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In quantum chromodynamics (QCD), processes which probe the structure 

of hadrons at short distances may be investigated using perturbation theory 

and the renormalization group. 1 The photon vacuum polarization tensor, 

17v,(S, = i(q2e,, - suqv> IX-q2) 

for q2 large and spacelike, is one such short distance probe. UC-s21 and 

R = o(e+e'; hadrons) 
u (e+e--t u+P- 1 can be related through dispersion relations or smearing 

methods. 2 In regions between new quark thresholds, where the cross section 

is reasonably smooth, one may hope to obtain R directly from the dis- 

continuity of n(-q2). 

The 1eading'QCD corrections to n(-q2) are well known, 3 and arise from 

the renormalization group improvement of the graphs of Fig. la. In this 

paper we report a calculation of ,fl(-q*) through order g4, arising from the 

graphs of Fig.lb. This calculation is necessary in order to determine if 

higher order corrections are small, and in order that one may compare the 

strong coupling constant determined from measurement of R with that measured 

in other processes, such as deep inelastic scattering. To address the first 

issue we will employ two renormalization schemes, the minimal (MS) scheme of 

't Hooft and a modified scheme (MS) due to Bardeen et al. 4 This latter 

scheme has been shown to-lead to a more satisfactory perturbation series 

than MS in deep-inelastic and photon-photon scattering, and the same will be 

seen to be true here. 

The problem of determining the strong coupling constant can be under- 

stood in terms of the mass, A, which is frequently used to parametrize the 

running coupling. The running coupling constant, a,(-q2), may be written, 4 
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graphs of Fig. lb. Such a calculation is necessary for two reasons: 

first, to assure that higher order corrections are reasonably small, and 

second, to be able to make a meaningful comparison of the strong coupling 

constant determined from measurements of R to that measured in other 

processes, such as deep inelastic scattering. The first point can only 

be addressed once a renormalization procedure has been chosen, for there 

is a good deal of freedom in the definition of the coupling constant. 

We will present our results in the two renormalization schemes which have 

been used for the analysis of photon-photon and deep inelastic scattering, 

the minimal (MS) scheme of 't Hooft, and a modified scheme (MS) due to 

Bardeen et al 4 -' -0 In these processes it was found that the MS scheme tended 

to give much smaller results for higher order corrections than the MS 

scheme, and we will see that the same is true here. 

The importance of the second question can be understood in terms of 

the mass, A, which is frequently used to parameterize the running coupling 

constant of QCD. Neglecting quark masses, we may write for a,(-q2) = 

-2 g (-q2)/4n in the one loop approximation 

a; (-q2) = g2/4n 

1 + f3C g2/16s2 Qn(-q2/u2) 

= 4Tr 

B, Qn(-q2/A2) 

where f3 C is defined in Eq. (14.a). However, in terms of A' = eaA 

we have 

(1) 

a;(-q2) = 4lT 47ra 
So Qn(-q2/At2) - B. Qn2(-q2/AV2) + (n3(-:2,a'2)) (2) 
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We work in Feynman gauge and set all quark masses to zero. Integrals 

involving self-energy insertions were performed using spectral representa- 

tions. The remaining integrals were performed by introducing Feynman 

parameters and performing the momentum integrals. Subdivergences in the 

resulting parameter integrals were treated by adding and subtracting from 

the 

the 

was 

integrand simpler functions with the same singularity structure, along 

lines of Reference 8. This procedure yielded a finite integral which 

evaluated numerically,' along with divergent integrals which were 

performed analytically. 

For each diagram we obtained only the coefficient of q q 
I-r v' 

which can 

be identified with quq, - q2gUv in gauge invariant sets of diagrams. 

The results are presented in Table I, where the coefficients of 1/c3, 

l/c* and l/~ are given. The numerical errors in each diagram are less 

than 0.4%, though, due to large cancellations, the error in the sum is 2%. 
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(6) Calling the sum of the graphs of Fig. lbflun we find 

n(6) =2 
un R (4) 

where 

B = .0212 CF - .0506 CA + .00579 Nf (5) 

In this expression, CA and CF are the quadratic Casimir operators for 

the adjoint and the fermion representation, respectively, and Nf is the 

number of quark flavors for SU(N), CA = N, CF = 

The mass, ~1, is arbitrary, and is introduced to give the coupling 

constant correct dimensions in 4- E dimensions, To take account of the 

(6) QCD counterterms, we add to nun 

-& +D+ @(E) 1 r(l+~)(41~)~ 

where 

D= .0564 

Z 
@O =-- 
263 (~+ME) 

(6) 

(7d 

Ub) 

The term in brackets in Eq. (6) is the unsubtracted two-loop contribution. 

Z is the sum of all one-loop counterterms (the two-loop counterterms 

cancel). The prescription dependence of the calculation enters through 

the finite part of Z, which is arbitrary. ' In the minimal scheme, 

counterterms are introduced in. each order so as to cancel only the pole 

parts of the divergent quantities. The MS scheme is defined by absorbing 
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all factors of Itn 4~- y, where y is Euler's constant, into the renormalized 

coupling constant. For MS, M = 0, while for T";s, M = (an 4n -y>/2. Before 

subtraction, we have, expanding flR = nlP,’ + l7g in powers of E, 

The En2(-q2/n2) represents the explicit begining of the renormalization 

group improvement of Fig. la. For CA = 0, CF = 1, Nf = 0, this expres- 

sion reproduces a result due to Rosner for QED.9 

In both the MS and the MS schemes, the u-dependence, and hence the 

scaling properties of the renormalized n(-q2) are completely determined 

by C,(g2), the residue of the simple pole in Equation (3). In either 

scheme, 

1 LY-s2) = 
Writing 

C,ig2) = cl* + c11g2 + c12g4 + .o. , 

from our calculation and well-known QED results,1° we have 

Clo = - 213 

52 

(114 

Olc) 
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If we assume that we may obtain R by taking the discontinuity of n, '* 

we obtain, specializing to SU(3), 

R= Q; c 

(7.35 - MS (11) 

(1.98 - ()- 
as(s) 2 

.115 Nf) ~ MS IT 

Thus just as in deep inelastic and photon-photon scattering the perturba- 

tion theory appears more satisfactory in the MS than in the MS scheme.13 

In order to confront theory with the experimental value of R, 

several effects must be taken into account. To illustrate their relative 

importance, we work in the MS scheme, taking & = 6 GeV, A = *5 GeV. This 

choice of A is motivated by recent analyses, including higher order QCD 

corrections, of deep inelastic scattering data.4 Then, in order of 

decreasing importance, one must consider 

(1) The lowest order result. With the presently accepted four 

quarks the contribution is Rl = 10/3. 

(2) The first QCD correction. Using a0 
S 

one gets a contribution to 

R, R2 = .32. 

(3) QED radiative corrections. l4 In the experimental analysis of 

R, account is taken only of radiation from the initial electrons and the 

electron loop contribution to vacuum polarization, Therefore, to the 
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theoretical prediction of R we must add vacuum polarization contributions 

from muons, taus, and hadrons, along with radiation from the quark lines, 

The last effect is negligible, but the vacuum polarization terms give 

R3 = .13. 

(4) Mass corrections. The first QCD correction is computed in the 

zero mass limit, and while this approximation is satisfactory for u, d, 

s, quarks, it is not valid for the charmed quark, Following the treatment 

of Poggio, Quinn, and Weinberg,2 the effect of taking the charmed quark 

, mass to be 1.5 GeV is R 4 = .088. 

(5) Higher order QCD corrections. In MS, although the correction 

due to the graphs of Fig. lb is ,047,inclusion of the efiect of the 2 loop 

B function cancels the effect so that R5 = -.029. 

The smallness of R5 relative to the other contributions to R is the 

most important feature of our calculation; higher order QCD corrections 

are small and make no qualitative change in the results obtained from the 

first order analysis. 15 
Adding the above corrections gives R = 3.84 at 

s = 36 GeV*, to be compared with the experimental value16 

R = 4.17 + .09 ? .42, where the first error is statistical and the second 

systematic. Clearly the data does not rule out the existence of an addi- 

tional charge l/3 quark or spinless boson, but the large systematic error 

prohibits a definite conclusion. The use of smearing techniques and 

dispersion relations is currently under study, but we do not expect that 

our conclusions will be qualitatively modified. 
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WEIGHT 1 I 1 -I- I 

A 

B 

C 

K-l-L 

1 - 
E 

-.1839 

-.1978 

-.1226 

.1642 

.3016 

-.0625 

-.5757 

-.0322 

-.4240 

.4714 

.00679 Nf/CA- .0447 

Table 1. Pole terms from the graphs of Fig. lb, where a common factor 

k (-$)* ~(l+F)(l~)3~'*[ $I"'*] has been taken out. 
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FIGURE CAPTIONS 

Fig. la. Graphs whose discontinuity gives R to order g*. 

Fig. lb. Graphs whose discontinuity gives R to order g4. 
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