g2 + 84 e2* 2A y-f = O’g2 
k 1024n4 

z2 + O( 1) 

and at finite d, we obtain as in Ref. 3 

Y-+ = k (4-2cosk -2cosk ) 
X Y 

-' + O(g2) + O(e -'2Ao/g2) 

Inclusion of higher-order terms in the cluster expansion will 

change (5.b.2), but to all orders we still have, at least formally, 

y. - e n2A0/g2 . 

6. A modified Comparison 

We will now refine the comparison between the path-integral and 

variational approaches by making the models, used as inputs for the two 

procedures, identical. That is, we will apply a path-integral method to 

model III. As a first step, we will put this model on a lattice in time 

as well as space, but with lattice spacing b in time and a in space. 

For b finite, we obtain results similar to those of Ref. 2; for b=a 

they coincide. This is done by employing approximations similar to 

those used in Ref. 2. We then take the continuum limit b+O i There 

our results are less accurate, since the approximation that all monopole 
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charges are 51 breaks down. However, we are able to argue that the 

crucial numerical coefficient d, governing the non-analytic behavior 

of confinement near g= 0, is the same as obtained in the variational 

treatment of Ref. 3. 

Model III for continuous time has the following action: 

Sdf a2F[+ $(Ei(c,t))2 + -g$ (l- cos(ga2B6,t)))] (6.1) 

where g is the coupling constant, a is the spatial lattice spacing, and 

s denotes a lattice site. g has dimension (length) -% . 

We now make time discrete, with spacing b, and make space-time 

Euclidean. The action now becomes 

S = ba2x $ c (Ei(r))2 + -& (I- cos(ga2B(r))) (6.2) 
r i 1 

where r now denotes a three-dimensional lattice site. In terms of the 

vector potentials the electric and magnetic fields are 

B = a (AlA - A2A1) 

Ei = 'ij ( a AjA3 - $ A3Aj) (6.3) 

Au are the difference operators in the three directions. We will re- 

scale the A 
u' 

'i = ga Ai 

e3 = gb A3 

and define 

e = A 8 - AvBp . UV UV 
(6.4) 



-23- 

So that 

b s - = c 
g2a2 r 

Cl- ~0s e12(r>> + & rxi (e3,(r)12 (6.5) 
, 

and our aim is to compute 

z = [de,,(r)1 exp -S - i c jP(r) 9u(r) 
I 

(6.6) 
r,u 

where j is the external source associated with the Wilson loop. To 
v 

find j for a given contour C, we note that (6.4) gives 

c ju(r) ep(r> = g c aAi(r) ji(r) + gzbA3(r) j,(r) 
r,u r,i r 

And we therefore choose, 

1 if the link r + r+G is on C 

jp(r> = -1 if the link r+G + r is on C 

0 otherwise . (6.7) 

and this current is conserved: AU ju(r) = 0. 

What is the range of integration over eP(r) in (6.1)? The action 

is periodical in either 13~ nor el, so we let eP(r) vary over the entire 

real axis. 

Separating ei into longitudinal and transverse parts, 

ei(r> = Aim - Eij Aj 
1 

A;+A; 
8 (r) 

. . . e12W = e(r) 

We get the following exponent in (6.6): 
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s + i C jllell = -J-x(1-cos e(r)) 
r,v g2a2 r 

2 2 58 
"' Aix + ' A2 

- e3Afe3 - 2(A3e3)A:X 

i 

+i c j3(e3 -A3X) - icj i E LAe 
r r ij A2 j 

k 
(6.8) 

with A: = A.A ii = A;+A;. This expression is quadratic in e3 and X, 

so integration over these variables can be easily perofrmed, leaving 

only a path integral over the magnetic field e(r)., The result is 01 z = (l- cos 8(r)) 
-co 

1 
+- c 

2g2b r 
(A381 

h2 
' (A,e> + ix (Alj2-A2jl) Lf3 

A2 i 
(6.9) 

i r i 

The proportionality is up to a factor resulting from the self-interaction 

of the current loop j. Such factors contribute only a perimeter law and 

will be subsequently ignored. To compute Z we replace the cosine poten- 
* 

tial by its Villain version, 

m 
e~p [+(i - c0se)J + c ill0 1 e e -a2/2B (6.10) 

R = -0D m 

and perform the 0 integration, which is now Gaussian: 

* This step is comparable to the approximation of choosing the trial 
wave function used in Ref. 3. 
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z a 
! I(r? 

exp 
= mm I 

-p 
= [ 

A2 
R(r) t+i -$ E(r) 

r 
A3 
1 

- g2b c 
1 1 

r 
a(r) 2 (A,j,- A2jl)j 

A3 

(6.11) 

Substituting e(r) = A3L(r) and using the Poisson resummation technique 

gives 

+ 2ni 
-x 
a2 r m(r) (ai + i A:) 3 

$ (Alj2 - A2jl) (6.12) 

where a3 = k A3. This is, once again, the partition sum for a monopole 

gas, interacting with a current loop. We now consider two cases. 

I. b-a. In this case (6.12) coincides precisely with (A.21 of Ref. 2. 

This is interesting, since model III is not symmetric in space and time, 

and yet yields a symmetrical monopole gas. 

II. b << a. Let us characterize a configuration of (m(r)) as 

m(r) = c 
k Mxy(k) 't,txy(k) 

(6.13) 

where r = (x,y,t), and (Ml are restricted to be integers # 0. Now a 

configuration is characterized by a set {M xy(k) 1 of monopole strengths, 

and a set {txy(k)j giving their times for every spatial site. 

In the continuous time limit, b << a, a3 becomes a true derivative, 

and 1 I( 
2 12 

a3 +s 'i becomes a mixed matrix-integral operator. The 

external source 
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nxy(t) = + (Alj2- A2jl) (6.14) 
3 

is a finite, discontinuous function of t for a given xy. Finally, we 

can replace 

bx+ dtx 
r J XY 

hi b t,txy(k) + &(t- txy(k)) 

And all the above gives: 

z=7T c c exp [+$ c Mxy(k) Bxyk,x’y!k’ Mx,,,(k’) 
(txy(k)IIMxy(k)I g a xyk,x'y'k' 

+ 27ri 
-r 
a2 xyk 

(6.15) 
B 1 = 

xyk,x;y;k' 2 1 A2 6(t- t 
at+a2 i 

$Yt, &')I hx 6 9 x, 0 
t = txy(k) 

The summation over {t xy(k> 1 includes summation over the number of mono- 

poles at the point xy. The numbers B xyk,x'y'k' are finite, and pro- 

portional to a. According to the procedure employed in Refs. 1,2 and 3 

one should at this point neglect all monopoles with charges not 21, 

since a monopole with a higher charge gets extra powers of exp (-l/g2a). 

But since b << a, these configurations are no longer suppressed, since 

two big and opposite charges can come close to within a few b on the 

time axis and have a small action. We do not know how to compute Z in 

the limit b + 0, but we now make the following assumption: along the 

time axis, monopoles will cluster into segments. These segments are of 
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length w a, since this is the scale of the Green's function B. For two 

such segments, separated by a time interval 2 a, the interaction B 

between them is less important than their self-action, so we can apply 

the approximation Mxy(k) = +l to the total charge of a segment. Accord- 

ing to this mechanism, (6.15) effectively becomes the gas of Ref. 2, where 

"segments" replace monopoles. The main difference is in Do = B xyk,xyk ' 

which is derived from a continuous-time, rather than a discrete-time, 

Green's function. The d coefficient, defined in Section 5, is therefore 

d = 2n2 
aDo= 

2n2 1 
a af ++ A2 

6(t) 6x 0 6y 0 (6.16) 
, , 

1 a 
trx=y=o 

The less important coefficients, c and 6, presumably depend on the 

. Going to momentum base, (6.16) details of the clustering phenomenon 

gives 

OD v/a n/a 

d = & / du-l -L dkl dk2 k' + -$ (4- 2cos(kla) - 2cos(k2a))l-' 
-0D 

=-&jdUjj dkl dk2 (w2+4- 2coskl - 2cosk2) -1 

-0D -IT -n 

IT 71 

1 
/J 

(4- 2coskl - 2cosk2) 
-+ = 

z dkl dk2 

-IT -IT 

(6.17) 

which is exactly d3, the result in Ref. 3, as written in Section 5. 
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7. Conclusions 

We have compared the monopole and variational approaches to the 

problem of confinement in compact QED in 2+1 dimensions. We saw that 

the mechanisms for screening and confinement are qualitatively the same, 

and that the crucial coefficient d comes out the same if one takes care 

to treat time in the same way in the two approaches. The main remaining 

discrepancy is the nature of screening, which is only a power-law in 

Ref. 3 but is exponential in Refs. 1 and 2. However, we indicated that 

this might be an artifact of certain approximations made in Ref. 3. 

We have also demonstrated that the confinement mechanism breaks down 

for nonperiodic potentials. 

I would like to thank S. D. Drell, who supervised the work reported 

here, and M. Weinstein and H. R. Quinn, who read the manuscript and with 

whom I had many useful discussions. 
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FIGURE CAPTIONS . 

1. A piecewise-quadratic field potential. 

2. A monopole. B becomes 'II on surfaces T, k. 

3. The Wilson current loop, immersed in a monopole gas. 

4. A quark-antiquark pair. The lines are Coulomb field lines, 

the circles denote electric vortices. 

5. The Wilson Contour. 

6. A double-well field potential which does not confine. 
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