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ABSTRACT 

An infinite class of non-planar skeleton graphs is 

found to vanish in any non-abelian gauge theory. Thus, 

the dominance of planar graphs is enhanced, particularly 

in processes where some momenta are very large. 
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Non-abelian gauge theories have surprising properties which enhance 

the interest of the topological expansion. The techniques used in the 

present perturbative computations are known, yet the interplay of the 

group properties with the high energy limit of the space-time factors 

seems very interesting. I shall then list the main results and sketch 

the derivations. 

Every Feynman graph in a non-abelian gauge theory is conveniently 

written as a product of a group weight factor W G times a space-time 

factor MC. Diagrammatic methods which efficiently compute WG were 

described in Ref. 1. The first results (A) and (B) in this Letter 

easily follow from that paper. 

(A) In every non-abelian gauge theory there exist an infinite 

class of skeleton graphs with vanishing group weight factor. 

The lowest order vanishing graph in Fig. 1 is at order g5. 

WG vanishes since it results from contracting an antisymmetric tensor 

C aji with a tensor T ijbc symmetris in the exchange i f-t j. A more 

general vanishing graph is in Fig. 2. Again one checks that the tensor 

T 
ijbc is symmetric in i +-t j, provided the two ladders have the same 

number of rungs.2 Next one may notice that in a pure gauge theory (no 

fermions and no Higgs) the group weight factor of every 2-point function 

is proportional to 6ab 2nd for a 3-point function to C ijk' then each 

graph in Fig. 1 or 2 may be understood as a skeleton graph, where every 

trigluon vertex is replaced by an arbitrary (planar or otherwise) 3-point 

function and every gluon line may be replaced by arbitrary 2-point function. 

By use of diagrammatic methods one sees that properly (A) holds in any 

non-abelian theory with a compact Lie group. All vanishing graphs are 
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nonplanar. They are many, yet negligible when compared to nonvanishing 

ones, 4 still they seem to have intriguing consequences, described in 

property (C). 

(B) In the non-abelian SU(N) theory, without fermions, the group 

weight factor of a graph is a polynomial in N2, i.e., the topological 

expansion is a power series in (1/N2) rather than (1/N).5 

Indeed to compute the group factor WG one performs two steps:l 
- 

(4 reexpress all three gluon vertices in terms of the defining 

representation 

iC ijk 
= 2 Tr(T. T. T - Tk Tj Ti) 

1 J k (1) 

(b) replace internal gluon lines with gluon projection operators: 

(2) 

However, because of the trilinear nature of the coupling6 the singlet 

term - fs; 6: of step (b) is seen to cancel and it can be ignored. That 

is, one may use, for the internal gluon lines, the simpler replacement, 

proper for the U(N) theory, 

For 2-point functions and 3-point functions, where there is just one 

basic tensor (respectively hab and fabc, the group weight WG of the 

generic Feynman graph is 

[s/21 

wG = 6ab (Ng2>’ 
c 

cp (N2 > 
-P 

at order g 2s 

P=O 

(3) 

(4) 

[s/21 

WG = f a,,c g@Jg2f c c (N2>-' at order g 2s91 
P (5) 

P=O 

where the leading coefficient co is different from zero if and only if 

the graph is planar.7 
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For the 4-point function one has six basic tensors,8 three of which 

(A,B, C) have one boundary5 and three (D,E, F) have two boundaries. 

At order g 2s+2 one finds 

[s/21 [s/21 [s/21 

WG = g 
2 2)’ A 

(g N 
t 

c 
aP(N2)++Bx bp(N2)-P+C c c~(N")-~ 

0 0 0 

[s/21 _ cs/21 [s/21 

c 
dp(N2)-P+ E 

c 
e (N2)-'+~ P c 

0 0 0 

(6) 

Higher n-point functions have weights WG expressed in the same form after 

one has taken care of the N factors associated with the number of 

boundaries of the basic tensors, 

One may remark that the properties (A) and (B) hold for every Nr 2, 

every value of the coupling constant g and every dimensionality (complex 

too) of the space-time dimensions. They also hold for spontaneously 

broken theories, provided the local gauge group still survives as a 

global symmetry. 

(C) There are kinematical (asymptotic, leading log) regions of the 

Lorentz invariants where the large N expansion is exact (graphs with non- 

dominant weight are not leading log dominant). 

The property (C) will here be shown by quoting some results of 

a new study9 of reggeization in nonabelian gauge theory. The high energy 

behavior (large s, fixed t) of the elastic scattering amplitude has been 

computed in a pure gauge (without fermions or Higgs) SU(N) theory. The 

main differences with previous investigationslo are: (a) dimensional 

regularization is used, instead of the Higgs bosons; (b) an improved 

treatment of the large energy limit of Feynman integrals, by which the 
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numerators of relevant Feynman integrals are decomposed into sums of 

terms, each of which may be associated to a contracted scalar Feynman 

integral. The asymptotic behavior of the latter is then computed by 

counting the number and length of the shortest t paths.'l The main 

results of previous studieslO are reproduced: in the t-channel with the 

quantum numbers of the gluon (adjoint representation t-channel) there is 
- 

just one Regge pole, the reggeized gluon, with the trajectory:12 

cc(t) 
2N = l+g ?t Kd-2(t)+0 '(7) 

while in the Pomeron channel the perturbative results are consistent with 

the Froissart violating fixed cut previously found.lO Yet the improved 

treatment of the space-time factorqy13 shows a different mechanism leading 

to these results. The set of leading (i.e., leading log s) planar graphs 

is divided into two sets, the strictly planar graphsl') and the set of 

graphs obtained by the former after the exchange s c-+ u. At order g 
2n+2 

the leading log s contribution of the first set in the t-channel of the 

adjoint representation is 

C = g2T1 

while the contribution of 

s (tp 
Cg2Kd _ ,(t) log sin 

n. 1 

the second set (s +-t u interchanged) is 

= g2T2(-s)tn- ' 
k 2 

s 
Kd _ ,(t> log S-1” 

n. 1 

(8) 

(9) 

where the group weight tensors Tl and T2 have the property T1-T2=(N/2)nTAd 

where T Ad is the projection operator of the adjoint representation. 

An example is given in Fig. 3, where use is made of Jacobi identity and 
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triangle contraction. The relevant (leading log s) nonplanar graphs are 

also divided into two sets such that the second set may be obtained by 

the first set after s ++ u permutation, Each graph of the first set 

gives the (leading log s) contribution: 

D = (Tp + + T3 + T4) g4(g2N)'-1s f(t) (log s)' (j-0) 

where Tp is the projection operator for the pomeron channel, T3 is a 

tensor contributing to the adjoint channel, T4 is a tensor contributing 

to other channels, furthermore Tp, T3 and T4 are symmetric under the 

interchange s tt u. Then after summing the contribution of the second 

set of nonplanar graphs (see an example of the cancellation in Fig. 4, 

the last term vanishes as it contains as a subgraph the Fig. 1) the 

contribution of nonplanar graphs is of the order g4sf(t)(Ng210gs) P-l in 

the pomeron channel and next to the leading logs in the adjoint represen- 

tation t-channel. In other words, to prove reggeization of the vector 

mesons, one does not need the nonplanar graphs. Furthermore, because the 

non-leading N terms in planar graphs cancel (Fig. 3) one would obtain the 

correct results, in the leading logs approximation, by computing only the 

leading N contribution of the weight factors WG, rather than their 

complete value. 
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dimensional space-time. 

Kdw2(t) = & r(y)+-;)J 
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in an Euclidian d-2 

by removing the dimensional regularization, that is, by replacing 

d=4. Either way, one has a singular limit if one removes the 
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13. It has long been known that the infinite momentum techniques usually 

employed in Ref. 10 do not correctly evaluate the asymptotic behavior 

of each Feynman graph, but may produce the correct result for well 

chosen sets of graphs. 

14. Here strictly planar graphs indicate the planar Feynman graphs that 

have the double spectral function p(s,t>. 
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FIGURE CAPTIONS 

1. The lowest order graph with vanishing group weight. 

2. A general class of graphs with vanishing weight. 

3. An example of the relation Tl-T2= (N/2)nTAd, pertinent 

to the leading log s planar graphs. 

4. An example of the cancellation that occurs in leading log s, 

in nonplanar graphs, related to the existence of the vanishing graphs. 
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Fig. 3 
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Fig. 4 


