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1. INTRODUCTION 

A method for calculating the effects of interactions between 

heavy quarks within the framework of QCD would be of great utility.'-I1 

For heavy quark systems, the problem of determining an effective QCD 

interaction potential is perhaps most clearly isolated from the intrica- 

cies of the field theoretical bound state problem, As quark masses 

increase, moreover, the corresponding QCD interaction strengths 

decrease, and the calculation of the potential in perturbation theory 

becomes more reliable. For systems such as the J/J, 12-17 or T 18-20 

families of resonances, however, the strong interaction strength oS is 

-I- 2.21-25 Only heavy quark bound states of much greater mass might be 

expected to be adequately described by a Coulomb potential. For systems 

where c1 s is of moderate strength, such as the J/J, and T, we must develop 

calculational techniques that go beyond those which are appropriate to 

weak coupling. 

A feature which distinguishes QCD from QED is that even static sources 

will induce an enveloping cloud of radiation.26 This cloud arises from 

non-vanishing couplings of stationary quark sources and transverse gluon 

degrees of freedom. Such couplings may ultimately be responsible for 

confinement through non-perturbative mechanisms and certainly yield 

numerically significant contributions to the quark-antiquark potential 

for intermediate coupling strengths. 

In Ref. (8), henceforth referred to as "I", we introduced an 

approximation which may prove useful for describing the gluon cloud that 

surrounds a static q;i pair. The approximation is an analogue of the 

Tomonaga approximation of nuclear physics.27-31 In I, we demonstrated 
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that this method together with renormalization group improvement 

accurately approximates the known results of perturbation theory 

up to and including effects of at least order a 4 
S 

Rn as.!j 

In the present paper we present some results of numerical calcula- 

tions of the gluonic structure of qi states in this static limit. Our 

purpose here is not so much to accurately determine a q;i effective 

potential- indeed the extraction of an effective potential from our 

static quark calculation requires detailed consideration of velocity- 
32-34 

dependent effects but rather to investigate the structure of the 

non-abelian gluon cloud generated in such states. We also hope that the 

techniques discussed here may provide a first tentative step along the 

road toward the understanding of the structure of heavy quark bound states. 

The outline of this paper is as follows: in Section 2, we briefly 

review the results of I . The numerical solutions of the equations 

derived in Section 2 are discussed in Section 3. In this third section, 

we also describe the configuration space structure of the gluon cloud, 

its charge density, and its chromoelectric and chromomagnetic fields. 

The detailed numerical analysis of Appendices A-E are utilized in this 

section, Section 4 offers a summary and discussion of our results. 

2. THE TOMONAGA APPROXIMATION 

In this section, we consider the interaction of stationary, point- 

like, spinless SU(N) color sources. These sources are described by 

charge operators Q, and qa satisfying the algebra: 

Q,Q, = k 'ab + $ dabc Q, + L f Q 2 abc c 
-- 
Q,Q, = -& 6ab - 3 dabc qc + 3 fabc Gc 

(2.la) 

(2.lb) 
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The indices a,b range from 1 to N2--1. The charge density corresponding 

to these operators is 

a 
'quark(') 

with coordinates chosen so that the quark resides at z/2, and the 

antiquark at -z/2. In the analysis which followsi-we shall measure 

distances in units of ldl, corresponding to setting IsI = 1. 

The interactions of these static quarks are conveniently described 

by the QCD Coulomb gauge Hamiltonian. We do not address the problems of 

the Gribov-Mandelstam ambiguities that may arise in the implementation of 

this gauge. 35-36 Such ambiguities appear to be most significant in regions 

characterized by "large fields" where our approximation is also subject to 

large corrections arising from many other sources.37-3g Our calculations 

show no hint of any such ambiguities. 

In the Coulomb gauge the independent degrees of freedom correspond to 

transverse gluons. The interactions include cubic and quartic transverse 

gluon couplings, and instantaneous Coulomb interactions of the quarks and 

gluons. The full set of instantaneous Coulombic interactions are nonpoly- 

nomial in the gluon fields and, even in the static limit, are the source 

of non-vanishing interactions of quarks and transverse gluons, 

These interactions arise from the term in the Hamiltonian 

(2.3) 

where q (:) (a= 1, ,.., N2- 1) is the longitudinal chromoelectric field. 

The longitudinal chromoelectric field is a dependent field which may be 

determined in terms of the quark and transverse gluon degrees of freedom. 
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by solving Gauss' Law: 

D.E. = L 
JJ 

Vj'~ +gAj 'XE; + gAjxE. = 
J 'quark , 

D.EL = 
J j 'quark + g E;xAj:Jo 

We use the notation 

(Ax B)a = fabcAbBc -. (2.5) 

(2.44 

(2,4b) 

In these equations, s1 is the transverse chromoelectric field, and Jo 

is the charge density arising from quarks and transverse gluons. Using 

Eq. (2.4b) in Eq. (2.3), we obtain 

v 1 
Coul = 2 J 

d3; d3? J;(z) a,(;?, G') J;(:') , (2.6) 

where the Coulomb energy operator Cp 
+ 

ab (r, G') is 

or 

Q = (v l D)-+-v2) (v l D)-1 , (2.7) 

(2.8) 

In perturbation theory, the leading order coupling of transverse gluons 

to the qy pair is given by the second term in Eq. (2.8). _ 

In the stationary spinless quark limit, quark recoil and spin 

effects vanish. The spatial and spin structure ,of the quark-antiquark 

sources are time-independent and do not induce correlations in the spatial 

wavefunctions of successively emitted or absorbed gluons, 'For this 

situation, as was argued in I, a reasonable approximation for the 

description of the gluons may be obtained by supposing that all gluons 



-6- 

share a single spatial wavefunction. Note however that because the quark 

and antiquark reside in a low-dimensional representation of the SU(N) 

color group, color recoil effects are expected to be very important. 

Therefore, an essential ingredient of any approximation to the description 

of such quarks must be the operator structure of the color charges of 

quarks and gluons. 

The Tomanoga approximation discussed in I is tailored to fit this 

body of constraints. The Hamiltonian which describes quarks and gluons 

is diagonalized in a subspace of states consisting of arbritary numbers 

of gluons of arbitrary colors, all sharing a common spatial wavefunction 

Jlj Cz) l The operator structure of the quark and antiquark charges is 

exactly maintained. As shown in I, matrix elements of the Hamiltonian 

in this subspace of states correspond to matrix elements of an effective 

Hamiltonian which describes N2-1 "coordinate" degrees of freedom 

(corresponding to the N2-1 colors of gluons) interacting with the N2-1 

color "spins" of the quark and antiquark. 

In deriving the effective Hamiltonian presented in I, we made a 

further severe truncation of the full Hamiltonian as it would appear in 

the Tomanoga approximation. We retained only the leading interaction 

term represented by the second term in Eq. (2.8). The neglected terms 

include modifications of transverse gluon propagation arising from the 

background field of the quark charges and from mutual interactions of 

transverse gluons. We do, however, allow for a shift of local operator 

expectation values from their vacuum values, and in this sense we are 

performing a mean field approximation. 
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The resulting effective Hamiltonian is 

.#= t 
l a + EQ*q + r(Qx@* (a+a+) 

> 
, (2.9) 

i where aa and a a (a=l, . . . , N2 -1) are one-gluon creation and annihila- 

tion operators, The commutation relations of a, at, Q and 6 are, in 

addition to those given in Eqs. (2.la - 2.lb), 

Laap 41 = 'ab (2.104 

The three numbers go, g and 7 are functionals of the classical 

gluon wavefunction t. The' Hamiltonian is diagonalized for arbitrary 

EO' E and 7, allowing us to obtain its ground state ICI>. The wavefunction 

J is determined by minimizing the ground state energy, dFo,C$l, with 

respect to $, subject to the normalization condition 

/ 

d3k 

(2a)32k 
;t" (3 l ;j(Z) = 1 . 

The variational calculation performed in I gives 

(2.11) 

(2.12) 

where A is a Lagrange multiplier which enforces Eq, (2.11). The current 
-f-f 
J(k) is the Fourier transform of the spatial factors which couple to 

l"(z) in Eq. (2.8), (Fig. l), 

(2.13) 
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The quantity P is the ratio of ground state expectation values 

p _ (fll(Qx-6) l (a+a+)(n> = 
2 <Qja+* aIn> 

. (2.14) 

The Lagrange multiplier A must be determined so that $ is normalized 

to one. As the solution for A as a function of g2 involves the inter- 

mediate step of diagonalizingX(the couplings of which depend on A), 

the problem of determining A is complex and must be solved numerically. 

In the following sections, we discuss the solution of this model 

theory. We determine A as a function of as, find the dependence of 

on a 
S’ 

and calculate the gluon wavefunction 7). 

3. RESULTS 

The coefficients go, 3 and 7 may be computed in terms of functions 

Cn(A> as 

LTo = 
c1 - AC2 

c2 
, (3.1) 

and 

2 
g =& c2 , 

cl - AC2 

s 
7 = -g3 clc2 

cl - AC2 * 

The functions Cn(A) are obtained from a classical current 

S as 

Cn(A) = J 

(3.2) 

(3.3) 

(394) 
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The parameter A must be adjusted so that the gluon wavefunction is 

normalized to one, 

g6C2(A)P2 = 1 . (3.5) 

To solve this equation for A,Z'must be diagonalized for arbitrary 

A. The root of Eq, (3,5) is then determined by successive iterations. 

We have diagonalized%numerically in the basis discussed in I, and 

determined A. To perform the numerical analysis, we first obtained 

expressions for Cn(A) that could be easily evaluated, In Appendices 

A-C, the coefficients in the series expansion 

(3.6) 

are determined. The coefficients Cn(A> are derived from 

= v 

c (A) , 
1 (3.7) 

We have checked this tedious analytic evaluation of Cl(A) by comparing 

Eq. (3.6) with the asymptotic series for large A, and by directly 

evaluating Eq. (3.4) with the Monte Carlo numerical integration routine 

Vegas.40 The asymptotic series for C,(A) is derived in Appendix D. Plots 

of Cl and C2 are given in Figs. 2-3. Both Cl and C2 are rapidly decreasing 

functions of A for 0< A< 1, and are not well approximated by their lowest 

order terms in the expansion of Eq. (3.6), 

Cl(A) = L 
(4s)3 

C,(A) = -l 
(41T)3 

5 Rn A 

(3.8) 

(3.9) 

for A ) l/2. 
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We have used the functions Cl and C2 in the diagonalization of x 

which was carried out numerically for SU(3). We varied the parameter A 

until the normalization condition CEq. (3,9)1 was satisfied. This 

procedure gave us a relationship between A and as, 

A = 3/2 as G(as) , (3910) 

The lowest order perturbation theory value for A was found in I 

tobe A=3/2as, so that G(as) satisfied 

G (0) = 1 . (3.11) 

To an accuracy of lo%, G(.as) = 1 for 0 I as -< 2, A plot of G(as) 

is shown in Fig. 4; 

The quantities &o, i and 7 as functions of a are shown in S 

Figs, 5--7.. Several features of these functions are noteworthy, For 

small as both E. and E rise rapidly from zero, while the parameter v' 

rises slowly from zero. For intermediate values of as- l-2, &o levels 

off, and g and 7 vary linearly, In fact for large as, 

B Car,) - --;(as) . (3.12) 

The perturbation theory values of go, i and 7 are given by 

Eqs. (3.1-3.3) and Eqs. (3.8-3.9). With A = 3/2 as 

, 

as Rn as , 

- (3.13) 

(3.14) 

and 

3/2 7 Z -as (3.15) 
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For as 2 l/2, go, 3 and 7 show significant deviations from their 

perturbation theory values. 

The magnitude of 7 determines the strength of mixing between states 

with different numbers of occupied coherent gluon modes. The slow increase 

in the magnitude of v(as) for as 5 l-2 leads to a small gluon content of 

the ground state wavefunction. In fact, for as 5 2, the average value 

of the number operator, <Qla t l alQ>, is less than .25 as shown in Fig. 8. 

The amplitudes for the ground state wavefunction to be in the states 

IO>, (1) and (2) are shown in Fig. 9. The amplitude for 12) reaches 

only -.lO- .15 at as-2. The contribution to the ground state energy 

from these various modes is -(amplitude)2, so that for a the contri- 
S 2 2, 

bution from modes with n 2 2 is 6E I l-2%. For this range of as the 

system is adequately described as a mixture of the two total color singlet 

states: (singlet quark pair, no gluons> and loctet quark pair, one gluon). 

The function F(as) which measures the deviation of E from its 

Coulombic dependence on as) 

T2 
E(R) = - 7 as F (a,) , (3.16) 

is shown in Fig. 10. The function F(as) rises from its value of 1 at 

a S = 0, and acquires a linear dependence for as u l-2. For as 5 l/2, 

the function F(as) is not well approximated by its perturbation theory 

value of 

F(as) af + -& ai Rn as + @(a:) l (3..17) 

Associated with the gluon wavefunction t(c) are various classical 

fields in coordinate space. These are related to effective field operators 

in the Tomonaga approximation. In matrix elements involving such states 
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we have 

La(Z) +2(Z) (aa + ai) 

sa 64 =&(x> (aa + ai) 

pyon(x) = P (Z) i a X a+ 

where the C-number fields .2, 2' ,B and p are 

2 (ii, J d3k ii: .; ++ 
= 

(2n)32$j 
e JI (k) 

(3.18a) 

(3.18b) 

(3.18~) 

(3.18d) 

(3.19a) 

(3.19b) 

(3.19c) 

P (2 = 2,(Z) l CAm (3.19d) 

Figures 11-18 show plots of 2(x), d:(x), IS(x) 1 and p(x) as 

functions of cylindrical variables rL and z for A= 0 and A= 3. These 

fields are azimuthally symmetric. The overall scale of the magnitude 

of the various fields is arbitrary; the important comparison being 

the relative shape of the distributions. The quarks are located along 

the z axis at positions which are obvious in the figures. 

For any A f 0 the asymptotic behaviour of the various fields can 

be deduced. For large r, the potential2(;) falls like l/r2 while 2L 
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and & fall like l/r3. Thus the resulting gluon charge density falls 

like l/r4. 

The normalization condition on the wavefunction is precisely the 

condition 

J 
d3x P& = I t (3 * 20) 

For A= 0, 2 behaves asymptotically as l/r, while 4, andsbehave as 

l/r2. At the point A = 0, p becomes non-normalizable, accounting for 

the logarithmic divergence in C,(A) as A + 0. 

Near the quark (z = Gi) the dominant contributions to .M, 8' and 

3 come from the large ,zl region of integration: lzl>>A. The analysis 

of Appendix E then indicates that s-constant, 1 sLI 
1 

and P - j j 
I x-r. II 

and l&l sin 9 
N -- where 0 is the usual polar angle, 

, Gi , 

The magnetic field is singular near the quarks, and its value depends 

on the path of approach to the position of the quark, Along the line 

separating the quarks the field is zero. As A increases, the fields 

concentrate nearer the quarks. 

The charge distribution resembles the distribution of transverse 

electric field. The charge is concentrated near and between the quarks 

for small A, and increasingly near the quarks for increasing A. 

For small A the transverse electric field is spread out in the 

region between the quarks. Increasing A increases the concentration 

of the electric fields near the quarks. 
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As the qq separation changes, the magnitudes of fields all scale 

with powers of l/R corresponding to their canonical dimension. 

That is, 

2 (as, R, x') = $ so as,; 
( ) 

P (as’ 2,;) = L p a 
R3 d$ ( > 

(3.21a) 

(3.21b) 

(3.21~) 

(3.21d) 

Thus, as quarks are separated, the overall shape of the field distributions 

are unchanged but magnitudes decrease. Note however, that an observer 

sitting at a fixed point in space as the pair is separated does see both 

the overall scale decrease and effects due to the change in his scaled 

coordinate g/R, 

4. CONCLUSIONS 

In this section, we summarize our results and consider their impli- 

cations for the physics of heavy quark systems as described by QCD. Our 

approximation scheme is designed to give a reasonable representation of 

the gluonic structure generated in the presence of stationary quantum 

charge sources. The validity of the Tomonaga approximation rests on 

the notion that in the absence of quark spatial and spin recoil effects, 

gluons of a single space-spin wavefunction will be dominant. The trunca- 

tion of the Coulomb gauge Hamiltonian to the leading (in perturbation 

theory) gluon-source interaction of equation (2.8) is motivated primarily 
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by desire for simplicity and certainly is appropriate for sufficiently 

small coupling. Ultimately, the reliability of our approximation scheme 

for increasing as can best be checked only by computing higher order effects, 

With our approximations, the following picture of the quark-antiquark 

state emerges for couplings as 5 l-2: the total color singlet ground state 

is mostly pure (qq) singlet with a small admixture of the one-gluon state 

(d8(G)g- The amplitudes for components containing more than one gluon 

are tiny despite the fact that the Tomonaga approximation allows for their 

presence. We interpret this result as a dynamical consequence of the 

theory, Even at relatively large coupling (as- 2) there is no dramatic 

increase in the gluonic component of the lowest-lying singlet state. 

This result, though perhaps disappointing from the point of view of one 

looking for dramatic behavior suggestive of an approach to confinement, 

is in accord with the naive quark model picture of such states as 

predominantly pure qi! 

The behavior of the energy as a function of as is also undramatic. 

In the region of as ~1-2, it deviates less from the Coulomb form than 

might be suggested by the extension of the order 
4 

a s Rn as perturbative 

results beyond their obvious domain of validity. Only the shape of the 

gluon wavefunction appears sensitive to the strength of the coupling. 

This dependence is the source of non-analyticity in coupling at as = 0. 

The point in coupling at which our approximation scheme breaks down 

is not clear. The small average gluon number in the region as-l-2 

suggests that corrections in this region will be small. The Tomonaga 

approximation itself (which becomes the Tamm-Dancoff approximation when 

restricted to n gluon = 1) becomes unreliable when mechanisms which tend 
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to disperse gluons in space-s-pin are important, Such effects are 

certainly present in QCD (for example, in the interactions of gluons 

with one another) but may be expected to be small, One term which 

deserves particular attention is that representing the Coulomb interaction 

between a gluon and one of the sources (Fig. 19). It is this term in the 

classical Hamiltonian which is responsible for the Mandula instability 

of the Coulomb field for a classical color source of sufficient strength, 

asz3/2. 37-30 We might expect that this instability should be reflected 

in the quantum theory for sufficiently large coupling if the corresponding 

term in the Hamiltonian is included in our approximation. This expecta- 

tion leads to an upper bound on the value of as at which we can have any 

real confidence in our results, Note, however, that the instability is 

a single charge effect and may not dramatically affect the interaction 

energy between charges. 

The techniques introduced in (1) and analyzed here might be expected 

to be of use phenomenologically in the characterization of properties of 

heavy quark bound states. It is important in this connection to reiter- 

ate the observation that velocity-dependent effects in the finite mass 

case are not trivial and the extraction of an effective qi potential is 

complex.32-34 A more fruitful application of our techniques might be 

the investigation of spin-dependent forces induced via the gluon cloud. 
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APPENDIX A 

In this appendix, we find an integral representation for the current 

W) . We begin by recalling that the current can be computed from the 

Feynman graph of Figure 1 with the result 

-j(Z) = i;;.i;. 3 3 1 + -t 
q-kqk*q 

k t 

1 1 
(A,l) 

In this equation, the separation of the quarks is R. The Coulomb 

propagators in Eq. (A.1) may be combined using a Feynman parameter 

to yield 

1 

)/ dae i(a- 1/2)Z*ft 

0 

d3; .+ + 
e'q'R'G* i <2+a(l- a)k2 

C 1 -2 

(2r) 3 
. (A.21 

The integrations over d3< give 

dae i(a- 1/2)Z*Z e-kRJcl(l- a) 
. (A.3) 

Finally, if we change variables 

a = cos20/2 , 

then Eq. (A.3) becomes 

(A.5) 
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APPENDIX B 

In this appendix, we shall evaluate the integrals 

cP(A) = I d3 i: 1 

(2n)32k (k+A)P 
Z2(it) * (B.1) 

We shall proceed by deriving a Mellin integral representation for C 
P 

as a function of A, (In Appendix C we shall use this Mellin representation 

to evaluate the coefficients of a Taylor's series expansion for Cp(A) in 

powers of A and power A times RnA , We shall also use this representation 

to obtain an asymptotic expansion in inverse powers of A and inverse 

powers of A times Rnh e 

We begin by observing that 

Cp (A) = (-p-l (A-)(&)“- 1 C,(A) l 
03.2) 

. 

so that without loss of generality we may consider only Cl(A). 

Using Eq. (A.5) with R=l, we have 

Cl(A) = ,5(: )4 j kdk & / dz {sin qldQ1 sin $2d$2 

0 -1 0 

Cl- z2) exp - ; sin ICI1+sin J12-iz cos ql-iz COsQ2 (B.3) 

We introduce a Mellin representation by the identity 

1 - = + / 2 ($ r(l+n) r(-n) 
k+A 

+ 

(B.4) 
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and is shown in Fig. 

Eq. (B,3), and usimg 

c,(n) = 1 

25(2n)4 
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the poles of the gamma functions in Eq, (B,4) 

20. Tnterchanging 

Eq, (B,4), we find 

the orders of integratfon in 

1 71 

2 r(l+n) r(-Q) 
I s 

dz sin $, d $1 

-1 0 
03 

sin JI, d $2 dk A-+-' kn+' (l- z2) 

0 

k exp -- 
{ 

sin $, + sin $, - iz cos $, - iz COS jJ2 
> 

. 2 (B.5) 

The integrations over k are easily carried out with the result 

C,(A) = A 
s 25(2n)4 + 

-J%- r(l+d r(2+$ r(-n) (fj”‘” / dz 27Ti 

-1 

Tr 
J sin JIl d Q, sin $2 d $, (I- z2) 

0 

( sin $, + sin JI, - iz cos JIl - iz cos JI, 
) 

-2-n 

The integral over z is 

1 

s 
dz (l- z2) sin IJJ, + sin 4, - iz cos $, - iz cos $J, 

-2-l-j 

-1 
-2-Q 

= 2 cos $1 -k cos $J, 
> 

sin $, + sin $, 

cos $, + cos qJ2 

(B.6) 
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sin $, + sin $, -1-r) 

) I 

sinJI1f sinJ12 
2 

1 4-i 1+ 

I)I 

03.7) -- 
rl+1 cos $, + cos $, cos $, + cos J, 2 . 

In this equation, "Im" represents the imaginary part taken with n treated 

as if it were a real parameter. 

Now, we change variables: 

JI+ = $1 + $2 

$1 - $2 
k= 2 

With these new variables, 

C,(A) = 
1 

/ 
-$$ r(l+n) r(2+n) r(-n) h 

-n-l 

23(2?T)4 + 

03.8) 

(B.9) 

IT 

/ 
de+ 

0 

$+I2 

I d$ (cos2$- - cos2$+/2) cos-3$+/2 cos 
-2-n 

-$+/2 - JI- 

1 2 l++ 
;; 

sin 2 sin rl (JI+/2 - r/2) -A 
$+ sin (n- 1) -j- -t 

( ) 

- & sin (n+ 1) ($+/ 2 - n/2) 1 , (B.lO) 
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or with J1+/2+$+ 

IT/2 
1 

Cl(A) = 
/ 2(2Td4 + 

& rc1+ ll)ro+ rl>r(-dA -'-l / d$+ i' d$- 

0 0 

( 
COS2$J - cos2JI+ 

) 
-3 cos l/J + COS-2-n k 1 

+ sin TI($+- 71/Z) 

sin(n-1)($+-r/2) - -&- sin(rl+ 1)($+-r/2) 
> 

l (B*1l) 

Elementary differentiation yields the identity 

s dx cos-a x = - co2 - a 1 
a- 1 

3 _ ;; + _ ;; (B.12) 

With the identity 

2F1 ( - 11 a3 a 2' - 2 - -. 2' - 2 - _. 2' l ) = re 9) r(i) 

ri-F 
( ) 

, (B.13) 

and Eq, (B-12), the Q- integral in Eq. (B.ll) can be performed to yield 

C,(A) = 
1 

2(2T)4 / / 
d0 

+ 0 

1 -- 
n _ 1 

1 1 
- - - 

sin 8 rl+l 
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1 + --', 
1 

sin30 n-i 
& . 
rl 

cos e sin lle 

- ,'l sin (rl- 1)8 - L 
rl+1 

sin (n+l)f3 , 

where we have let t3 = : - $+ . 

Now, we use the identities (Gradshteyn and Ryzhik 9.137.17)41 

(B.14) 

(0+1) 2F1 111730 2, F-F; q-~;sin 2 - (T-I- 1) i-T; sin28 

= 2 -a2. 3 2 2, sin 2 8 , (B.15) 

and 

2 cos 8 sin ne = sin (rj+ i)e + sin (n- l>e 

to rewrite Eq. (B.14) as 

(~.16) 

I$$ r(l+d r(2+n) r(-n) hen-l 1 
r/2 

J de 

y 0 

(B.17) 



-24- 

Using Bateman (2,8,12) 42 

sin oB = sin 8 cos e 2Fl -I- $, 1 - e2 2 2; 2; sin 8 P , (B.18) 

and the Mellin representation for the Hypergeometric function, 

2Fl (o,B;_Y;z) = 
r(a) r(t3) 

r(y) /‘ 

P Up+4 w+t3) r(-d 
up+y) 

. 

f (B.19) 

we see that 

sin(rl+l)e 
r)fl - 

sin(n- 03 = 71 
11-l 

-LfL sin e cos e 

(B.20) 

In the above equation we shall take + to be a contour parallel to 

the imaginary p axis with 1 > Re(p) > i . 

With the identity of Eq. (B.20), Eq. (B.17) for Cl(A) is 

r(l+d r(2-k7-d r(-n) r(s) r(++p+5)r(++p-$) r&p) 

r(++$) r($-Jjj r(p+$) 

J 

r 

de sin 2pSl e Q 

0 
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Using Bateman (.2,8,12) 42 

sin pB = sin 8 cos 8 2Fl + 5, 1 - $; $; sin20 , 
P > 

(B.18) 

and the Mellin representation for the Hypergeometric function, 

2Fl (a,B; Y;Z) = 
r(a) r(f0 r(y) / 

P Up+a) up+ 8) w-d 
VP+ y) 

. 

+ (B.19) 

we see that 

sin(n+l)e sin(rl-1)e = ~ 
r+ 

0 
n+1 - sin 8 cos 8 

I 

- 
Q-1 

p($!l) r(+- ?I) + 'it' 

sin2~ e eiap r(++p+$) r(++p-5) r(l F) 

r p+$ 
( ) 

(B.20) 

In the above equation we shall take + to be a contour parallel to 

the imaginary p axis with 1 > Re(p) > -$ . 

With the identity of Eq. (B.20), Eq. (B.17) for Cl(A) is 

A-n-l eiap 

r(i+n) r(2+n) r(-n) r(+) r(++~)r(++f+) w-d 

r($+s) r($$) r(p+$) 

a/2 

J 

. 
2p+1 

. -2-n 
de sin e cos 8 'In Q 

0 
l-n2 



Under the substitution 
2 

z=sin 8 (B.22) 

this equation becomes 

r(l+q) r(2+11) r(-d r 2 r -L+P+~ (2) (2 F) r(++p-;) w-d 

' 
-l-Q!2 lrl3 rl 

l- T-l2 
-z---; T-2; 

_ _ .-l/2 w + $ .-312 1 
2 

(T-I+ 1) r(- j-) 

Using Bateman (2.4.5)42 

1 

s 

a-(& 
dz z2 2Fl(a,b; c; z) = 

0 

r(c) Nl- b) r(;+u) r(+) ; rccj rcl- bj 

r(a) rtwt+w) r(l-b+:-a) - r(l+a-b) r(C-a) 

1 

/ 
dz z 

:+a-1 
2Fl (a, l-c+a; 1-b+a; z) (B.24) 

0 
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and the identity 

the integrations over z may be performed with the result 

Cl(A) = - ' 
25 (2lT) 3 

$ (A> 
-n-leinp 

(B.25) 

r(i+ n) r(2+ n) w-n) r(++p+$) r(p-:) rc- d 

p2-+ r(i+$) r($-$. r(p+$) 
. (~~26) 

With this integral representation, we see that C (A) possesses the 1 
Taylors series expansion 

(B.27) 

(We shall calculate the coefficients a 
P 

and fip in Appendix C.) 
1 
/ For large A, Cl(A) has the asymptotic expansion 

C,(A) = L yp + Rn A 
A' 

(~.28) 

(We shall calculate the first few terms in this asymptotic series in 

Appendix D.) 
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APPENDIX C 

In this appendix we shall calculate the coefficients a and B 
P P 

in the series expansionfor Cl(A) [cf. Eq, (B.27)]. To do this, we use 

double Mellin integral representation of Eq. (B.26), 

c,(A) =- - ' 
25 (2lT) 

3 /I -$$ 1 $ (A)-n'-' eiaP 

r(l+ n) r(2+.0) r(9) r(lD+p+ n/2) rb- J-I/~) r(l-d 

(P2 
. 

- i/4) r(3/2+ o/2) r(3/2- n/2) r(p+3/2) 

cc.11 

To begin we deform the p contour to the right in the complex 

p plane and find 

C,(A). = 
1 r(l+ n ) r(2+ 11 j- r(l- rl ) 

25 (2*)3 
& (A)--' --- r(3/2 + n/2) r(3/2 - n/2) 

co 

c 
r(3/2+ ?/2+k) r(l- o/2+k) 
(k+ 3/2)(k+ l/2) r(k+ 5/2) r(k+ 1) l 

.=O 

((3.2) 

The n contour is deformed to the left in the complex rl plane, 

with the result 

Cl(A) = 
’ C 2 r(fi 1) 25 (2s)3 

p=O k=O 

-p/2) r(3/2+k+p/2) 
' (k+3/2)(k+ !::;:(k+5/2) I'(k+l) T(l-p/2) l'(2+p/2) 
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Rn A - JI(p+ 1) + + (w P/2) - J1(2+ p/2)) 

1 - - 2 (9(1+ k- p/2) - $(3/z+ k+ p/Z))]] . 

We now turn to finding explicit results for the coefficients 

in cm 

A 
P 

ap + Rn A AP6 

P! 
= t 

p!p . 
p=l 

(C.3) 

(C.4) 

We first consider the coefficients f3 . 
P 

For odd p, these 

coefficients are 

co 

6 C-1 I-l' (k+ n'+l> ,,, (k+l) 
2,n+l = Jz-+3) c (k+3/2)(k+1/2)C(k+3/2)...(k+1/2=n)l. 

k=O 

(C-5) 

The summand may be partial-fractioned, and the sum over k converted 

into Euler dilogorithms. After some straightforward algebra, we find 

1 r(n+3/2) 1 
'2n,+ 1 = IT(~xI+~) r(l/2) r(e+l) ’ - 2(n+l)(n+l/2) 

+ (n+ l):.n+1/2)+ 2 
. . . 

(n+j+3/2) . . . (j+3/2) 

j!(n- 1-j)!(j+1)2(j+2)2 

l + 
j+1/2 "' . CC.61 
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For even p, we have 

2 
'2n+2 = 7 

r( n+5/2) 
(n + 2) r(5/2) r( n +l) zi-n 2 

(C-7) 

A list of the coefficients B is given in Table 1. 
P 

Finally, there are the coefficients a 
P' 

The odd coefficients are 

where 

a2n+l = 
(1) (2) 

a2n+l + a2n+l (C .8) 

(1) 
a2n+l = -'2n,+l ( 

1 
2n+3 + J1(2n+2) ) 9 cc .9) 

and 

(2) 
"2n+l = 

w c (k+ n+l).,.(k+l) 
2~r(2 n + 3) (k+ 3/2)(k+1/2)[(k+ 3/2)...(k+% - n)] 

k=O 

$(k+, n+ 2) - $(k + Q - n,) 
> 

. (C.10) 

We have not succeeded in finding a finite sum representation for 

(2) 
a2n+l' as we did in the case of the coefficients B 

P' 
For even p, 

we have 

(1) 
"2n+2 = a2n+2 + d2L+2 

(c.11) 

where 

(1) 1 1 
"2n+2 = -'2n+2 

-- 
2 n+4 2n+3- 2.nfl 

-$+(n +1/2) +$(2n +3)) , (c.12) 
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and where 

(2) 1 
"2n+2 = 

r( n+5/21 
4(n + 2) r(.n +l) r(5/2) 

c 
[(k- li -l)...( - n)lC(k+3/2 + n)...(a+5/2)1 
(k+ 3/2)(k+ 1/2)C(k+ 3/2)...5/21Ck.,.ll 

k=l 

1 1 1 
k+n +3/z + ‘*’ + n +5/2 - k- n - 1 - *” 

1 -- 
- n 

) 
’ (c*13) 

Considerable partial-fractioning gives this sum as the finite sum 

c2> 1 
'2n+2 = 

(-)k(k+3/2 +n)...(k+5/2) 
4(n+ 2) k!(k+3/2)(k+1/2)(n -k)! 

* I 

4 r(n+5/2)($(n+l)- J,(l) 
+?; r(5/2) r(n+ 1) 

+ r(n+ 1) r(5/2) l + 1 

r( n+5/2) n +3/2 
l ..+-'-1/2-2Rn2 

r(n + 2) r(3/2) 1 1 
+ . . . --2Rn2 

+ l/2 
(c.14) 

I'(n -!- 3/2) n +1/2 

The coefficients ap are given in Table 1. The coefficients a and B 
P P 

are plotted vs. p in Figs.-21-22. 
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APPENDIX D 

In this appendix, we shall calculate the coefficients of the 

asymptotic expansion of C,(A). To derive this asymptotic expansion, 

we rewrite Eq. (C.2) as 

c,(A) = 

co 

c 
wk 

r(3/2 + n/2 + k) 
, (D.1.j 

k=O (k+ 3/2)(k+l/2) r( n/2-k) T(k+5/2) I'(kt1) 

To evaluate Cl for asymptotically large A, we close the n contour to the 

right in the complex n plane. This procedure yields an expansion in 

powers of A 
-1 and Rnh multiplied by powers of A -1 . The first term in 

this series is proportional to l/A. The terms up to and including order 

l/A3 are 

( RnA+y -1) 1 + @(enA/A4). 

CD,21 

In this equation y is Euler‘s constant, 
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APPENDIX E 

In this appendix we obtain an integral representation for 

2 (;) - J 
d3k 

(2r)32k 
(E.1) 

and for the transverse electric and magnetic fields. With these integral 

representations, we may find the energy and charge densities generated 

by the gluon cloud corresponding to $. 

Using Eqs. I.3.1.9, 1.4.2, 1.4.3 and A.5, we have 

&I&;> = - l d3k 

8&A) . I- (2*)32k 
( Y- 

with 

and 

51 kR 

I 

2 ik,R cos$ - sin$ 
sin$dJIe > . 

0 

(E-2) 

(E-3) 

(E.4) 

A little algebra shows that 

co IT 

;<z, = - : b / dk / sin $ d Q & e-' sin ' 
4(2~) c; (A) o 0 

Cj,(x) - j,(x)/xl R + mm-R C3j,(x)/x -jo( 
> 

. (E.5) 
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In this equation the spherical Bessel function of the R'th degree is 

j, (xl l Letting 

03.6) 

we have 

a?-- = - ?j + / 
40~) C2bU o 

dk / sin $I d J, & ckR sin ' 

0 

r $Rcos I$ + ( 
r cos 8 

> 3j 1 (x> 

$R' cos2J,+ Rrcos ecos Ji + r2 
X - j,(x) ,@.7) 

and 

ddR = - 
' ' 4 (2’~) c2 (A) [ dk { sin $ d J, klcA ekR yin ' 

0 0 

j,W/x 
$RCOS $ + rcos e 

cos2 $ + Rrcos $cos 8 + r2 

The equations for zJ, are identical to Eqs. (D.6)-(D.8) except 

that 

-AL k 

k+A k+A 
(E.9) 

IJe also find that 

$ = l 
4 (2lT) 3c;w 

(; x i) i dk i sin J, d $ & 

0 0 

03.8) 

kRsin $ 

j:+$Los*, e 

2 
j,(x) . (E.lO) 
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D 

0 

1 

9 

10 

“p 
.266299 

.073091 

-.224261 

- .457439 

-.602447 

-.682167 

-.726537 

- .754449 

-.785430 

-.792668 

-.796744 

B 

.212207 

.333333 

.387335 

.400000 

.393399 

.380952 

.367990 

.355555 

.343666 

.332468 

Table I. The Coefficients a and 6 for 
P P 

p=o, . . . , 10. 
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FIGURE CAPTIONS 

The current 3(c). 

The function C,(A). 

The function C2(A), 

The function G(os), 

The function go(as). 

The function B(as) 

The function ?(as). 

The expectatation value of the gluon occupation number,2 (a,). 

The amplitude of the ground state wavefunction to be in the 

states IO> (top line) II>; (middle line) and 12) (bottom line). 

The function F(as). 

The' field d2 for A = 0, 

The field d2 for A = 3. 

The field &: for A = 0, 

The field 

The field 

The field 

8: for A = 3. 

IpjgI for A = 0. 

1~1 for A = 3, 
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Fig. 17. The field p for A= 0. 

Fig. 18. The field p for A= 3. 

Fig. 19. The Coulomb interaction of a gluon and a single charged source.% 

Fig. 20. The contour +. 

Fig. 21.- The coefficients a . 
P 

Fig. 22. The coefficients 8 . 
P 
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