A STATIC MODEL OF THE QUARK POTENTIAL: II*
 Roscoe Giles
 Center for Theoretical Physics, Laboratory for Nuclear Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
 Larry McLerran
 Stanford Linear Accelerator Center
 Stanford University, Stanford California 94305

Abstract

We use a semi-classical method to calculate the potential energy of a heavy quark-antiquark pair. We also present numerical results for the average distribution of gluons which surround the quarkantiquark pair.

(Submitted to Phys. Rev. D)

[^0]
1. INTRODUCTION

A method for calculating the effects of interactions between heavy quarks within the framework of QCD would be of great utility. ${ }^{1-11}$ For heavy quark systems, the problem of determining an effective QCD interaction potential is perhaps most clearly isolated from the intricacies of the field theoretical bound state problem. As quark masses increase, moreover, the corresponding QCD interaction strengths decrease, and the calculation of the potential in perturbation theory becomes more reliable. For systems such as the J / ψ^{12-17} or T^{18-20} families of resonances, however, the strong interaction strength α_{s} is ~1-2. 21-25 Only heavy quark bound states of much greater mass might be expected to be adequately described by a Coulomb potential. For systems where α_{s} is of moderate strength, such as the J / ψ and T, we must develop calculational techniques that go beyond those which are appropriate to weak coupling.

A feature which distinguishes QCD from QED is that even static sources will induce an enveloping cloud of radiation. ${ }^{26}$ This cloud arises from non-vanishing couplings of stationary quark sources and transverse gluon degrees of freedom. Such couplings may ultimately be responsible for confinement through non-perturbative mechanisms and certainly yield numerically significant contributions to the quark-antiquark potential for intermediate coupling strengths.

In Ref. (8), henceforth referred to as "I", we introduced an approximation which may prove useful for describing the gluon cloud that surrounds a static $q \bar{q}$ pair. The approximation is an analogue of the Tomonaga approximation of nuclear physics. ${ }^{27-31}$ In I, we demonstrated
that this method together with renormalization group improvement accurately approximates the known results of perturbation theory up to and including effects of at least order $\alpha_{s}^{4} \ln \alpha_{s} .{ }^{5}$

In the present paper we present some results of numerical calculations of the gluonic structure of $q \bar{q}$ states in this static limit. Our purpose here is not so much to accurately determine a $q \bar{q}$ effective potential-indeed the extraction of an effective potential from our static quark calculation requires detailed consideration of velocitydependent effects $\frac{32-34}{}$ but rather to investigate the structure of the non-abelian gluon cloud generated in such states. We also hope that the techniques discussed here may provide a first tentative step along the road toward the understanding of the structure of heavy quark bound states.

The outline of this paper is as follows: in Section 2 , we briefly review the results of I. The numerical solutions of the equations derived in Section 2 are discussed in Section 3. In this third section, we also describe the configuration space structure of the gluon cloud, its charge density, and its chromoelectric and chromomagnetic fields. The detailed numerical analysis of Appendices A-E are utilized in this section. Section 4 offers a summary and discussion of our results.

2. THE TOMONAGA APPROXIMATION

In this section, we consider the interaction of stationary, pointlike, spinless $S U(N)$ color sources. These sources are described by charge operators Q_{a} and \bar{Q}_{a} satisfying the algebra:

$$
\begin{align*}
& Q_{a} Q_{b}=\frac{1}{2 N} \delta_{a b}+\frac{1}{2} d_{a b c} Q_{c}+\frac{i}{2} f_{a b c} Q_{c} \tag{2.1a}\\
& \bar{Q}_{a} \bar{Q}_{b}=\frac{1}{2 N} \delta_{a b}-\frac{1}{2} d_{a b c} \bar{Q}_{c}+\frac{i}{2} f_{a b c} \bar{Q}_{c} \tag{2,1b}
\end{align*}
$$

The indices a, b range from 1 to $N^{2}-1$. The charge density corresponding to these operators is

$$
\begin{equation*}
\rho_{\text {quark }}^{a}(\vec{r})=Q^{a} \delta^{(3)}\left(\vec{r}-\frac{1}{2} \vec{R}\right)+\bar{Q}^{a} \delta^{(3)}\left(\vec{r}+\frac{1}{2} \vec{R}\right), \tag{2.2}
\end{equation*}
$$

with coordinates chosen so that the quark resides at $\vec{R} / 2$, and the antiquark at $-\vec{R} / 2$. In the analysis which follows,-we shall measure distances in units of $|\vec{R}|$, corresponding to setting $|\vec{R}|=1$.

The interactions of these static quarks are conveniently described by the QCD Coulomb gauge Hamiltonian. We do not address the problems of the Gribov-Mandelstam ambiguities that may arise in the implementation of this gauge. ${ }^{35-36}$ Such ambiguities appear to be most significant in regions characterized by "large fields" where our approximation is also subject to large corrections arising from many other sources. ${ }^{37-39}$ Our calculations show no hint of any such ambiguities.

In the Coulomb gauge the independent degrees of freedom correspond to transverse gluons. The interactions include cubic and quartic transverse gluon couplings, and instantaneous Coulomb interactions of the quarks and gluons. The full set of instantaneous Coulombic interactions are nonpolynomial in the gluon fields and, even in the static limit, are the source of non-vanishing interactions of quarks and transverse gluons.

These interactions arise from the term in the Hamiltonian

$$
\begin{equation*}
\mathrm{V}_{\mathrm{Cou} 1}=\frac{1}{2} \sum_{\mathrm{a}} \int \mathrm{~d}^{3} \overrightarrow{\mathrm{r}}_{\mathrm{E}_{\mathrm{L}}^{\mathrm{a}}}^{(\overrightarrow{\mathrm{r}})^{2}} \tag{2.3}
\end{equation*}
$$

where $\vec{E}_{L}^{a}(\vec{r}) \quad\left(a=1, \ldots, N^{2}-1\right)$ is the longitudinal chromoelectric field. The longitudinal chromoelectric field is a dependent field which may be determined in terms of the quark and transverse gluon degrees of freedom.
by solving Gauss' Law:

$$
\begin{equation*}
D_{j} E_{j}=\nabla_{j} E_{j}^{L}+g A_{j} \times E_{j}^{1}+g A_{j} \times E_{j}^{L}=\rho_{q u a r k}, \tag{2.4a}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{j} E_{j}^{L}=\rho_{\text {quark }}+g E_{j}^{\perp} \times A_{j} \equiv J^{0} \tag{2,4b}
\end{equation*}
$$

We use the notation

$$
\begin{equation*}
(A \times B)^{a}=f^{a b c} A_{b} B_{c} \tag{2.5}
\end{equation*}
$$

In these equations, \vec{E}_{\perp} is the transverse chromoelectric field, and J° is the charge density arising from quarks and transverse gluons. Using Eq. (2.4b) in Eq. (2.3), we obtain

$$
\begin{equation*}
\mathrm{V}_{\text {Coul }}=\frac{1}{2} \int \mathrm{~d}^{3} \vec{r}_{\mathrm{d}^{3}} \vec{r}^{\prime} \mathrm{J}_{\mathrm{a}}^{0}(\overrightarrow{\mathrm{r}}) \Phi_{a b}\left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}^{\prime}\right) \mathrm{J}_{\mathrm{b}}^{0}\left(\vec{r}^{\prime}\right) \tag{2,6}
\end{equation*}
$$

where the Coulomb energy operator $\Phi_{a b}\left(\vec{r}, \vec{r}^{\prime}\right)$ is

$$
\begin{equation*}
\Phi=(\nabla \cdot D)^{-1}\left(-\nabla^{2}\right)(\nabla \cdot D)^{-1} \tag{2,7}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi_{a b}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{1}{-\nabla^{2}}\left(\vec{r}, \vec{r}^{\prime}\right) \delta_{a b}+g f^{a c b} \frac{1}{-\nabla^{2}} A_{c j} \overleftrightarrow{\nabla}_{j} \frac{1}{-\nabla^{2}}\left(\vec{r}, \vec{r}^{\prime}\right)+\mathscr{O}\left(g^{2}\right) . \tag{2.8}
\end{equation*}
$$

In perturbation theory, the leading order coupling of transverse gluons to the $q \bar{q}$ pair is given by the second term in Eq. (2.8).

In the stationary spinless quark limit, quark recoil and spin effects vanish. The spatial and spin structure of the quark-antiquark sources are time-independent and do not induce correlations in the spatial wavefunctions of successively emitted or absorbed gluons. For this situation, as was argued in I, a reasonable approximation for the description of the gluons may be obtained by supposing that all gluons
share a single spatial wavefunction. Note however that because the quark and antiquark reside in a low-dimensional representation of the $\mathrm{SU}(\mathrm{N})$ color group, color recoil effects are expected to be very important. Therefore, an essential ingredient of any approximation to the description of such quarks must be the operator structure of the color charges of quarks and gluons.

The Tomanoga approximation discussed in I is tailored to fit this body of constraints. The Hamiltonian which describes quarks and gluons is diagonalized in a subspace of states consisting of arbritary numbers of gluons of arbitrary colors, all sharing a common spatial wavefunction
$\psi_{j}(\vec{k})$. The operator structure of the quark and antiquark charges is exactly maintained. As shown in I, matrix elements of the Hamiltonian in this subspace of states correspond to matrix elements of an effective Hamiltonian which describes $N^{2}-1$ "coordinate" degrees of freedom (corresponding to the $N^{2}-1$ colors of gluons) interacting with the $N^{2}-1$ color "spins" of the quark and antiquark.

In deriving the effective Hamiltonian presented in I, we made a further severe truncation of the full Hamiltonian as it would appear in the Tomanoga approximation. We retained only the leading interaction term represented by the second term in Eq. (2.8). The neglected terms include modifications of transverse gluon propagation arising from the background field of the quark charges and from mutual interactions of transverse gluons. We do, however, allow for a shift of local operator expectation values from their vacuum values, and in this sense we are performing a mean field approximation.

The resulting effective Hamiltonian is

$$
\begin{equation*}
\mathscr{H}=\mathscr{E}_{0}\left\{a^{\dagger} \cdot a+\bar{\beta} Q \cdot \bar{Q}+\bar{\gamma}(Q \times \bar{Q}) \cdot\left(a+a^{\dagger}\right)\right\} \tag{2.9}
\end{equation*}
$$

where a_{a}^{\dagger} and $a_{a}\left(a=1, \ldots, N^{2}-1\right)$ are one-gluon creation and annihilation operators. The commutation relations of a, a^{\dagger}, Q and \bar{Q} are, in addition to those given in Eqs. (2.1a - 2.1b),

$$
\begin{align*}
& {\left[a_{a}, a_{b}^{\dagger}\right]=\delta_{a b}} \tag{2,10a}\\
& {\left[a_{a},\right.} \tag{2.10b}\\
& \left.a_{b}\right]=\left[a_{a}, Q_{b}\right]=\left[a_{a}^{+}, Q_{b}\right]=\left[a_{a}, \bar{Q}_{b}\right]=\left[a_{a}^{\dagger}, \bar{Q}_{b}\right]=0 .
\end{align*}
$$

The three numbers $\mathscr{E}_{0}, \bar{\beta}$ and $\bar{\gamma}$ are functionals of the classical gluon wavefunction $\vec{\psi}$. The Hamiltonian is diagonalized for arbitrary $\mathscr{E}_{0}, \bar{\beta}$ and $\bar{\gamma}$, allowing us to obtain its ground state $|\Omega\rangle$. The wavefunction $\vec{\psi}$ is determined by minimizing the ground state energy, $\mathscr{E}_{0}[\psi]$, with respect to $\vec{\psi}$, subject to the normalization condition

$$
\begin{equation*}
\int \frac{d^{3} k}{(2 \pi)^{3} 2 k} \vec{\psi}^{*}(\vec{k}) \cdot \vec{\psi}(\vec{k})=1 \tag{2,11}
\end{equation*}
$$

The variational calculation performed in I gives

$$
\begin{equation*}
\vec{\psi}(\vec{k})=g^{3} P \frac{\vec{J}(\vec{k})}{k+\Lambda} \tag{2.12}
\end{equation*}
$$

where Λ is a Lagrange multiplier which enforces Eq. (2.11). The current $\vec{J}(\vec{k})$ is the Fourier transform of the spatial factors which couple to $\overrightarrow{\mathrm{A}}^{\mathrm{a}}(\overrightarrow{\mathrm{r}})$ in Eq. (2.8), (Fig. 1),

$$
\begin{equation*}
\vec{J}(\vec{k})=\int d^{3} \vec{r} e^{-i \vec{k} \cdot \vec{r}}\left\{\left(\frac{1}{4 \pi\left|\vec{r}-\vec{r}_{1}\right|}-\frac{1}{4 \pi\left|\vec{r}_{1}-\vec{r}_{2}\right|}\right) \leftrightarrow{ }^{-}\left(\frac{1}{4 \pi\left|\vec{r}-\vec{r}_{2}\right|}-\frac{1}{4 \pi\left|\vec{r}_{1}-\vec{r}_{2}\right|}\right)\right\} \tag{2.13}
\end{equation*}
$$

The quantity P is the ratio of ground state expectation values

$$
\begin{equation*}
P \equiv \frac{\langle\Omega|(Q \times \bar{Q}) \cdot\left(a+a^{\dagger}\right)|\Omega\rangle}{2\langle\Omega| a^{\dagger} \cdot a|\Omega\rangle} \tag{2.14}
\end{equation*}
$$

The Lagrange multiplier Λ must be determined so that $\vec{\psi}$ is normalized to one. As the solution for Λ as a function of g^{2} involves the intermediate step of diagonalizing \mathscr{H} (the couplings of which depend on Λ), the problem of determining Λ is complex and must be solved numerically.

In the following sections, we discuss the solution of this model theory. We determine Λ as a function of α_{s}, find the dependence of on α_{s}, and calculate the gluon wavefunction ψ.
3. RESULTS

The coefficients \mathscr{E}_{0}, \bar{B} and $\bar{\gamma}$ may be computed in terms of functions $C_{n}(\Lambda)$ as

$$
\begin{align*}
& \mathscr{E}_{0}=\frac{C_{1}-\Lambda C_{2}}{C_{2}} \tag{3.1}\\
& \bar{B}=\frac{g^{2}}{4 \pi} \frac{C_{2}}{C_{1}-\Lambda C_{2}} \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\gamma}=-g^{3} \frac{C_{1} C_{2}^{1 / 2}}{C_{1}-\Lambda C_{2}} \tag{3.3}
\end{equation*}
$$

The functions $C_{n}(\Lambda)$ are obtained from a classical current $\overrightarrow{\mathrm{J}}$ as

$$
\begin{equation*}
c_{n}(\Lambda)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 k} \vec{j}^{2}(\vec{k})\left(\frac{1}{k+\Lambda}\right)^{n} \tag{3,4}
\end{equation*}
$$

The parameter Λ must be adjusted so that the gluon wavefunction is normalized to one,

$$
\begin{equation*}
\mathrm{g}^{6} \mathrm{C}_{2}(\Lambda) \mathrm{P}^{2}=1 \tag{3.5}
\end{equation*}
$$

To solve this equation for Λ, \mathscr{H} must be diagonalized for arbitrary Λ. The root of Eq, $(3,5)$ is then determined by successive iterations. We have diagonalized \mathscr{H} numerically in the basis discussed in I, and determined Λ. To perform the numerical analysis, we first obtained expressions for $C_{n}(\Lambda)$ that could be easily evaluated. In Appendices $A-C$, the coefficients in the series expansion

$$
\begin{equation*}
c_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left\{\sum_{p=0}^{\infty} \frac{\alpha_{p} \Lambda^{p}}{p!}+\ln \Lambda \sum_{p=1}^{\infty} \frac{\beta_{p} \Lambda^{p}}{p!}\right\} \tag{3.6}
\end{equation*}
$$

are determined. The coefficients $C_{n}(\Lambda)$ are derived from

$$
\begin{equation*}
c_{n}(\Lambda)=\frac{(-)}{n!}^{n-1}\left(\frac{d}{d \Lambda}\right)^{n-1} C_{1}(\Lambda) \tag{3.7}
\end{equation*}
$$

We have checked this tedious analytic evaluation of $C_{1}(\Lambda)$ by comparing Eq. (3.6) with the asymptotic series for large Λ, and by directly evaluating Eq. (3.4) with the Monte Carlo numerical integration routine Vegas. ${ }^{40}$ The asymptotic series for $C_{1}(\Lambda)$ is derived in Appendix D. Plots of C_{1} and C_{2} are given in Figs. 2-3. Both C_{1} and C_{2} are rapidly decreasing functions of Λ for $0<\Lambda<1$, and are not well approximated by their lowest order terms in the expansion of Eq. (3.6),

$$
\begin{align*}
& C_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left\{\frac{3}{2}\left(1-\frac{\pi^{2}}{12}\right)+\frac{2}{3 \pi} \Lambda \ln \Lambda\right\} \tag{3.8}\\
& C_{2}(\Lambda)=-\frac{1}{(4 \pi)^{3}} \quad \frac{2}{3 \pi} \ln \Lambda \tag{3.9}
\end{align*}
$$

for $\Lambda \geq 1 / 2$.

We have used the functions C_{1} and C_{2} in the diagonalization of \mathscr{H} which was carried out numerically for $\operatorname{SU}(3)$. We varied the parameter Λ until the normalization condition [Eq. (3.9)] was satisfied. This procedure gave us a relationship between Λ and α_{s},

$$
\begin{equation*}
\Lambda=3 / 2 \alpha_{\mathrm{s}} \mathrm{G}\left(\alpha_{\mathrm{s}}\right) \tag{3,10}
\end{equation*}
$$

The lowest order perturbation theory value for Λ was found in I to be $\Lambda=3 / 2 \alpha_{s}$, so that $G\left(\alpha_{s}\right)$ satisfied

$$
\begin{equation*}
G(0)=1 . \tag{3.11}
\end{equation*}
$$

To an accuracy of $10 \%, G\left(\alpha_{s}\right)=1$ for $0 \leq \alpha_{s} \leq 2$. A plot of $G\left(\alpha_{s}\right)$ is shown in Fig. 4.

The quantities $\mathscr{E}_{0}, \bar{\beta}$ and $\bar{\gamma}$ as functions of α_{s} are shown in Figs. 5-7. Several features of these functions are noteworthy. For small α_{s} both \mathscr{E}_{0} and $\bar{\beta}$ rise rapidly from zero, while the parameter $\bar{\gamma}$ rises slowly from zero. For intermediate values of $\alpha_{s} \sim 1-2$, \mathscr{E}_{0} levels off, and $\bar{\beta}$ and $\bar{\gamma}$ vary linearly. In fact for large α_{s},

$$
\begin{equation*}
\bar{\beta}\left(\alpha_{s}\right) \sim-\bar{\gamma}\left(\alpha_{s}\right) \tag{3.12}
\end{equation*}
$$

The perturbation theory values of $\mathscr{E}_{0}, \bar{\beta}$ and $\bar{\gamma}$ are given by
Eqs. (3.1-3.3) and Eqs. (3.8-3.9). With $\Lambda=3 / 2 \alpha_{s}$

$$
\begin{align*}
\mathscr{E}_{0} & \cong-\frac{9}{4} \pi\left(1-\frac{\pi^{2}}{12}\right) \frac{1}{\ln \alpha_{s}} \tag{3,13}\\
\bar{\beta} & \cong \frac{1}{\frac{9}{4} \pi\left(1-\frac{\pi^{2}}{12}\right)} \alpha_{\mathrm{s}} \ln \alpha_{\mathrm{s}}, \tag{3.14}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\gamma} \cong-\alpha_{s}^{3 / 2}\left(-\frac{2}{3 \pi} \ln \alpha_{s}\right)^{1 / 2} \tag{3.15}
\end{equation*}
$$

For $\alpha_{s} \gtrsim 1 / 2, \mathscr{E}_{0}, \bar{\beta}$ and $\bar{\gamma}$ show significant deviations from their perturbation theory values.

The magnitude of $\bar{\gamma}$ determines the strength of mixing between states with different numbers of occupied coherent gluon modes. The slow increase in the magnitude of $\bar{\gamma}\left(\alpha_{s}\right)$ for $\alpha_{s} \leqslant 1-2$ leads to a small gluon content of the ground state wavefunction. In fact, for $\alpha_{s} \lesssim 2$, the average value of the number operator, $\langle\Omega| \mathrm{a}^{\dagger} \cdot \mathrm{a}|\Omega\rangle$, is less than .25 as shown in Fig. 8.

The amplitudes for the ground state wavefunction to be in the states $|0\rangle,|1\rangle$ and $|2\rangle$ are shown in Fig. 9. The amplitude for $|2\rangle$ reaches only $\sim .10-.15$ at $\alpha_{s} \sim 2$. The contribution to the ground state energy from these various modes is $\sim(\operatorname{mplitude})^{2}$, so that for $\alpha_{s} \leqslant 2$, the contribution from modes with $\mathrm{n} \geqq 2$ is $\delta E \leq 1-2 \%$. For this range of α_{s} the system is adequately described as a mixture of the two total color singlet states: |singlet quark pair, no gluons> and |octet quark pair, one gluon>.

The function $F\left(\alpha_{S}\right)$ which measures the deviation of E from its Coulombic dependence on α_{s},

$$
\begin{equation*}
E(R)=-\frac{T_{2}}{R} \alpha_{s} F\left(\alpha_{s}\right) \tag{3.16}
\end{equation*}
$$

is shown in Fig. 10. The function $F\left(\alpha_{s}\right)$ rises from its value of 1 at $\alpha_{s}=0$, and acquires a linear dependence for $\alpha_{s} \sim 1-2$. For $\alpha_{s} \leqslant 1 / 2$, the function $F\left(\alpha_{s}\right)$ is not well approximated by its perturbation theory value of

$$
\begin{equation*}
F\left(\alpha_{s}\right)=1+\frac{27}{8}\left(1-\frac{\pi^{2}}{12}\right) \alpha_{s}^{2}+\frac{9}{4 \pi} \alpha_{s}^{3} \ln \alpha_{s}+\mathscr{O}\left(\alpha_{s}^{3}\right) \tag{3.17}
\end{equation*}
$$

Associated with the gluon wavefunction $\vec{\psi}(\vec{k})$ are various classical fields in coordinate space. These are related to effective field operators in the Tomonaga approximation. In matrix elements involving such states
we have

$$
\begin{align*}
\vec{A}_{a}(\vec{x}) & \rightarrow \overrightarrow{\mathscr{A}}(\vec{x})\left(a_{a}+a_{a}^{+}\right) \tag{3.18a}\\
\vec{E}_{\perp a}(x) & \rightarrow \vec{E}_{\perp}(\vec{x}) i\left(a_{a}^{\dagger}-a_{a}\right) \tag{3.18b}\\
\vec{B}_{a}(x) & =\overrightarrow{\mathscr{B}}(x)\left(a_{a}+a_{a}^{+}\right) \tag{3.18c}\\
\rho{ }_{a}^{\text {gluon }}(x) & =\rho(\vec{x}) i a \times a^{\dagger} \tag{3.18d}
\end{align*}
$$

where the C-number fields $\overrightarrow{\mathscr{A}}, \overrightarrow{\mathscr{E}}_{\perp}, \overrightarrow{\mathscr{B}}$ and ρ are

$$
\begin{align*}
& \overrightarrow{\mathscr{A}}(\vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3} 2|\vec{k}|} e^{i \vec{k} \cdot \vec{x}} \overrightarrow{\psi(\vec{k})} \tag{3.19a}\\
& \overrightarrow{\mathscr{E}}_{\perp}(\vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3} 2|\vec{k}|}|\vec{k}| e^{i \vec{k} \cdot \vec{x}} \vec{\psi}(\vec{k}) \tag{3.19b}\\
& \mathscr{B}(\vec{x})=\vec{\nabla} \times \overrightarrow{\mathscr{A}}(\vec{x}) \tag{3.19c}\\
& \rho(\vec{x})=\overrightarrow{\mathscr{E}}_{\perp}(\vec{x}) \cdot \overrightarrow{\mathscr{A}}(\vec{x}) \tag{3.19d}
\end{align*}
$$

Figures 11-18 show plots of $\underset{\mathscr{A}}{2}(\mathrm{x}), \mathscr{E}_{\perp}^{2}(\mathrm{x}),|\mathscr{B}(\mathrm{x})|$ and $\rho(\mathrm{x})$ as functions of cylindrical variables r_{1} and z for $\Lambda=0$ and $\Lambda=3$. These fields are azimuthally symmetric. The overall scale of the magnitude of the various fields is arbitrary; the important comparison being the relative shape of the distributions. The quarks are located along the z axis at positions which are obvious in the figures.

For any $\Lambda \neq 0$ the asymptotic behaviour of the various fields can be deduced. For large r, the potential $\overrightarrow{\mathscr{A}}(\vec{x})$ falls like $1 / r^{2}$ while $\overrightarrow{\mathscr{E}_{\perp}}$
and $\overrightarrow{\mathscr{B}}$ fall like $1 / r^{3}$. Thus the resulting gluon charge density falls like $1 / r^{4}$.

The normalization condition on the wavefunction is precisely the condition

$$
\begin{equation*}
\int d^{3} x \rho(\vec{x})=1 \tag{3,20}
\end{equation*}
$$

For $\Lambda=0$, $\overrightarrow{\mathscr{C}}$ behaves asymptotically as $1 / r$, while \mathscr{E}_{\perp}, and \mathscr{B} behave as $1 / \mathrm{r}^{2}$. At the point $\Lambda=0$, ρ becomes non-normalizable, accounting for the logarithmic divergence in $\mathrm{C}_{2}(\Lambda)$ as $\Lambda \rightarrow 0$.

Near the quark $\left(\vec{x}=\vec{r}_{i}\right)$ the dominant contributions to $\mathscr{A}, \mathscr{E}_{1}$ and \mathscr{B} come from the large $|\vec{k}|$ region of integration: $|\vec{k}| \gg \Lambda$. The analysis of Appendix E then indicates that $\overrightarrow{\mathscr{A}} \sim$ constant, $\left|\overrightarrow{\mathscr{E}}_{\perp}\right|$ and $\rho \sim \frac{1}{\left|\vec{x}-\vec{r}_{i}\right|}$ and $|\overrightarrow{\mathscr{B}}| \sim \frac{\sin \theta}{\left|\vec{x}-\vec{r}_{i}\right|}$ where θ is the usual polar angle.

The magnetic field is singular near the quarks, and its value depends on the path of approach to the position of the quark. Along the line separating the quarks the field is zero. As A increases, the fields concentrate nearer the quarks.

The charge distribution resembles the distribution of transverse electric field. The charge is concentrated near and between the quarks for small Λ, and increasingly near the quarks for increasing Λ.

For small Λ the transverse electric field is spread out in the region between the quarks. Increasing Λ increases the concentration of the electric fields near the quarks.

As the $q \bar{q}$ separation changes, the magnitudes of fields all scale with powers of $1 / R$ corresponding to their canonical dimension.

That is,

$$
\begin{align*}
& \vec{A}\left(\alpha_{s}, R, \vec{x}\right)=\frac{1}{R} \vec{A}_{0}\left(\alpha_{s}, \frac{\vec{x}}{R}\right) \tag{3.21a}\\
& \overrightarrow{\mathscr{E}}_{\perp}\left(\alpha_{s}, R, \vec{x}\right)=\frac{1}{R^{2}} \overrightarrow{\mathscr{E}}_{\perp}\left(\alpha_{s}, \frac{\vec{x}}{R}\right) \tag{3.21b}\\
& \overrightarrow{\mathscr{B}}\left(\alpha_{s}, \vec{R}, \vec{x}\right)=\frac{1}{R^{2}} \overrightarrow{\mathscr{B}}\left(\alpha_{s}, \frac{\vec{x}}{R}\right) \tag{3.21c}\\
& \rho\left(\alpha_{s}, \vec{R}, \vec{x}\right)=\frac{1}{R^{3}} \rho\left(\alpha_{s}, \frac{\vec{x}}{R}\right) \tag{3.21d}
\end{align*}
$$

Thus, as quarks are separated, the overall shape of the field distributions are unchanged but magnitudes decrease. Note however, that an observer sitting at a fixed point in space as the pair is separated does see both the overall scale decrease and effects due to the change in his scaled coordinate \vec{x} / R,
4. CONCLUSIONS

In this section, we summarize our results and consider their implications for the physics of heavy quark systems as described by QCD. Our approximation scheme is designed to give a reasonable representation of the gluonic structure generated in the presence of stationary quantum charge sources. The validity of the Tomonaga approximation rests on the notion that in the absence of quark spatial and spin recoil effects, gluons of a single space-spin wavefunction will be dominant. The truncation of the Coulomb gauge Hamiltonian to the leading (in perturbation theory) gluon-source interaction of equation (2.8) is motivated primarily
by desire for simplicity and certainly is appropriate for sufficiently small coupling. Ultimately, the reliability of our approximation scheme for increasing α_{s} can best be checked only by computing higher order effects.

With our approximations, the following picture of the quark-antiquark state emerges for couplings $\alpha_{s} \leq 1-2$: the total color singlet ground state is mostly pure ($q \bar{q}$) singlet with a small admixture of the one-gluon state $(\mathrm{q} \overline{\mathrm{q}})_{\underline{8}}{ }^{(\mathrm{G})} \underline{8}^{\text {. }}$. The amplitudes for components containing more than one gluon are tiny despite the fact that the Tomonaga approximation allows for their presence. We interpret this result as a dynamical consequence of the theory. Even at relatively large coupling ($\alpha_{s} \sim 2$) there is no dramatic increase in the gluonic component of the lowest-lying singlet state. This result, though perhaps disappointing from the point of view of one looking for dramatic behavior suggestive of an approach to confinement, is in accord with the naive quark model picture of such states as predominantly pure $q \bar{q}$.

The behavior of the energy as a function of α_{s} is also undramatic. In the region of $\alpha_{s} \sim 1-2$, it deviates less from the Coulomb form than might be suggested by the extension of the order α_{s}^{4} in α_{s} perturbative results beyond their obvious domain of validity. Only the shape of the gluon wavefunction appears sensitive to the strength of the coupling. This dependence is the source of non-analyticity in coupling at $\alpha_{s}=0$.

The point in coupling at which our approximation scheme breaks down is not clear. The small average gluon number in the region $\alpha_{s} \sim 1-2$ suggests that corrections in this region will be small. The Tomonaga approximation itself (which becomes the Tamm-Dancoff approximation when restricted to $n_{\text {gluon }}=1$) becomes unreliable when mechanisms which tend
to disperse gluons in space-spin are important, Such effects are certainly present in QCD (for example, in the interactions of gluons with one another) but may be expected to be small. One term which deserves particular attention is that representing the Coulomb interaction between a gluon and one of the sources (Fig. 19). It is this term in the classical Hamiltonian which is responsible for the Mandula instability of the Coulomb field for a classical color source of sufficient strength, $\alpha_{s} \geq 3 / 2 .{ }^{37-38}$ We might expect that this instability should be reflected in the quantum theory for sufficiently large coupling if the corresponding term in the Hamiltonian is included in our approximation. This expectation leads to an upper bound on the value of α_{s} at which we can have any real confidence in our results, Note, however, that the instability is a single charge effect and may not dramatically affect the interaction energy between charges.

The techniques introduced in (1) and analyzed here might be expected to be of use phenomenologically in the characterization of properties of heavy quark bound states. It is important in this connection to reiterate the observation that velocity-dependent effects in the finite mass case are not trivial and the extraction of an effective $q \bar{q}$ potential is complex. ${ }^{32-34}$ A more fruitful application of our techniques might be the investigation of spin-dependent forces induced via the gluon cloud.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful conversations with
S. Adler, M. Baker, L. S. Brown, M. Dine, S. Ellis, R. Freedman,
E. Henley, J. Mandula, J. Richardson, P. Sikivie, M. Weinstein,
W. Weisberger, and L. Wilets.

This work was supported by the Department of Energy under contract number DE-AC03-76SF00515.

APPENDIX A

In this appendix, we find an integral representation for the current $\vec{J}(\vec{k})$. We begin by recalling that the current can be computed from the Feynman graph of Figure 1 with the result

$$
\begin{equation*}
\vec{J}(\vec{k})=2 i \int \frac{d^{3} \stackrel{\rightharpoonup}{q}}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{R}}\left\{\vec{q}-\vec{k} \frac{1}{\vec{k}^{2}} \vec{k} \cdot \vec{q}\right\} \frac{1}{\left(\vec{q}+\frac{1}{2} \vec{k}\right)^{2}} \frac{1}{\left(\vec{q}-\frac{1}{2} \vec{k}\right)^{2}} . \tag{A.1}
\end{equation*}
$$

In this equation, the separation of the quarks is R. The Coulomb propagators in Eq. (A.1) may be combined using a Feynman parameter to yield

$$
\begin{align*}
\vec{J}(\vec{k})= & 2 i\left(\hat{R}-\vec{k} \frac{1}{\vec{k}^{2}} \vec{k} \cdot \hat{R}\right) \int_{0}^{1} d \alpha e^{i(\alpha-1 / 2) \vec{k} \cdot \vec{R}} \\
& \int \frac{d^{3} \frac{\vec{q}}{(2 \pi)^{3}}}{} e^{i \vec{q} \cdot \vec{R}} \vec{q} \cdot \hat{R}\left[\vec{q}^{2}+\alpha(1-\alpha) k^{2}\right]^{-2} . \tag{A.2}
\end{align*}
$$

The integrations over $d \stackrel{3}{q}$ give

$$
\begin{equation*}
\vec{J}(\vec{k})=-\frac{1}{4 \pi}\left(\hat{R}-\vec{k} \frac{1}{\vec{k}^{2}} \vec{k} \cdot \hat{R}\right) \int_{0}^{1} d \alpha e^{i(\alpha-1 / 2) \vec{k} \cdot \vec{R}} e^{-k R \sqrt{\alpha(1-\alpha)}} \tag{AB}
\end{equation*}
$$

Finally, if we change variables

$$
\alpha=\cos ^{2} \theta / 2
$$

then Eq, (A.3) becomes

$$
\begin{equation*}
\vec{J}(\vec{k})=-\frac{1}{8 \pi}\left(\hat{R}-\vec{k} \frac{1}{\vec{k}^{2}} \vec{k} \cdot \hat{r}\right) \int_{0}^{\pi} \sin \theta d \theta \exp \frac{k R}{2}\{i \hat{k} \cdot \hat{R} \cos \theta-\sin \theta\} . \tag{A.5}
\end{equation*}
$$

APPENDIX B

In this appendix, we shall evaluate the integrals

$$
\begin{equation*}
c_{p}(\Lambda) \equiv \int \frac{d^{3} \vec{k}}{(2 \pi)^{3} 2 k} \frac{1}{(k+\Lambda)^{p}} \vec{J}^{2}(\vec{k}) \tag{B,1}
\end{equation*}
$$

We shall proceed by deriving a Mellin integral representation for C_{p} as a function of Λ, (In Appendix C we shall use this Mellin representation to evaluate the coefficients of a Taylor's series expansion for $C_{p}(\Lambda)$ in powers of Λ and power Λ times $\ln \Lambda$. We shall also use this representation to obtain an asymptotic expansion in inverse powers of Λ and inverse powers of Λ times $\ln \Lambda$.

We begin by observing that

$$
\begin{equation*}
C_{p}(\Lambda)=(-)^{p-1}\left(\frac{1}{p!}\right)\left(\frac{d}{d \Lambda}\right)^{p-1} C_{1}(\Lambda) \tag{B,2}
\end{equation*}
$$

so that without loss of generality we may consider only $C_{1}(\Lambda)$. Using Eq. (A.5) with $\mathrm{R}=1$, we have

$$
\begin{align*}
C_{1}(\Lambda)= & \frac{1}{2^{5}(2)^{4}} \int_{0}^{\infty} k d k \frac{1}{k+\Lambda} \int_{-1}^{1} d z \int_{0}^{\pi} \sin \psi_{1} d \psi_{1} \sin \psi_{2} d \psi_{2} \\
& \left(1-z^{2}\right) \exp -\frac{k}{2}\left\{\sin \psi_{1}+\sin \psi_{2}-i z \cos \psi_{1}-i z \cos \psi_{2}\right\} . \tag{B.3}
\end{align*}
$$

We introduce a Mellin representation by the identity

$$
\begin{equation*}
\frac{1}{k+\Lambda}=\frac{1}{\Lambda} \int_{\uparrow} \frac{d \eta}{2 \pi i}\left(\frac{k}{\Lambda}\right)^{\eta} \Gamma(1+\eta) \Gamma(-\eta) \tag{B.4}
\end{equation*}
$$

The contour \uparrow splits the poles of the gama functions in Eq. (B.4) and is shown in Fig. 20. Interchanging the orders of integration in Eq. (B.3), and using Eq, (B.4), we find

$$
\begin{align*}
C_{1}(A)= & \frac{1}{2^{5}(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi^{i}} \Gamma(1+\eta) \Gamma(-\eta) \int_{-1}^{1} d z \int_{0}^{\pi} \sin \psi_{1} d \psi_{1} \\
& \sin \psi_{2} d \psi_{2} \int_{0}^{\infty} d k \Lambda^{-1-\eta} k^{n+1}\left(1-z^{2}\right) \\
& \exp -\frac{k}{2}\left\{\sin \psi_{1}+\sin \psi_{2}-i z \cos \psi_{1}-i z \cos \psi_{2}\right\} . \tag{B.5}
\end{align*}
$$

The integrations over k are easily carried out with the result

$$
\begin{align*}
C_{1}(\Lambda)= & \frac{\Lambda}{2^{5}(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta)\left(\frac{2}{\Lambda}\right)^{2+\eta} \int_{-1}^{1} d z \\
& \int_{0}^{\pi} \sin \psi_{1} d \psi_{1} \sin \psi_{2} d \psi_{2}\left(1-z^{2}\right) \\
& \left(\sin \psi_{1}+\sin \psi_{2}-i z \cos \psi_{1}-i z \cos \psi_{2}\right)^{-2-\eta} \tag{B.6}
\end{align*}
$$

The integral over z is

$$
\begin{gathered}
\int_{-1}^{1} \mathrm{~d} z\left(1-z^{2}\right)\left(\sin \psi_{1}+\sin \psi_{2}-i z \cos \psi_{1}-i z \cos \psi_{2}\right)^{-2-\eta} \\
=2\left(\cos \psi_{1}+\cos \psi_{2}\right)^{-2-\eta} " \operatorname{Im} "\left\{\frac{2}{\eta} \frac{\sin \psi_{1}+\sin \psi_{2}}{\cos \psi_{1}+\cos \psi_{2}}\right.
\end{gathered}
$$

$$
\begin{align*}
& \left(\frac{\sin \psi_{1}+\sin \psi_{2}}{\cos \psi_{1}+\cos \psi_{2}}+i\right)^{-n}-\frac{1}{n-1}\left(\frac{\sin \psi_{1}+\sin \psi_{2}}{\cos \psi_{1}+\cos \psi_{2}}+i\right)^{1-n} \\
& \left.-\frac{1}{n+1}\left(\frac{\sin \psi_{1}+\sin \psi_{2}}{\cos \psi_{1}+\cos \psi_{2}}+i\right)^{-1-\eta}\left(1+\left(\frac{\sin \psi_{1}+\sin \psi_{2}}{\cos \psi_{1}+\cos \psi_{2}}\right)^{2}\right)\right\} \tag{B.7}
\end{align*}
$$

In this equation, "In" represents the imaginary part taken with η treated as if it were a real parameter.

Now, we change variables:

$$
\begin{align*}
\psi_{+} & =\psi_{1}+\psi_{2} \tag{B.8}\\
\psi_{-} & =\frac{\psi_{1}-\psi_{2}}{2} \tag{B.9}
\end{align*}
$$

With these new variables,

$$
\begin{align*}
& C_{1}(\Lambda)=\frac{1}{2^{3}(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \Gamma(1+\eta) \Gamma(2+n) \Gamma(-n) \Lambda^{-n-1} \int_{0}^{\pi} d \psi_{+} \\
& \int_{-\psi_{+} / 2}^{\psi_{+} / 2} d \psi_{-}\left(\cos ^{2} \psi_{-}-\cos ^{2} \psi_{+} / 2\right) \cos ^{-3} \psi_{+} / 2 \cos ^{-2-n^{-}} \psi_{-} \\
& \left\{\frac{2}{\eta} \sin \frac{\psi_{+}}{2} \sin \eta\left(\psi_{+} / 2-\pi / 2\right)-\frac{1}{\eta-1} \sin (\eta-1)\left(\frac{\psi_{+}}{2}-\frac{\pi}{2}\right)\right. \\
& \left.-\frac{1}{\eta+1} \sin (\eta+1)\left(\psi_{+} / 2-\pi / 2\right)\right\}, \tag{B.10}
\end{align*}
$$

or with $\psi_{+} / 2 \rightarrow \psi_{+}$

$$
\begin{align*}
\mathrm{C}_{1}(\Lambda)= & \frac{1}{2(2 \pi)^{4}} \int_{\uparrow} \frac{\mathrm{d} \eta}{2 \pi i} \Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Lambda^{-n-1} \int_{0}^{\pi / 2} \mathrm{~d} \psi_{+} \int_{0}^{\psi_{+}} \mathrm{d} \psi_{-} \\
& \left(\cos ^{2} \psi_{-}-\cos ^{2} \psi_{+}\right) \cos ^{-3} \psi_{+} \cos ^{-2-\eta} \psi_{-}\left\{\frac{2}{\eta} \sin \eta\left(\psi_{+}-\pi / 2\right)\right. \\
& - \tag{B.11}\\
& \left.-\frac{1}{n-1} \sin (\eta-1)\left(\psi_{+}-\pi / 2\right)-\frac{1}{n+1} \sin (\eta+1)\left(\psi_{+}-\pi / 2\right)\right\} .
\end{align*}
$$

Elementary differentiation yields the identity

$$
\begin{equation*}
\int \mathrm{dx} \cos ^{-\alpha} \mathrm{x}=\frac{1}{\alpha-1} \cos ^{1-\alpha} \mathrm{x}{ }_{2} \mathrm{~F}_{1}\left(\frac{1}{2}, \frac{1}{2}-\frac{\alpha}{2} ; \frac{3}{2}-\frac{\alpha}{2} ; \cos ^{2} \mathrm{x}\right) . \tag{B.12}
\end{equation*}
$$

With the identity

$$
\begin{equation*}
{ }_{2}{ }^{\mathrm{F}} 1\left(\frac{1}{2}, \frac{1}{2}-\frac{\alpha}{2} ; \frac{3}{2}-\frac{\alpha}{2} ; 1\right)=\frac{\Gamma\left(\frac{3}{2}-\frac{\alpha}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(1-\frac{\alpha}{2}\right)} \tag{B.13}
\end{equation*}
$$

and Eq. (B.12), the $\psi_{\text {_ }}$ integral in Eq. (B.11) can be performed to yield

$$
\begin{aligned}
C_{1}(\Lambda)= & \frac{1}{2(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Lambda^{-\eta-1} \int_{0}^{\pi / 2} d \theta \\
& \left\{\left[\operatorname { s i n } ^ { - 2 - \eta } \theta \left(\frac{1}{\eta+1} \quad 2_{2} F_{1}\left(\frac{1}{2},-\frac{1}{2}-\frac{\eta}{2}, \frac{1}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)\right.\right.\right. \\
& \left.-\frac{1}{\eta-1} \quad 2^{F} 1\left(\frac{1}{2}, \frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)\right)-\frac{1}{\sin \theta} \frac{1}{\eta+1} \frac{\Gamma\left(\frac{1}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(-\frac{\eta}{2}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{1}{\sin ^{3} \theta} \frac{1}{n-1} \frac{\Gamma\left(\frac{3}{2}-\frac{n}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(1-\frac{\eta}{2}\right)}\right]\left[\frac{2}{\eta} \cos \theta \sin n \theta\right. \\
& \left.\left.-\frac{1}{n-1} \sin (\eta-1) \theta-\frac{1}{n+1} \sin (n+1) \theta\right]\right\}, \tag{B.14}
\end{align*}
$$

where we have let $\theta=\frac{\pi}{2}-\psi_{+}$.
Now, we use the identities (Gradshteyn and Ryzhik 9.137.17) ${ }^{41}$

$$
\begin{gather*}
(\eta+1){ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)-(n-1){ }_{2} F_{1}\left(\frac{1}{2},-\frac{1}{2}-\frac{\eta}{2} ; \frac{1}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right) \\
=2{ }_{2} F_{1}\left(\frac{1}{2},-\frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right), \tag{B.15}
\end{gather*}
$$

and
$2 \cos \theta \sin \eta \theta=\sin (\eta+1) \theta+\sin (n-1) \theta$
to rewrite Eq. (B.14) as

$$
\begin{align*}
C_{1}(\Lambda)= & \frac{1}{(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Lambda^{-\eta-1} \frac{1}{\eta} \int_{0}^{\pi / 2} d \theta \\
& \left\{\left[\frac{1}{1-n^{2}} \sin ^{-2-\eta} \theta_{2} F_{1}\left(\frac{1}{2} ;-\frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)-\frac{1}{2} \frac{1}{\sin \theta} \frac{1}{\eta+1}\right.\right. \\
& \left.\frac{\Gamma\left(\frac{1}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(-\frac{\eta}{2}\right)}+\frac{1}{2} \frac{1}{\sin ^{3} \theta} \frac{1}{\eta-1} \frac{\Gamma\left(\frac{3}{2}-\frac{n}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(1-\frac{\eta}{2}\right)}\right] \\
& {\left.\left[\frac{\sin (\eta+1) \theta}{\eta+1}-\frac{\sin (\eta-1) \theta}{\eta-1}\right]\right\} } \tag{B.17}
\end{align*}
$$

Using Batman $(2,8,12){ }^{42}$

$$
\begin{equation*}
\frac{\sin \rho \theta}{\rho}=\sin \theta \cos \theta{ }_{2} F_{1}\left(1+\frac{\rho}{2}, 1-\frac{\rho}{2} ; \frac{3}{2} ; \sin ^{2} \theta\right) \tag{B.18}
\end{equation*}
$$

and the Mellin representation for the Hypergeometric function,

$$
\begin{equation*}
2_{2} F_{1}(\alpha, \beta ; \gamma ; z)=\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\beta)} \int_{\uparrow} \frac{d \rho}{2 \pi i}(-z)^{\rho} \frac{\Gamma(\rho+\alpha) \Gamma(\rho+\beta) \Gamma(-\rho)}{\Gamma(\rho+\gamma)} \text {. } \tag{B.19}
\end{equation*}
$$

we see that

$$
\begin{align*}
\frac{\sin (\eta+1) \theta}{\eta+1}-\frac{\sin (\eta-1) \theta}{\eta-1}= & \eta \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right)} \sin \theta \cos \theta \int_{\uparrow} \frac{d \rho}{2 \pi i} \\
& \sin ^{2 \rho} \theta e^{i \pi \rho} \frac{\Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}+\rho-\frac{\eta}{2}\right)}{\Gamma\left(\rho+\frac{3}{2}\right)} \Gamma(1-\rho) \tag{B.20}
\end{align*}
$$

In the above equation we shall take \uparrow to be a contour parallel to the imaginary ρ axis with $1>\operatorname{Re}(\rho)>\frac{1}{2}$.

With the identity of Eq. (B.20), Eq. (B.17) for $C_{1}(\Lambda)$ is

$$
\begin{aligned}
C_{1}(\Lambda)= & \frac{1}{(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i} \Lambda^{-\eta-1} e^{i \pi \rho} \\
& \frac{\Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}+\rho-\frac{\eta}{2}\right) \Gamma(1-\rho)}{\Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\rho+\frac{3}{2}\right)} \\
& \int_{0}^{\pi / 2} d \theta \sin ^{22+1} \theta \quad \cos \theta\left\{\frac{\sin ^{-2-\eta} \theta}{1-\eta^{2}} 2^{F}\left(\frac{1}{2},-\frac{1}{2}-\frac{n}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)\right.
\end{aligned}
$$

Using Batman $(2,8,12) 42$

$$
\begin{equation*}
\frac{\sin \rho \theta}{\rho}=\sin \theta \cos \theta{ }_{2} F_{1}\left(1+\frac{\rho}{2}, 1-\frac{\rho}{2} ; \frac{3}{2} ; \sin ^{2} \theta\right), \tag{B.18}
\end{equation*}
$$

and the Mellon representation for the Hypergeometric function,

$$
\begin{equation*}
2^{F} 1_{1}(\alpha, \beta ; \gamma ; z)=\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\beta)} \int_{\uparrow} \frac{d \rho}{2 \pi i}(-z)^{\rho} \frac{\Gamma(\rho+\alpha) \Gamma(\rho+\beta) \Gamma(-\rho)}{\Gamma(\rho+\gamma)} \tag{B.19}
\end{equation*}
$$

we see that

$$
\begin{gather*}
\frac{\sin (\eta+1) \theta}{\eta+1}-\frac{\sin (\eta-1) \theta}{\eta-1}=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right)} \sin \theta \cos \theta \int_{\uparrow} \frac{d \rho}{2 \pi i} \\
\sin ^{2 \rho} \theta e^{i \pi \rho} \frac{\Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}+\rho-\frac{\eta}{2}\right)}{\Gamma(1-\rho)} \tag{B.20}\\
\Gamma\left(\rho+\frac{3}{2}\right)
\end{gather*}
$$

In the above equation we shall take \uparrow to be a contour parallel to the imaginary ρ axis with $1>\operatorname{Re}(\rho)>\frac{1}{2}$.

With the identity of Eq. (B.20), Eq. (B.17) for $C_{1}(\Lambda)$ is

$$
\begin{aligned}
C_{1}(\Lambda)= & \frac{1}{(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i} \Lambda^{-\eta-1} e^{i \pi \rho} \\
& \frac{\Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}+\rho-\frac{\eta}{2}\right) \Gamma(1-\rho)}{\Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\rho+\frac{3}{2}\right)}
\end{aligned}
$$

$$
\int_{0}^{\pi / 2} d \theta \sin 2 \rho+1 \theta \cos \theta\left\{\frac{\sin ^{-2-\eta} \theta}{1-\eta^{2}} 2^{F_{1}}\left(\frac{1}{2},-\frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; \sin ^{2} \theta\right)\right.
$$

$$
\begin{equation*}
\left.-\frac{1}{2 \sin \theta} \frac{\Gamma\left(\frac{1}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{(\eta+1) \Gamma\left(-\frac{\eta}{2}\right)}+\frac{1}{2 \sin ^{3} \theta} \frac{\Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{(\eta-1) \Gamma\left(1-\frac{\eta}{2}\right)}\right\} \tag{B.21}
\end{equation*}
$$

Under the substitution

$$
\begin{equation*}
z=\sin ^{2} \theta \tag{B.22}
\end{equation*}
$$

this equation becomes

$$
\begin{align*}
C_{1}(\Lambda) \equiv & \frac{1}{2(2 \pi)^{4}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i}(\Lambda)^{-\eta-1} e^{i \pi \rho} \\
& \frac{\Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}+\rho-\frac{\eta}{2}\right) \Gamma(1-\rho)}{\Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\rho+\frac{3}{2}\right)} \\
& \int_{0}^{1} d z z^{\rho}\left\{\frac{z^{-1-\eta / 2}}{1-\eta^{2}} 2^{F_{1}\left(\frac{1}{2},-\frac{1}{2}-\frac{\eta}{2} ; \frac{3}{2}-\frac{\eta}{2} ; z\right)}\right. \\
& \left.-\frac{1}{2} z^{-1 / 2} \frac{\Gamma\left(\frac{1}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{(\eta+1) \Gamma\left(-\frac{\eta}{2}\right)}+\frac{1}{2} z^{-3 / 2} \frac{\Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\frac{1}{2}\right)}{(\eta-1) \Gamma\left(1-\frac{\eta}{2}\right)}\right\} .
\end{align*}
$$

Using Bateman (2.4.5) ${ }^{42}$

$$
\int_{0}^{1} \mathrm{~d} z \mathrm{z}^{\frac{\mathrm{a}}{2}-\omega-1} 2_{1} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{~b} ; \mathrm{c} ; \mathrm{z})=
$$

$$
\frac{\Gamma(c) \Gamma(1-b) \Gamma\left(\frac{a}{2}+\omega\right) \Gamma\left(\frac{a}{2}-\omega\right)}{\Gamma(a) \Gamma\left(c-\frac{a}{2}+\omega\right) \Gamma\left(1-b+\frac{a}{2}-\omega\right)}-\frac{\Gamma(c) \Gamma(1-b)}{\Gamma(1+a-b) \Gamma(c-a)}
$$

$$
\begin{equation*}
\int_{0}^{1} d z^{\frac{a}{2}+w-1} 2^{F_{1}}(a, 1-c+a ; 1-b+a ; z) \tag{B.24}
\end{equation*}
$$

and the identity

$$
\begin{equation*}
{ }_{2} F_{1}\left(-\frac{1}{2}-\frac{\eta}{2},-1 ;-\frac{\eta}{2} ; z\right)=1-\left(1+\frac{1}{\eta}\right) z \tag{B.25}
\end{equation*}
$$

the integrations over z may be performed with the result

$$
\begin{align*}
C_{1}(\Lambda)= & -\frac{1}{2^{5}(2 \pi)^{3}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i}(\Lambda)^{-\eta-1} e^{i \pi \rho} \\
& \frac{\Gamma(1+\eta) \Gamma(2+\eta) \Gamma(-\eta) \Gamma\left(\frac{1}{2}+\rho+\frac{\eta}{2}\right) \Gamma\left(\rho-\frac{\eta}{2}\right) \Gamma(1-\rho)}{\rho^{2}-\frac{1}{4} \Gamma\left(\frac{3}{2}+\frac{\eta}{2}\right) \Gamma\left(\frac{3}{2}-\frac{\eta}{2}\right) \Gamma\left(\rho+\frac{3}{2}\right)}
\end{align*}
$$

With this integral representation, we see that $C_{1}(\Lambda)$ possesses the Taylors series expansion

$$
\begin{equation*}
C_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left\{\sum_{p=0}^{\infty} \frac{\Lambda^{p} \alpha_{p}}{p!}+\ln \Lambda \sum_{p=0}^{\infty} \frac{\Lambda^{p}{ }_{B}}{p!}\right\} \tag{B.27}
\end{equation*}
$$

(We shall calculate the coefficients α_{p} and β_{p} in Appendix C.)
For large $\Lambda, C_{1}(\Lambda)$ has the asymptotic expansion
$c_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left\{\sum_{p=1}^{N} \frac{1}{\Lambda^{p}} \gamma_{p}+\ln \Lambda \sum_{p=1}^{N} \frac{1}{\Lambda^{p}} \delta_{p}\right\}$.
(We shall calculate the first few terms in this asymptotic series in Appendix D.)

APPENDIX C

In this appendix we shall calculate the coefficients α_{p} and β_{p} in the series expansionfor $C_{1}(\Lambda)[c f . E q .(B, 27)]$. To do this, we use double Mellin integral representation of Eq. (B.26),

$$
\begin{align*}
C_{1}(\Lambda)= & -\frac{1}{2^{5}(2 \pi)^{3}} \int_{\uparrow} \frac{d \eta}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i}(\Lambda)^{-n-1} e^{i \pi \rho} \\
& \frac{\Gamma(1+\eta) \Gamma(2+n) \Gamma(-n) \Gamma(1 / 2+\rho+n / 2) \Gamma(\rho-n / 2) \Gamma(1-\rho)}{\left(\rho^{2}-1 / 4\right) \Gamma(3 / 2+n / 2) \Gamma(3 / 2-n / 2) \Gamma(\rho+3 / 2)} . \tag{C.1}
\end{align*}
$$

To begin we deform the ρ contour to the right in the complex ρ plane and find

$$
\begin{align*}
C_{1}(\Lambda)= & \frac{1}{2^{5}(2 \pi)^{3}} \int_{\uparrow} \frac{d n}{2 \pi i} \int_{\uparrow} \frac{d \rho}{2 \pi i}(\Lambda)^{-\eta-1} \frac{\Gamma(1+n) \Gamma(2+n) \cdot \Gamma(1-\eta)}{\Gamma(3 / 2+\eta / 2) \Gamma(3 / 2-n / 2)} \\
& \sum_{=0}^{\infty} \frac{\Gamma(3 / 2+n / 2+k) \Gamma(1-n / 2+k)}{(k+3 / 2)(k+1 / 2) \Gamma(k+5 / 2) \Gamma(k+1)} \tag{C.2}
\end{align*}
$$

The η contour is deformed to the left in the complex η plane, with the result

$$
\begin{aligned}
\mathrm{C}_{1}(\Lambda)= & \frac{1}{2^{5}(2 \pi)^{3}} \sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Lambda^{p}}{\Gamma(p+1)} \\
& \times \frac{\Gamma(1+k-p / 2) \Gamma(3 / 2+k+p / 2)}{(k+3 / 2)(k+1 / 2) \Gamma(k+5 / 2) \Gamma(k+1) \Gamma(1-p / 2) \Gamma(2+p / 2)}
\end{aligned}
$$

$$
\begin{align*}
\times\{1+p & {\left[\ln \Lambda-\psi(p+1)+\frac{1}{2}(\psi(1-p / 2)-\psi(2+p / 2))\right.} \\
& \left.\left.-\frac{1}{2}(\psi(1+k-p / 2)-\psi(3 / 2+k+p / 2))\right]\right\} . \tag{C.3}
\end{align*}
$$

We now turn to finding explicit results for the coefficients in

$$
\begin{equation*}
C_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left\{\sum_{p=0}^{\infty} \frac{\Lambda^{p} \alpha_{p}}{p!}+\ln \Lambda \sum_{p=1}^{\infty} \frac{\Lambda^{p_{B_{p}}}}{p!}\right\} \tag{C.4}
\end{equation*}
$$

We first consider the coefficients β_{p}. For odd p, these coefficients are

$$
\begin{equation*}
\beta_{2 . n+1}=\frac{(-)^{n^{t}}}{\pi(2 \cdot n+3)} \sum_{k=0}^{\infty} \frac{(k+n+1) \ldots(k+1)}{(k+3 / 2)(k+1 / 2)[(k+3 / 2) \ldots(k+1 / 2-n)]} \tag{C.5}
\end{equation*}
$$

The summand may be partial-fractioned, and the sum over k converted into Euler dilogorithms. After some straightforward algebra, we find

$$
\begin{align*}
\beta_{2 n+1}= & \frac{1}{\pi(2 \pi+3)}\left\{\frac { \Gamma (n + 3 / 2) } { \Gamma (1 / 2) \Gamma (\pi + 1) } \left[\frac{\pi^{2}}{2}\left(1-\frac{1}{2(n+1)(n+1 / 2)}\right)\right.\right. \\
& \left.+\frac{2}{(n+1)(n+1 / 2)}+2\left(\frac{1}{n+1 / 2}+\ldots+\frac{1}{3 / 2}+\frac{1}{n}+\ldots+\frac{1}{1}\right)\right] \\
& +\sum_{j=1}^{n-1}(-)^{j}\left[\frac{(n+j+3 / 2) \ldots(j+3 / 2)}{j!(n-1-j)!(j+1)^{2}(j+2)^{2}}\right. \\
& \left.\left.\left(\frac{1}{j+1 / 2}+\ldots+\frac{1}{3 / 2}\right)\right]\right\} \tag{C.6}
\end{align*}
$$

For even p , we have
$\beta_{2 n+2}=\frac{2}{3} \frac{\Gamma(n+5 / 2)}{(n+2) \Gamma(5 / 2) \Gamma(n+1)}{ }_{3} F_{2}\left(-n ; \frac{5}{2}+n, \frac{1}{2} ; \frac{5}{2}, \frac{5}{2} ; 1\right)$.

A list of the coefficients β_{p} is given in Table 1.
Finally, there are the coefficients α_{p}. The odd coefficients are

$$
\begin{equation*}
\alpha_{2 n+1}=\alpha_{2 n+1}^{(1)}+\alpha_{2 n+1}^{(2)} \tag{C.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{2 n+1}^{(1)}=-\beta_{2 n+1}\left(\frac{1}{2 n+3}+\psi(2 n+2)\right), \tag{C.9}
\end{equation*}
$$

and

$$
\begin{align*}
\alpha_{2 n+1}^{(2)}= & \frac{(-)^{n}}{2 \pi(2 n+3)} \sum_{k=0}^{\infty} \frac{(k+n+1) \ldots(k+1)}{(k+3 / 2)(k+1 / 2)\left[(k+3 / 2) \ldots\left(k+\frac{1}{2}-n\right)\right]} \\
& \left(\psi(k+n+2)-\psi\left(k+\frac{1}{2}-n\right)\right) . \tag{C.10}
\end{align*}
$$

We have not succeeded in finding a finite sum representation for $\alpha_{2 n+1}^{(2)}$, as we did in the case of the coefficients β_{p}. For even p, we have

$$
\begin{equation*}
\alpha_{2 n+2}=\alpha_{2 n+2}^{(1)}+\alpha_{2 n+2}^{(2)} \tag{C.11}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{2 n+2}^{(1)}= & -\beta_{2 n}+2\left(\frac{1}{2 n+4}+\frac{1}{2} \psi(n+1)-\frac{1}{2 n+3}-\frac{1}{2 n+1}\right. \\
& \left.-\frac{1}{2} \psi(n+1 / 2)+\psi(2 n+3)\right), \tag{C.12}
\end{align*}
$$

and where
$\alpha_{2 n+2}^{(2)}=\frac{1}{4(n+2)} \frac{\Gamma(n+5 / 2)}{\Gamma(n+1) \Gamma(5 / 2)}$

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{[(k-n-1) \ldots(-n)][(k+3 / 2+n) \ldots(\dot{n}+5 / 2)]}{(k+3 / 2)(k+1 / 2)[(k+3 / 2) \ldots 5 / 2][k \ldots 1]} \\
& \left(\frac{1}{k+n+3 / 2}+\ldots+\frac{1}{n+5 / 2}-\frac{1}{k-n-1}-\ldots-\frac{1}{-n}\right) \cdot \text { (С. } \tag{C.13}
\end{align*}
$$

Considerable partial-fractioning gives this sum as the finite sum

$$
\alpha_{2 n+2}^{(2)}=\frac{1}{4(n+2)}\left\{\sum _ { k = 1 } ^ { n } \left[\frac{(-)^{k}(k+3 / 2+n) \ldots(k+5 / 2)}{k!(k+3 / 2)(k+1 / 2)(n-k)!}\right.\right.
$$

$$
\begin{align*}
& \left.\left(\frac{1}{k+3 / 2+n}+\ldots+\frac{1}{5 / 2+n}+\frac{1}{n}+\ldots+\frac{1}{1}\right)\right]+\frac{4}{3} \frac{\Gamma(n+5 / 2)(\psi(n+1)-\psi(1))}{\Gamma(5 / 2) \Gamma(n+1)} \\
& +\frac{\Gamma(n+1) \Gamma(5 / 2)}{\Gamma(n+5 / 2)}\left(\frac{1}{n+3 / 2}+\ldots+\frac{1}{1 / 2}-2 \ln 2\right) \\
& \left.-\frac{\Gamma(n+2) \Gamma(3 / 2)}{\Gamma(n+3 / 2)}\left(\frac{1}{n+1 / 2}+\ldots+\frac{1}{1 / 2}-2 \ln 2\right)\right\} . \quad \text { (C.14) } \tag{C.14}
\end{align*}
$$

The coefficients α_{p} are given in Table 1 . The coefficients α_{p} and β_{p} are plotted vs. p in Figs. 21-22.

APPENDIX D

In this appendix, we shall calculate the coefficients of the asymptotic expansion of $C_{1}(\Lambda)$. To derive this asymptotic expansion, we rewrite Eq. (C.2) as

$$
\begin{align*}
C_{1}(\Lambda)= & \frac{1}{2^{3}(2 \pi)^{4}} \int_{\uparrow}^{-\frac{d n}{2 \pi i}(\Lambda)^{-n-1}\left(\frac{\pi}{\sin \frac{\pi n}{2}}\right)^{2} \Gamma \frac{\Gamma(n+1)}{n-1}} \\
& \sum_{k=0}^{\infty}(-)^{k} \frac{\Gamma(3 / 2+n / 2+k)}{(k+3 / 2)(k+1 / 2) \Gamma(n / 2-k) \Gamma(k+5 / 2) \Gamma(k+1)}, \tag{D.1}
\end{align*}
$$

To evaluate C_{1} for asymptotically large A, we close the n contour to the right in the complex η plane. This procedure yields an expansion in powers of Λ^{-1} and $\ell n \Lambda$ multiplied by powers of Λ^{-1}. The first term in this series is proportional to $1 / \Lambda$. The terms up to and including order $1 / \Lambda^{3}$ are
$C_{1}(\Lambda)=\frac{1}{(4 \pi)^{3}}\left[\frac{6}{\pi}\left(1-\frac{\pi^{2}}{12}\right) \frac{1}{\Lambda}-\frac{1}{\Lambda^{2}}+\frac{16}{3 \pi} \frac{1}{\Lambda^{3}}(\ln \Lambda+\gamma-1)\right]+6\left(\ln \Lambda / \Lambda^{4}\right)$.

In this equation γ is Euler's constant.

In this appendix we obtain an integral representation for

$$
\begin{equation*}
\vec{A}(\vec{r}) \equiv \int \frac{d^{3} k}{(2 \pi)^{3} 2 k} \quad \vec{\psi}(\vec{k}) e^{i \vec{k} \cdot \vec{r}} \tag{En}
\end{equation*}
$$

and for the transverse electric and magnetic fields. With these integral representations, we may find the energy and charge densities generated by the gluon cloud corresponding to $\vec{\psi}$.

Using Eqs. I.3.1.9, I.4.2, I.4.3 and A.5, we have

$$
\begin{align*}
\overrightarrow{\mathscr{A}}(\vec{r})= & -\frac{1}{8 \pi C_{2}^{\frac{1}{2}}(\Lambda)} \int \frac{d^{3} k}{(2 \pi)^{3} 2 k}(\tilde{I}-\hat{\mathrm{k}} \hat{\hat{k}}) \cdot \hat{R} \frac{1}{k+\Lambda} e^{i \vec{k} \cdot \vec{r}} \\
& \int_{0}^{\pi} \sin \psi d \psi e^{\frac{k R}{2}\{i k \cdot \hat{R} \cos \psi-\sin \psi\}} . \tag{E.2}
\end{align*}
$$

with

$$
\begin{equation*}
\vec{m} \equiv \vec{r}+\frac{1}{2} \vec{R} \cos \psi \tag{E.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x \equiv k|\vec{m}| \tag{E.4}
\end{equation*}
$$

A little algebra shows that

$$
\begin{align*}
\overrightarrow{\mathscr{A}}(\vec{r})= & -\frac{1}{4(2 \pi)^{3} C_{2}^{\frac{1}{2}}(\Lambda)} \int_{0}^{\infty} \mathrm{dk} \int_{0}^{\pi} \sin \psi d \psi \frac{k}{k+\Lambda} e^{-\frac{k R}{2} \sin \psi} \\
& \left\{\left[j_{0}(x)-j_{1}(x) / x\right] \hat{R}+\hat{m} \hat{m} \cdot \hat{R}\left[3 j_{1}(x) / x-j_{0}(x)\right]\right\} . \tag{E.5}
\end{align*}
$$

In this equation the spherical Bessel function of the ℓ 'th degree is $j_{l}(x)$. Letting

$$
\begin{equation*}
\overrightarrow{\mathscr{A}}(\vec{r})=\hat{\mathrm{r}} \mathscr{A}_{\mathrm{r}}+\hat{\mathrm{R}} \mathscr{A}_{\mathrm{R}} \tag{E.6}
\end{equation*}
$$

we have

$$
\begin{gathered}
\mathscr{A}_{r}=-\frac{1}{4(2 \pi)^{3} C_{2}^{\frac{1}{2}(\Lambda)}} \int_{0}^{\infty} d k \int_{0}^{\pi} \sin \psi d \psi \frac{k}{k+\Lambda} e^{-\frac{k R \sin \psi}{2}} \\
\\
\frac{r\left(\frac{1}{2} R \cos \psi+r \cos \theta\right)}{\left(\frac{1}{4} R^{2} \cos ^{2} \psi+R r \cos \theta \cos \psi+r^{2}\right)}\left\{\frac{3 j_{1}(x)}{x}-j_{0}(x)\right\}, \text { (E. 7) }
\end{gathered}
$$

and

$$
\begin{align*}
\mathscr{A}_{R}= & -\frac{1}{4(2 \pi)^{3} C_{2}^{\frac{1}{2}}(\Lambda)} \int_{0}^{\infty} d k \int_{0}^{\pi} \sin \psi d \psi \frac{k}{k+\Lambda} e^{-\frac{k R \sin \psi}{2}} \\
& \left\{\left(j_{0}(x)-j_{1}(x) / x\right)+\frac{\frac{1}{2} R \cos \psi\left(\frac{1}{2} R \cos \psi+r \cos \theta\right)}{\left(\frac{1}{4} R^{2} \cos ^{2} \psi+R r \cos \psi \cos \theta+r^{2}\right)}\right. \\
& \left.\left(3 j_{1}(x) / x-j_{0}(x)\right)\right\} . \tag{E.8}
\end{align*}
$$

The equations for \vec{E}_{\perp} are identical to Eqs. (D.6)-(D.8) except that

$$
\begin{equation*}
\frac{k}{k+\Lambda} \rightarrow \frac{k^{2}}{k+\Lambda} \tag{E.9}
\end{equation*}
$$

We also find that

$$
\begin{array}{r}
\overrightarrow{\mathscr{B}}=\frac{1}{4(2 \pi)^{3} \mathrm{C}_{2}^{\frac{1}{2}}(\Lambda)}(\hat{\mathrm{r}} \times \hat{\mathrm{R}}) \int_{0}^{\infty} \mathrm{dk} \int_{0}^{\pi} \sin \psi \mathrm{d} \psi \frac{\mathrm{k}^{2}}{\mathrm{k}+\Lambda} \\
 \tag{E.10}\\
-\frac{\mathrm{r}}{\left|\overrightarrow{\mathrm{r}}+\frac{1}{2} \overrightarrow{\mathrm{R}} \cos \psi\right|} \mathrm{e}^{-\frac{\mathrm{kR} \sin \psi}{2}} j_{1}(\mathrm{x})
\end{array}
$$

REFERENCES

1. T. Appelquist, M. Dine and I. Muzinich, Phys, Lett. 69B, 231 (1977); Phys. Rev. D17, 2074 (1978).
2. F. Feinberg, Phys. Rev. Lett. 39, 316 (1977); Phys. Rev. D17, 2659 (1978).
3. W. Fischler, Nucl. Phys. B129, 157 (1977).
4. E. Poggio, Phys. Rev, D16, 2586 (1977).
5. S. Davis and F. Feinberg, Phys. Lett. 78B, 90 (1978).
6. S. L. Adler, Phys. Rev. D17, 3212 (1978) ; D18, 411 (1978); D19, 1168 (1979) ; D19, 2997 (1979); Print-79-0384 (IAS, Princeton) (1979). Print-79-0384 (IAS, Princeton) (1979).
7. R. C. Giles and L. McLerran, Phys. Lett. 79B, 447 (1978).
8. R. C. Giles and L. McLerran, Phys. Rev. D10, 3732 (1979).
9. N. H. Parsons and P. Sejanovic, Phys. Lett. 79B, 273 (1978).
10. P. Cvitanovic, R. J. Gonsalves and D. E. Neville, Print-78-0825 (IAS, Princeton) (1978).
11. G. Domokos and S. Kovisi-Domokos, Phys. Rev. D19, 2984 (1979).
12. J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974).
13. J. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).
14. G. S. Abrams et al., Phys. Rev, Lett. 33, 1453 (1974).
15. W. Braunschweig et al., Phys. Lett. 57B, 407 (1975).
16. G. J. Feldman et al., Phys. Rev. Lett. 35, 821 (1975).
17. W. M. Tannenbaum et al., Phys. Rev. Lett. 35, 1323 (1975).
18. S. W. Herb et al., Phys. Rev. Lett. 39, 252 (1977)
19. W. R. Innes et al., Phys, Rev. Lett. 39, 1240 (1977).
20. C. W. Darden et al., Phys, Lett, 78B, 364 (1978)
21. B. J. Harrington, S, Y. Park and A. Yildiz, Phys, Rev, Lett, 34. 168 (1975); 34, 706 (1975).
22. E. Eichten et al., Phys. Rev. Lett, 34, 369 (1975).
23. J. S. Kang and H, J. Schnitzer, Phys, Rev, D12, 841 (1975); D12, 2791 (1975).
24. J. Rosner, H. Thacker and C. Quigg, Phys. Rev. D18, 274 (1978); D18, 287 (1978).
25. J. H. Richardson, Phys. Lett. 82B, 272 (1979).
26. I. B. Khriplovich, Sov. Phys. JETP 47, 18 (1978).
27. S. Tomonaga, Prog. Theor. Phys, 2, 6 (1947).
28. T. D. Lee and D. Pines, Phys. Rev, 92, 883 (1953).
29. T. D. Lee and R. Christian, Phys. Rev. 74, 1760 (1959).
30. M. H. Friedman, T. D. Lee and R. Christian, Phys, Rev. 100, 1494 (1955).
31. E. M. Henley and T. D. Lee, Phys. Rev. 101, 1536 (1956).
32. M. Dine, Phys. Lett. 81B, 339 (1979).
33. L. S. Brown and W. I. Weisberger, University of Washington Preprint RLO-1388-793 (1979) (unpublished).
34. E. Eichten and F. Feinberg, HUTP-79/AO22 (1979).
35. V. N. Gribov, Nuc1. Phys. B139, 1 (1978).
36. S. Mandelstam, Washington APS Meeting (1977) (unpublished).
37. J. E. Mandula, Phys. Lett. 67B, 175 (1977).
38. P. Sikivie and N. Weiss, Phys. Rev. Lett. 40, 1411 (1978);
39. C. G. Callan, R. Dashen, D. J. Gross, F. Wilezek and A. Zee, Phys. Rev. D18, 4684 (1978).
40. G. P. Lepage, Journal of Comp. Physics 27, 192 (1978).
41. I. S. Gradshteyn and I. M. Ryzhth, Tables of Integrals; Series and Products, Academic Press (1965).
42. H. Bateman, Higher Transcendental Functions, ed., A. Erdelyi, McGraw-Hill Book Company, Inc. (1953),

P	α_{p}	β_{p}
0	. 266299	
1	. 073091	. 212207
2	-. 224261	. 333333
3	-. 457439	. 387335
4	-. 602447	. 400000
5	-. 682167	. 393399
6	-. 726537	. 380952
7	-. 754449	. 367990
8	-. 785430	. 355555
9	-. 792668	. 343666
10	-. 796744	. 332468
Table I. The Coefficients α_{p} and β_{p} for $p=0, \ldots, 10$.		

FIGURE CAPTIONS

Fig. 1. The current $\vec{J}(\vec{k})$.

Fig. 2. The function $C_{1}(\Lambda)$.

Fig. 3. The function $C_{2}(A)$.

Fig. 4. The function $G\left(\alpha_{s}\right)$.

Fig. 5. The function $\mathscr{E}_{0}\left(\alpha_{s}\right)$.

Fig. 6. The function $\bar{\beta}\left(\alpha_{s}\right)$

Fig. 7. The function $\bar{\gamma}\left(\alpha_{s}\right)$.

Fig. 8. The expectatation value of the gluon occupation number, $\overline{\mathscr{A}}\left(\alpha_{s}\right)$.

Fig. 9. The amplitude of the ground state wavefunction to be in the states $|0\rangle$ (top line) $|1\rangle$ (middle line) and $|2\rangle$ (bottom line).

Fig. 10. The function $F\left(\alpha_{s}\right)$.
Fig. 11, The field \mathscr{A}^{2} for $\Lambda=0$.

Fig. 12. The field \mathscr{A}^{2} for $\Lambda=3$.

Fig. 13. The field \mathscr{E}_{\perp}^{2} for $\Lambda=0$.
Fig. 14. The field \mathscr{E}_{\perp}^{2} for $\Lambda=3$.

Fig. 15. The field $|\mathscr{B}|$ for $\Lambda=0$.

Fig. 16. The field $|\mathscr{B}|$ for $\Lambda=3$.

Fig. 17. The field ρ for $\Lambda=0$.

Fig. 18. The field ρ for $\Lambda=3$.

Fig. 19. The Coulomb interaction of a gluon and a single charged source.

Fig. 20. The contour \uparrow.

Fig. 21. - The coefficients α_{p}.

Fig. 22. The coefficients β_{p}.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

MNMMNM
 1
 1 +
 5-79 3616A19

Fig. 19

Fig. 20

Fig. 21

Fig. 22

[^0]: *Work supported by the Department of Energy under contracts number DE-AC03-76SF00515 and EY-76-C-02-3069.

