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ABSTRACT 

We discuss in detail the use of the structure function F3(x,Q2) of 

deep-inelastic neutrino scattering for testing quantum chromodynamics. 

We show that higher-twist (order l/Q') contributions which are commonly 

neglected can have a dramatic impact on tests of QCD. With or without 

such contributions, QCD is entirely consistent with all data. At pre- 

sentthe data are not accurate enough to determine the magnitudes of 

these l/Q2 contributions within the context of QCD. Furthermore, the 

possible presence of higher-twist terms makes it impossible to unambigu- 

ously detect the logarithmic Q2 dependence and anomalous dimensions 

which distinguish QCD from hypothetical alternative theories. As a 

result, more precise data with higher Q2 are needed to provide definitive 

tests of QCD. The corrections of second-order in as introduce fewer 

complications for testing QCD, and provide a useful context for under- 

standing critical ambiguities in the definitions of as and A. 
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1. INTRODUCTION 

Scaling violations in deep-inelastic structure functions provide an 

important means of investigating the validity of quantum chormodynamics 

(QCD) as a theory of the strong interactions Cll, In deep-inelastic 

scattering processes such as vN + p+anything, eN + e+anything and 

PN -f u+anything (see Fig. l), the cross-section can be written in terms 

of products of leptonic and hadronic pieces: 

d2e 
dE' dn' Oc ',v WPV . (1.1) 

The hadronic part is the Fourier transform of the spin-averaged nucleon 

matrix element of weak or electromagnetic currents 

w =& 
/ 

. d4x e’q’x <;I J;(x) Jv(O> 1; > . (1.2) lJV spin 
averaged 

If the current Ju is conserved or if we neglect lepton mass terms in 

the cross-sections, then the most general form for W is 
UV 

wuv = (-gvv +yjFl + (p!q)(p~-% ~)(v,~)~2 

i 
2(p l 9) EwN3 

paqBF3 - (1.3) 

The three structure functions Fi(q2,p l q) reflect the dynamics of the 

nucleon-current interaction. 

The parton model predicts that the structure functions should 

"scale" [Z] in Q2 for large Q2: 

F&x, 4') = Fi(x) (1.4) 
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where Q2 3 -q2 and x = Q2/2p* q. In QCD, however, a mild violation of 

this scaling is expected Cl1 and is evidenced by the presence of terms 

proportional to inverse powers of Ln Q'. The scaling violation can be 

thought of as resulting from gluon radiation and quark-antiquark pair 

production during the scattering process C3l. 

In this paper, our attention will be focused on the structure 

functionF3, but most of our results and conclusions are applicable to 

the study of the other structure functions as well. Since F3 reflects 

only the flavor-nonsinglet part of the interaction, the QCD analysis of 

F3 is less complex and hence easier to discuss than that for Fl or F2. 

More importantly, the QCD predictions for F3 do not depend on the gluon 

distribution inside the nucleon which cannot be directly measured; i.e., 

diagrams such as Fig. 2 make no contribution to F3. F3 can be extracted 

from deep-inelastic neutrino scattering experiments, since for isoscalar 

targets 

XF a d20v d20' 
3 dE' dR' - dE' dn' l 

(-1 .5) 

F3 arises from VA interference terms. Since there are no such terms in 

eN or ~J.N scattering processes (which are parity-conserving), the analysis 

of F 3 is restricted to vN scattering. 

We use two separate approaches in examining QCD. The first approach 

uses the QCD predictions [3] for the Q2-evolution of xF3(x,Q2). If there 

were no scaling violations, then Q ' a xF3(x,Q2) = 0. 
aQ2 

The gluon radia- 

tion and quark pair production which arise in QCD are proportional to 

2 as(Q ) and lead to the following differential equation which describes 

the behavior of xF3 to lowest-order in the running coupling .constant 
n 

as (.Q? : 
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2 a 
Q- 

aQ2 
XF~(X,Q~) = a (1.6a) 

X 

is the probability of seeing a quark of momentum fraction 

x arising from a quark of momentum fraction w as in Fig. 3, when probing 

with momentum Q2. P 
q+q 

can be calculated in QCD and when this result 

is substituted into Eq. (1.6a) we find 

2 a 
Q- 

a", (Q2) 

aQ2 
xF3(x,Q2) = 3T i 

[3 -t 4& (l-x)] xF3(x,Q2) 

1 
(1.6b) 

+ dw (1s) - 2xF (x Q2) 1 ' 
3' I 

X 

The coupling constant as(QL) in QCD is given to lowest order by 

az(Q2) = 
4ll 

B. h Q2/A2 
(1.7) 

with 

BO = ll- $Nf (1.8) 

where Nf is the number of quark flavors and A is a free parameter. It 

is the asymptotically free behavior of as(Q2) in Eq. (1.7) which gives 

the logarithmic dependence on Q2 typical of QCD. 

Although QCD predicts the Q2-evolution of xF3, it does not com- 

pletely specify a boundary condition for Eq. (1.6). One could use the 

data for xF3 at a particular Q2 value, Q2 = QE, as a boundary condition 

and integrate Eq. (1.6) t o obtain predictions for other Q2 values. 
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However, in this approach the entire QCD prediction for all Q2 is based 

2 on a small fraction of the data taken at Q2 = Q, and a true global fit 

of the data is impossible. We choose instead to assume a form like 

xF3 (.x , Q;) = c xa(l-x)b (1.9) 

at some reference point Q2 = Q,2, integrate Eq. (1.6) to determine xF3 

- 2 at other Q values and fit the data at all Q2 to determine the best 

values for the parameters in Eq. (1.9). This allows us to use all the 

data to decide on the best boundary condition for Eq. (1.6). 

The Q2-evolution approach provides a clear visual interpretation 

of scaling violation. One can observe the impact of exclusive channels 

although it is difficult to account for them quantitatively. A dis- 

advantage of this approach is that it depends on assuming a form like 

Eq. (1.9) for xF3(x,Q2) in order to obtain a global fit. 

The second approach we will use to study QCD involves taking 

moments of xF3 defined by [4] 

The QCD calculation of the moments of xF3 using the Wilson operator 

product expansion [S] is discussed in detail in Section II. Alternatively 
1 

the moments can be obtained by applying s dx x N-2 to both sides of 
0 

the evolution equation (Eq. (1.6)). Performing the integrals, one finds 

0 

(1.11) 

where y: are the anomalous dimensions defined by 
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1 
N y. = -4 

s 
dw wN-1 P q+q(v) 

0 
(1.12) 

and in QCD 

2 
N(N+l) + 4 (1.13) 

The solution to Eq. (1.11) is 

M3 (N , Q2) = M3(N,Q;) 

with 
N 

yO 
dN ' 2B 

0 l 

(1.14) 

(1.15) 

Using Eq. (1.7) one obtains 

M3(N,Q2) = 
54 

(ln Q2/A2)dN l 

(1.16) 

The JKN are unknown constants which must be determined from the data. 

This approach provides very clean predictions which do not depend on 

any assumptions about the x-dependence of xF3 such as Eq. (1.9). This 

allows for quantitative checks of the logarithmic behavior and the 

anomalous dimensions predicted by QCD. The moments smooth out the effects 

of exclusive channels. Whether this allows one to account for the impact 

of these channels is not clear. If data are not available over the entire 

x range and in particular all the way out to x=1, the moments cannot be 

determined without extrapolating the data. Finally, all moments for NZ 4 

heavily weight contributions at high x (x> 0.5) and neglect low x contri- 

butions. 
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As one can see from Eqs. (.1.6), (1.7), and (.1.16), crucial features 

of QCD are the logarithmic dependence on Q2 and the definite predictions 

of Eqs. (I.%, (.1.13), and (1.15) for the powers dN. In phenomenological 

studies of QCD, one must verify that these two features are clearly 

indicated by the data. Thus, in Section IV we will ask whether the data 

require a form such as Eq. (1.16) as opposed to moments which are inde- 

pendent of Q2 or which vary with inverse powers of Q2. These alterna- 

tives do not at present represent viable strong interaction theories, 

but are merely used to determine whether there is evidence for the 

logarithmic behavior characteristic of QCD. Similarly, in Section IV 

we will investigate whether the dN are sufficiently determined by the 

data to imply a test of QCD. 

It would be quite straightforward to distinguish the logarithmic 

behavior of QCD in deep-inelastic data if it were not for the fact that 

the QCD predictions are subject to several types of corrections. These 

include target-mass corrections [6-81, higher-twist effects and correc- 

tions [9,10] of higher order in as. We begin by discussing the target 

mass effects. 

The QCD predictions discussed above are derived under the assumption 

that the nucleon mass squared, rn:, is negligible compared to Q2. At 

low Q2 (where much of present data is taken) this is not the case and 

there are correction terms of order mE/Q2. These are discussed in the 

context of the operator product expansion in Section II. It is also 

instructive to discuss target-mass corrections in the language of the 

parton model [7,81. If the target nucleon is moving in the x3 direction, 

then the relevant quantity for deep-inelastic scattering is 
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x" = (pO + '3)quark 

' (pO + '3)nucleon 

(1.17) 

An expression for z can be derived by taking the final struck quark to 

be on mass-shell and massless. If we ignore proton mass terms, this 

leads to the result 

x” = x = 
&- 

l q 

(1.18) 

However, if we keep all proton mass terms we obtain the E-scaling variable 

x = 5 = 2x . (1.19) 

4m2x2 
1+ 1+p 

d- Q2 

Note that as rnz/Q' + 0 we find 5 -+ x. If target mass effects are taken 

into account, the predictions for xF3 can be written in terms of a new 

function F(x,Q2) as was first discussed by Georgi and Politzer [-/I. 

Defining 

4m2x2 ( ) -15 

v = 1+p 
Q2 

(1.20) 

we have 

xF3(x,Q2) = 
4m2x3v3 ' 

@ F(&Q2) + ' 
c2 

s 
Q2 5 

dx' F(x',;~) . (1.21) 
X’ 

Again, for Q2 >> rn:) 

xF3(x,Q2) - F(x,Q2) l 

Q2 p’ >> m 

(1.22) 
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Whereas in the x-scaling case it was 

Eq. (1.61, it is now the function F which 

of QCD, 

xF3 which obeyed the evolution 

obeys the evolution equation 

Q [3 + 4tn (l-x)] F(x,Q') 

1 

+ 
s dw (12w) -[cl +w2) F(Z, Q2) . (1.23) 
X 

As before, in order to integrate the evolution equation we will assume 

2 a form for F at a starting point Q2 = Q,. Again, we will make the 

assumption 

F(x , Q;) = c xa(l-x)b . (1.24) 

Target mass corrections also affect the QCD predictions for moments. 

The result, discussed in Section II is that the QCD form remains unchanged: 

i3(N, Q2) = 5 

(Ln Q2/A2)dN 

(1.25) 

but the definition of the moment used on the left-hand side of Eq. (1.25) 

changes from the simple definition of Eq. (1.10) to the Nachtmann form C61 

1 1 + (N+l) 

G3(N,Q2) = dx + xF3(x,Q2) 
J 

Nfl 
(1.26) 

0 X (N + 2) 

where 5 is defined as in Eq. (1.19). It is straightforward to verify 

that the ordinary moments of Eq. (1.10) and the Nachtmann moments of 

Eq. (1.26) become equal as mE/Q2 + 0. However, at low Q2 (Q2 5 3 GeV2) 
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the differences between them become quite large as we show in Section III. 

Although the S-scaling scheme correctly accounts for target-mass 

effects, it does not correctly describe the final-state kinematics of 

deep-inelastic scattering Clll. For example, in the parton-model dis- 

cussion above we have taken into account the initial nucleon mass, but 

we have ignored the fact that the final-state hadronic mass must be 

greater than m . 
P 

This results in problems for the S-scaling description 

of XF 3 in the region near x= 1. Kinematics requires that xF3 vanish 

for x > 1. One might therefore choose a function F(.S,Q$ which vanishes 

for 5 > Cm, where Smax is the value of 5 which corresponds to x=1 for 

Q2 = Q;. This would assure that xF3(x,Qi) would vanish for x > 1. 

However, this approach can have disasterous consequences. For example, 

if we take Qi = 1 GeV2 then 5,,, = 0.64. We would then find by inte- 

grating Eq. (1.23) that F(C,Q2) would vanish for 5 > 0.64 at all other 

Q2 values as well. At large Q2 where the 5- and x-scaling schemes become 

identical this would lead to the nonsensical prediction xF3(x,QL) = 0 

for x > .64. A more sensible approach then is to take a form like Eq. 

(1.24) for F(S,Qi) which does not vanish for 5 > Emax. However, when 

this is done xF3 will not satisfy the kinematic requirement xF3=0 for 

x ' 1. 

Because the E-scaling predictions of Eqs. (1.19)-(1.21) do not 

vanish at x=1 we have the paradoxical situation that in the phenomeno- 

logy of c-scaling we are fitting a form to the data which cannot possibly 

work. Of course, it is also true that the x-scaling scheme with xF3 Q 

(l-x) b cannot account for elastic scattering which occurs at x=1. In 

Fig. 4, we show an x-scaling curve (solid curve) and the corresponding 
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c-scaling prediction (dashed curve) compared with BEBC-Gargamelle data 

[12] at Q2 = 1.7 GeV2. The x-scaling curve fits the inelastic data 

fairly well in the large x region whereas the c-scaling curve overshoots 

that data considerably as x + 1. The paradox is somewhat resolved by 

noting that the E-scaling variable acts much like the scaling variable 

of Bloom and Gilman [13]. One can argue [14] on phenomenological grounds 

that, in overshooting the data near x=1, c-scaling may account for the 

elastic scattering contribution (and resonance contributions) in the 

sense that the excess area under the E-scaling curve equals the area 

under the elastic peak at x=1. In Figs. 4 and 5 we have plotted the 

elastics in an extra bin from x=1 to x= 1.1 so that this can be visual- 

ized. The area under the data point in this bin is equal to the area 

under the elastic spike at x=1 in the original data. It is clear that 

in fitting the c-scaling predictions to the data the elastic contribu- 

tion must somehow be included. In the case of moments, one possible 

approach is to include elastics in the integral, Eq. (1.26). In direct 

fits of xF3, however, the elastics remain a more serious problem 

especially when Q2 5 3 GeV2 ( h w ere elastics contribute significantly). 

Figure 5 shows the x- and S-scaling-curves and the elastics at Q2 = 

3.9 GeV2. Note that at this larger Q2 value the solid and dashed 

curves are converging and the elastics are insignificant. 

Unfortunately, target-mass corrections are not the only effects of 

order l/Q2 which can modify the QCD predictions in deep-inelastic 

scattering. There are other order l/Q2 effects coming from non-leading- 

twist operators in the operator product expansion as discussed in Section 

II. These effects are departures from the simple parton-model picture 



-12- 

because they account for the exchange of gluons between struck and 

spectator quarks, and other coherent phenomena such as multiquark 

scattering, elastic scattering, transverse-momentum effects, resonance 

production, and constituent meson scattering. In Section IV we will 

show that higher-twist operators can cause major problems in testing 

QCD. 

These higher-twist effects are expected (using quark-counting 

arguments [15]) to modify the basic form of xF3 to something like 

xF,(x,Q;, = C xa(l-x) 
'[' + 5 d,r:'.))'] 

(1.27) 

although the exact x dependence of the higher-twist terms is not known. 

Similarly one expects a modified prediction for the Nachtmann moments 

(Eq. (1.26)): 

g3(.N,Q2) = ' 

(Ln Q2/A21dN 

[l + 5 ($)jAj] . (1.28) 

The magnitude of the masses 1-1. appearing in Eqs. (1.27) and (1.28) are 
J 

unknown. The Aj depend on 1n Q2/n2 representing the asymptotic freedom 

corrections to the higher-twist operators. The modifications in the 

predictions for xF3 and i3(N,Q2) (Eqs. (1.27) and (1.28)) make it quite 

difficult to unambiguously detect the characteristic logarithmic Q2 

dependence of QCD or the predicted values of dN (or equivalently, of the 

anomalous dimension v:). Distinguishing between 1n Q2 and l/Q2 effects 

is in fact impossible using present data as we will show in Section IV. 
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Finally there are corrections to the basic QCD predictions coming 

from terms of higher-order in as which have recently been computed by 

Floratos, Ross and Sachrajda [91 and by Bardeen, Buras, Duke and Muta 

ClOl. As discussed in Section II in the context of the operator-product 

expansion, the lowest-order QCD predictions for moments (Eqs. 

(1.16)) are modified by order as corrections to: 

M3(N,Q2) = M3(N.Q;) 

At second-order, one can write as as 

as(Q2) 

(1.14) and 

(1.29) 

(1.30) 

where aos(Q2) is given by Eq. (1.7) and as calculated by Caswell and 

Jones C9l 

6, = 102 - q Nf . (1.31) 

Using Eqs. (1.29) and (1.30), one finds 

M3(N,Q2) = 
54 1+ 

AN+BN&& Q2/A2 

(Ln Q2,A2jdN ln Q2/A2 I 

(1.32) 

with 

N 

BN = $1 yo -- . (1.33) 

The constant AN has been computed, although there is an ambiguity 

in determining AN which results from basic ambiguities in the definitions 

Of a s and A in QCD as has been discussed by Bardeen et al. Cl01 l 
First, 
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a 
S 

can only be defined in the context of a given renormalization scheme. 

In two different schemes, the definitions of the two parameters a s dis- 

agree at second-order and are related by 

a’ = 
S 

as + aif + . . . (1.34) 

where f is a constant depending on the definition of a'. 
S 

Therefore, 

one finds that to a given order in a 1 the value of as(Q2) (which is not 

a physical quantity) is not unique. In fact, in second-order calcula- 

tions the value of as(Q2= 10 GeV2> can vary by a factor of two in 

different schemes which are consistent with the data. However, even 

if the renormalization scheme is fixed, there is still an arbitrariness 

in the definition of A which results in an ambiguity exactly like Eq. 

(1.34). Consider some function expanded in powers of 1/& Q2 

F A + B = 
1n Q2/A2 &2 02,A2 + --- 

Now define 

hP 
= he$P 

(1.35) 

(1.36) 

Then, 

1 1 P =-- 
ln Q2/A2 ln Q2/AE h2 Q2/At 

+ . . . (1.37) 

and we can write 

F A = + B-p 

en Q2/Az 
+ 

Ln2 Q2/Ag '** 
(1.38) 

Thus, we have the possibility of expanding using different A's and 

getting different values of the constant in the second-order term. 
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If we use the definition of A p in Eq. (1.36) for the moments of Eq. 

(1.321, we find 

M3(N,Q2) = 
%I 1+ 

q + BN&aLn Q2/Ai 

(Ln Q2/n,2)dN &a Q2/Ai I 
(1.39) 

where AT; = AN-pdN. Note therefore, that one cannot define A without 

specifying the constant term in the second-order correction nor can one 

say how large the second-order term is without stating what definition 

of A is being used. Furthermore, it follows Cl61 that in leading-order 

calculations there is no clear definition of A; it is not informative 

to quote leading-order values of A. In addition, leading-order results 

which are very sensitive to the value of A are likely to have significant 

higher-order corrections. We should point out that in comparing values 

of A or as from different processes, one must be sure that the same 

definitions of these parameters are being used. This can only be done 

if the second-order corrections are known. In particular, there is no 

meaning to comparisons of A's obtained from different processes using 

the lowest-order results of QCD. 

If one obtains the values of Aa and Ab from schemes a and b by 

fitting the moments for each scheme to data, one does 

find that Aa and Ab are precisely related by Eq. (1.36). The variation 

from relation (1.36) results from the fact that different renormalization 

schemes have left different and significant amounts to order (az)2 

corrections. The effects of second-order QCD corrections on fits to 

the moments of xF3 are discussed in Section IV. 



-16- 

II. REVIEW OF QCD RESULTS 

The QCD predictions discussed in the introduction are derived in 

this section using the operator-product expansion and renormalization 

group formalism. 

A. The Operator Product Expansion 

Because of asymptotic freedom, certain quantities which do not 

depend on the distinction between quark and hadron final states can be 

calculated perturbatively in QCD when all the relevant invariant masses 

are large Cll. However, the quantity WYv (-see Eq. (.1.2)) measured in 

deep-inelastic scattering satisfies neither of these requirements. 

First, since Wpv is a nucleon matrix element it certainly distinguishes 

between nucleon and quark states. Second, although Q2 and p l q can be 

made large, the invariant mass p2 is fixed by the condition p2=m2. 
P 

The solution to this dilemma is the operator-product expansion [51. 

The operator-product expansion expresses the product of two currents 

Ju(x) J,(O) as a sum of terms which are products of a c-number function 

of x When nucleon matrix 
1-( 

times a local operator evaluated at x =O. 
u 

elements are taken and the Fourier transform over x 
lJ 

is performed, each 

of these terms factorizes into a product of a function of Q2, known as 

a Wilson coefficient; and a target-dependent matrix element of the local 

operator, which does not depend on Q2. ' The Wilson coefficients are 

independent of p and do not depend on what states are used to evaluate 
IJ 

matrix elements. They thus satisfy all of the conditions appropriate 

to asymptotic freedom and can be calculated perturbatively in QCD using 

renormalization group methods-. These calculable coefficients can be 

isolated by taking moments c41 of the appropriate structure function, 

in our case F 3’ 
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Rather than working directly with WPvs we will consider T lJV 
which 

is related to the forward Compton scattering amplitude and is defined 

as the Fourier transform of the spin-averaged nucleon matrix element of 

the time-ordered product T(JiJvt by 

T . = 1 
/ 

d4z 
. 

e19 * z 
PV 

<~ 1 ‘{J:(z) Jv(‘)tI ~>spin 

averaged 

(2.1) 

From now on we will use the letter z to denote space-time coordinates 

to avoid confusion with the Bjorken scaling variable 

to T pv by 

w = 
PV i ImP,J 

X. W is related 
lJV 

(2.2) 

We can isolate a quantity T3 analogous to the F3 structure function 

which we wish to evaluate by writing 

-i 
E pva$ Tpv = p'4 ( 'a46 - pf3qa T3 ) 

(2.3) 

Then, comparing Eqs. (1.3) and (2.3) and using (2.2) we see that 

F3 = i Im(T3) (2.4) 

The operator product expansion relevant to T3 is C5,61 

E 
vvaf3 

T(Ji(s) J,(O)\ = gas gfib - gab gBa 
> 

e F c “c;(z2) zp2 . . . zp q2 l * l ‘%) (2.5) 
. n n 

"n2 
au 2 . ..u 

where the Ci(z ) are c-number functions, the gi 
n are local 

operators and the sums extend over all local operators with the appro- 

priate quantum numbers to contribute to the product of currents Ju. 
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au . . . p 
The operator ei 2 n 

is taken to have definite spin n so that the 

sum over n is a sum over spins while the sum over i includes all other 

quantum numbers required to label the local operators (such as flavor). 

In order to see what Eq. (2.5) implies for the function T 
3 we 

define the Fourier transform 

- J d4z 

. 
elq l ’ 

u2 
. . . zll 

n 

(2.6) 

The factor in brackets is inserted for later convenience. Simple 
au 2 . ..P 

dimensional counting shows that if the operator Qi n has canonical 

mass-dimension d in then 

7, -2 
c;(Q2) a l In 0 2 

(2.7) 

where 

T = 
in d in -n (2.8) 

au 2 . ..u 
is called the twist of the operator Bi n . In an interacting 

quantum field theory this simple dimensional analysis does not apply 

because an extra mass parameter, the renormalization mass P, appears. 

As a result, in general we have no reason to believe that Eq. (2.7) 

is correct. However, in QCD the results of Eq. (2.7) are only modified 

asymptotically by powers of logarithms of Q2 so one can still argue 

that the leading terms in the operator product expansion when Q2 is 

large come from the local operators of lowest possible twist. For T3 

these are the twist 2 operators 
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Xi ~a Do 0.0 
DP IJJ + permutations (2.9) 

2 n 1 
where $ is the quark field, Du is the gauge covariant derivative of QCD 

and hi are the generators of the flavor symmetry group STJ(Nf). 

From now on we will restrict our discussion to leading-twist opera- 

tors. Note, however, that the presence of operators of twist 4,6,8... 

in Eq. (i.5) implies through Eq. (2.7) that there will be corrections 

of order 1/Q2, 1/Q4, 1/Q6, . . . to the basic QCD predictions. These are 

the higher-twist corrections discussed in the introduction. 

We have choosen to arrange the operator-product expansion so that 
3 

the operators oi 
2 l -D vn 

have definite spin n. Then the nucleon matrix 
au 2 . ..p 

elements of the di 
n must be proportional to symmetric, traceless 

tensors of rank n, so we can write 

n I G’sp-jn 
P2 

..a P,, 

averaged 
n 

2 
-zE 

4 'ap2 'p3 l *' 'P - 
all other traces 

n 3 
(2.10) 

where the Gy are constants. Combining Eqs. (2.5), (2.6) and (2.10) we 

find 

(2p l cp-1 

EpVa13 Tl.N 

= 
-i P,qB - Pp,. ) F C;(Q2) G; 4 

(Q2? 1 

+ @(y) + @(-$) * (2.11) 

The terms marked d(mg2/Q2) come from the trace terms in Eq. (.2.10) 

while those marked @(l/Q2) (with a mass scale set by hadronic matrix 
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elements) come from the higher-twist terms left out of the sum over 

twist 2 operators in Eq. (2.11). Because of SU(Nf) symmetry in QCD 

all the CF(Q2) with different flavor indices i will be equal and we 

can define 

c;(Q2) - Cn(Q2) (2.12) 

for the twist 2 terms. It is also convenient to write 

c G; = Gn (2.13) 
i 

again for twist 2 matrix elements. Then comparing Eq. (2.3) with Eq. 

(2.11) we see that 

We now relate the various terms in Eq. (2.14) to moments of F3. 

This is done by noting that T3 is analytic in x except for a cut from 

x=-l to x=1. Thus, from Eq. (2.14) we can write 

1 
2ni f 

dx xN-'T3 = 2CN(Q2) GN = i i dx xN-'Im(T3) . (2.15) 

-1 

Now T3 has the crossing property T3(-x)=T3(x) so from Eq. (2.4) we find 

1 1 

1 
IT J 

dx xNW11m(T3) = 2 
I 

dx xN-lF3 (N odd) (2.16) 

-1 0 

Thus, combining Eqs. (2.15) and (2.16) we have 

1 

M3(N,Q2) = s 
N-2xF dx x 3 = CN(Q2) GN + 6’ 

0 

w) +6(j) (N odd) 

(2.17) 



-21- 

Actually the &(m>2/Q2) terms can be included C6,71 in the 

derivation by keeping track of the trace terms in Eq. (2.10). The 

derivation is quite involved but leads to the result [63 

M3 (N,Q~) = CN(Q2) GN + @(l/Q2) (N odd) (2.18) 

where M3(N,Q2) are the Nachtmann moments defined in Eq. (1.26). Note 

that the-higher-twist terms of @(l/Q'> appear in both (2.17) and (2.18). 

Equations (2.17) and (2.18) express the results of the operator- 

product expansion. Although we have the restriction N odd, predictions 

for even N can be obtained by analytic continuation'. We therefore 

will consider the QCD predictions for even and odd moments on equal 

footing. 

B. The Renormalization Group Equations 

From Eqs. (2.17) and (2.18) we see that to leading order in 1/Q2, 

the Q2 dependence of the moments of F3 is given by the Q2 dependence of 

the Wilson coefficients CN(QL). This can be computed by using the 

renormalization group equations C18J. In a renormalizable field theory 

like QCD, there is an inherent arbitrariness in the definitions of 

renormalized coupling constants and in the renormalization of operators. 

In addition, when the renormalization program is carried out an arbitrary 

mass scale, the renormalization mass p2, enters into the theory. This 

arbitrariness must cancel in such a way that the theory is invariant 

to changes in the renormalization mass when they are compensated by 

redefinitions of the coupling constant and renormalizations of the 

operators of the theory. 
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Because the CN(Q2) in Eqs. (2.17) and (2.18) are dimensionless we 

must be able to write 

2 
CN(Q2) = CN + 3 g i ) u 

(2.19) 

where we have explicitly shown the dependence of the CN on the QCD 

coupling parameter g. Now the renormalization group invariance dis- 

cussed above implies that CN(Q2/v2, g) must satisfy the equation Cl91 

- ,$d] ‘N (5 9 g) = ’ ’ (2.20) 

B(g) expresses how the coupling constant g changes when 11 2 is varied 

and yN(g) expresses the change in the normalization of the operator 

@ a'2 l ** Vn when p2 is changed. 
i The solution to Eq. (2.20) is 

CN ($, g) = CN(I , g ($)) exp['(Qr)dgl T::,z] (2.21) 

2 2 where g(Q /P ) is the solution to the equation 

(2.22) 

with the boundary condition g(l)=g. 

A number of interesting Q2 dependences can be derived from Eq. 

(2.21) on quite general grounds. For example, in a hypothetical super- 

renormalizable field theory the anomalous dimensions yN vanish and g=g. 

Then, from Eq. (2.21) we find CN(.Q2/u2,g)= CN(.l,g) so that in this type 

of theory, moments of F3, M3(N,Q2) = GNCN, would scale perfectly, at 

least to leading order in l/Q2. Another behavior which "$ could exhibit 
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is the fixed-point behavior g(Q2/p2) + if. 
Q2w-3 

In this case we can 

write the integral in Eq. (2.21) using Eq. (2.22) as 

2 
=- 3 v,(P,> l2-k L 

112 
9 

Thus, in the fixed-point case we have 

= ‘NC1 , if> 

(2.23) 

(2.24) 

so that the moments M (N,Q 2 
3 > would exhibit scaling violation by powers 

of Q2, 

M3(N,Q2) = 
% 

% y, $1 l 

(Q2) 

(2.25) 

Finally, we turn to QCD where, because of asymptotic freedom the 

various functions appearing in Eq. (2.21) can be calculated perturba- 

tively. We write 

3 
B(g) = -B. 5 - 81 L+ . . . 

161~ (161~~)~ 

. . . 

and 

2 
$(I ,d = 1+ EN-g+ a". 

16n2 

(2.26) 

(2.27) 

(-2.28) 
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From these expansions and Eqs. (2.21) and (2.22), the second-order 

expansion for the moments, Eq. (1.29), and for the coupling constant 

a s, Eq. (.1.30), can easily be derived C9,lOI. The constant f$ in Eq. 

(1.29) is then given by 

N 
A/$+&$ . yo% 

0 0 

(2.29) 

For simplicity, we will only discuss the lowest-order results Cl1 of 

Eqs. (~1.16) and (1.7). Substituting the lowest-order terms from Eqs. 

(2.26)-(2.28) into Eq. (2.21) we have 

cN ($ , g) = exp['(QT2)dg' -$-I = [$J"" (2.30) 

g 

Now, we turn to Eq. (2.22) which to lowest-order is just 

with the solution 

=& . 
l+-BBLn$ 

161~~ ' 11 

It is customary to define 

A2 2 = p e 
-16ir2/g2Bo 

so that Eq. (2.32) takes the simple form 

16a2 . 

(2.31) 

(2.32) 

(2.33) 

(2.34) 



-25- 

Using the definition as(Q2) = ';2(.Q2/?J2) 4n we recover Eq. (1.7) of the 

introduction. Similarly, substituting Eq. (2.34) into Eq. (2.30) and 

using the relation between moments and Wilson coefficients we find the 

prediction of Eq. (1.16) for logarithmic scaling violations in QCD. 

Finally, we note that the evolution equation of QCD, Eq. (1.6), 

can be derived from the above discussion by noting that the moment 

relation 

1 

M3(N,Q2) = 
s 

dx xN-2 xF3(x,Q2) 

0 

can be inverted by writing 

im 
1 

XF3(x,Q2) = - 2ri / 
dN x’-~ M3(N,Q2) . 

-iw 

(2.35) 

The evolution equation can also be obtained directly by calculating 

radiative corrections to the quark scattering processes in leading- 

logarithm approximation C31. 
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111. ASPECTS OF A QUANTITATIVE ANALYSIS 

A. Choice of Q 2 Cutoff 

The QCD calculations which we are considering are perturbation 

expansions in a s (al/.& Q2/A2) and in 1/Q2, and are not justifiable 

if Q2 is too small. Therefore, a primary problem in testing QCD in 

deep-inelastic scattering is the question of what lower bound on Q2 

should be used in any analysis. While it has been commonplace to set 

the lower limit at Q2=1 or 2 GeV2, we feel the limit should be higher. 

Considerations of the value of as or of second-order corrections to the 

moments [9,101 may be relevant but are clouded by the arbitrariness in 

defining as and A (see Section IV-E). However, it is clear that terms 

of order l/Q2 make substantial contributions in the Q2= l-3 GeV2 region. 

A comparison of the ordinary moments, Eq. (l.lO), and the Nachtmann 

moments, Eq. (1.26), as shown in Fig. 6 (using BEBC-Gargamelle data 

[12]) reveals large target-mass corrections for Q2 < 3 GeV2 (see also 

Fig. 4). Furthermore, elastic scattering (a term of order l/Q8) 

accounts for more than half of the N=4 moment at Q2 =l and almost a 

third of it at Q2= 2 (see Fig. 7). It seems likely then that higher- 

twist effects as well as target-mass corrections are very important 

in this low Q2 region. In other analyses it has been assumed that after 

target-mass corrections have been made, the remaining order l/Q2 effects 

are small; in this case, fits of QCD to ,data at low Q2 become tests of 

this conjecture rather than tests of QCD itself. We believe that only 

data with-Q2 > 3 GeV2 should be used for testing QCD. As. we will show 

in Section IV, even for Q 
2 > 3 GeV 2 higher-twist terms of modest size 

could significantly affect ones conclusions about QCD in present data. 
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Clearly, one may wish to consider smaller values of Q 2 when examining 

questions of the contributions of l/Q2 terms. 

B. Other Sources of Q 2 Dependence 

There are additi‘onal sources of Q2 dependence which could conceivably 

affect ones conclusions about scaling violation. Since the highest Q2 

values are a reasonable fraction of the W-boson mass, propagator effects 

are non-zero. However, from Q2 =4 to 100 GeV' the resulting scaling 

violation is only 4% (independent of N or x> whereas QCD scaling viola- 

tions are 30%-80% (depending on the particular moment). 

Heavy flavor thresholds can also induce Q2-dependence into the 

structure functions. First, heavy quarks can be produced, but this is 

suppressed to the 5% level or less by the small mixing angles of these 

heavy quarks to the u and d quarks. A more important effect comes from 

virtual heavy quarks. For example, to lowest-order the 8 function is 

6, = 11 - $Nf . With heavy quark thresholds the effective number of 

flavors Nf is Q 2-dependent and is given approximately by C201 

Nf = 3+ 1 + 1 

5m2 
1+c 

5% l 

(3.1) 

Q2 

l+- 
Q2 

From Q2 =4 to 100 GeV2, Nf changes from 3.3 to 4.4 and induces an addi- 

tional scaling violation of about 10%. When data are fit using Eq. (3.1) 

rather than Nf =4, one obtains a value of A which is about 30% smaller. 

It is quite unlikely that neutrino data available now or in the near 

future could distinguish such forms of scaling violation from logarithmic 

scaling violation. 
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C. Analysis of Data 

There are two sets of data for xF3 which we have analyzed. The 

BEBC-Gargamelle (BG) data cl21 cover a large range of Q2, but the 

statistics are poor except for small Q2. For almost all Q2, EG data 

cover the entire x range. The CERN-Dortmund-Heidelberg-Saclay (CDHS) 

data C211 are concentrated at hfgh Q2 and have better statistics. 

However,-for most Q" values, the x range of these data is very limited. 

The CDHS experimentalists made analyses [211 combining their data with 

SLAC eN data; we believe it is best not to do this. 

Given the nature of these two sets of data, we feel it is logical 

to use the BG data for analyses of moments (Eq. (1.16)) and to use the 

CDHS data for analyses of the evolution of xF3 (Eq. (1.6)). We have 

analyzed each data set by both methods, but will restrict our discussion 

in this paper as described above. One might consider the possibility 

of combining these two data sets. This idea turns out to be unwise, 

since the data are not consistent when both Q2 and x are large. Con- 

sider the xF3 data in the following bins2: 

Q2=20 ( x=.55 x=.65 ) Q2=63 ( x=.55 x=.65 ) 

CDHS .29+ .06 .ll+ .06 .18+ .03 .08+ .02 

BG .16* .09 .02+ .08 .lO+ .06 .04k .02 

For almost all other Q2 and x values where the two data sets overlap, 

the BG and CDHS data are entirely consistent. However, we find con- 

tradictory results from moment analysis if the data sets are combined, 

because the moments give extra weight to the large x region. 
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For both 

values of the 

function: 

the Q2-evolution and the moment approaches, we obtain the 

free parameters by finding the minimum of the usual x2 

fi(.theory) - fi(experiment) 1 2 

0.2) 

c a2 
i i 

where the sums are over all data points (or bins) and the u 
i refer to 

one standard deviation uncertainties. Interpretation of the value of 

x2 involves the number of degrees of freedom (d.o.f.). The number of 

d.o.f. is the number of data points minus the number of free parameters. 

By statistical analysis, one expects x2 to be approximately 1 per d.o.f. 

for a good fit; clearly x2 increases for poor fits. In analyzing the 

BG and CDHS data and comparing with QCD predictions, we obtain the 

puzzling results that in general ~2 is less than 1 per d.o.f. (ranging 

from about 0.5 to 0.8). Low x2 are statistically unlikely. This pro- 

blem may result from overestimates of uncertainties. In some cases we 

rescale (or renormalize) the value of xL in the QCD case to 1 per d.o.f. 

in order to judge the relative probabilities of alternatives to QCD. 

In other words, we multiply the xL values of QCD and of alternatives by 

a common factor. Clearly such a procedure has serious drawbacks, and 

no important conclusions should or will be based on it. 

Standard deviations for each parameter are obtained as follows: 

Parameter x1 is varied away from its fitted value. For each new value 

of x 1, the other parameters are varied to obtain the best x2. This is 

repeated until a value of x1 is obtained for which its best x2 is 1.0 

greater than the x2 for the original fitted x1. The same procedure is 

followed for parameters x2, x3, etc. 
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In fitting the BG data we consider the N=2,3,4,5 and 6 moments of 

XF 3 (moments with N>7 would measure the same large x bins again). 

Since BG had no acceptance and therefore no data in the Q2 = 64 GeV', 

X = 0.05 bin, we extrapolate the data and add a 100% error (xF3 = 1.1 

I!I 1.1). Previous analyses have used xF3 = O&O, but we feel our proce- 

dure is more reasonable. To obtain the best fit (and minimize x2), the 

coefficients K2-K (see Eq. 6 (1.16)) and A are all varied simultaneously. 

It is also of interest to find ratios of anomalous dimensions which 

can be done by finding the slope when % M3(Nl,Q2) is plotted versus 

2 ln M3(N2,Q ) [121. However, in this case, special care must be taken, 

because there are very strong correlations in the uncertainties for 

M3(Nl,Q2) and M3(N2,Q2) (especially if Nl=N2+l); these correlations 

occur because each moment is an integral over xF3. In our analysis, 

u i in Eq. (3.2) was modified to account for these correlations. 

In fitting the CDHS data using the Q2-evolution equation (Eq. (1.6)), 

we assume the form F(x,Qi) = Cxa(l-x)~. This form is entirely consistent 

with the neutrino data, so there would be little value in using a form 

with additional parameters. We choose Qi to be 152.4 GeV2 (the highest 

CDHS data point) and then evolve to lower Q2; note that xF3(x,Q$ w 

F(x,Qo) for such large Qi, see Eq. (1.21). The parameters a and b 

describe the parameterization at Q2=Qi. With each variation of a and 

b, we use Eqs. (1.21) and (1.23) to calculate xF3 in all other x and Q2 

bins and then compare with the data to obtain x2. In this way we obtain 

the parameters a,b and ? simultaneously using the data at 

Our results are almost totally independent of which values we choose 

for Qi (although different values of a and b are obtained, of course). 
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The value of the constant C in Cxa(l-xjb is obtained using the Gross- 

Llewellyn-Smith sum rule c221. This sum rule requires that the N=l 

moment be equal to 3 in leading order (where this entire calculation 

is done). Using xF3 = Cxa(J-x)b, this results in 

C = 3r(a + b + 1) (3.3) 
r(:a> T(b+l) 

We have also allowed C to be the fourth free parameter; this procedure 

results in somewhat different values for a and b, but it gives almost 

identically the same value for A and does not affect any of our 

conclusions. 
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IV. ON THE COMPARISON OF THEORY WITH EXPERIMENT 

In this section we address several questions concerning the presence 

and form of scaling violations, the role of anomalous dimensions and the 

effect of different renormalization schemes. All of these questions 

center on the problem of testing QCD. Can the present data be taken 

as evidence for the validity of QCD? What are the appropriate methods 

and considerations in testing QCD? 

There is no question that scaling violation does exist in some 

form. Using the BEBC-Gargamelle (BG) data C121, one finds that the 

probability of perfect scaling (M3(N,Q2) = RN 5 constants) is only 1 

in lo3 for Q2 > 3 GeV2 and much smaller if data for Q2 > 1 GeV2 are 

used. 

For each question we raise, we will consider answers in the contexts 

of both moment analysis, Eq. (1.26), and Q2-evolution, Eqs. (1.21)- 

(~1.23) . In the analyses which follow we will always use Nachtmann 

moments, but no qualitative conclusions would be changed by using 

ordinary moments. Since we use only high Q2 data for the Q2-evolution 

approach, the differences between use of x-scaling and c-scaling are 

negligible. 

A. Is QCD Consistent with Present Data? 

Our analysis (like earlier analyses C10,12,21,23,241 ) finds that 

the present data are entirely consistent with the predictions of QCD. 

In the moment analysis, somewhat different values for the parameters 

(A,RN) are obtained using second-order (in as) calculations c9,101, but 

the resulting curves are almost identical to the leading-order curves 

and the quality of 'the fit is therefore almost identical for the two 
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cases. QCD fits to the data are excellent even down to Q2=1 CeV2 (see 

Figs. 8 and 9). As discussed in Section III-C, the x2 obtained are, in 

fact, smaller than would ordinarily be expected from statistical analyses. 

This is shown in Table I. Recall that we require Q2> 3 for testing QCD; 

for consideration of the effects of l/Q2 corrections we allow lower Q2 

values. 

The-x2 for QCD are consistently as low as the x2 we have obtained for 

any fits. As a consequence we have chosen to use QCD as a standard for 

comparison with other results. We obtain relative probabilities following 

the procedure of Section III-C. By virtue of this procedure, the rela- 

tive probabilities for QCD are always defined as 50%. 

While QCD is unquestionably consistent with the scaling violation 

observed in present data, there are other sources of Q2 dependence which 

may also be important. We now address this question. 

B. Could All Scaling Violation Come From Higher-Twist Terms? 

In any theory one expects corrections from higher-twist terms. It 

is informative, therefore, to inquire as to whether these terms might 

account for all or a substantial portion of the observed scaling viola- 

tion. 

We must assume a form for the higher-twist terms. For the moments 

we assume (following Eq. (1.28)) either one or two additional terms: 

M3(N,Q2) = 1+ 2 
Q2 

or 

M3(fl,Q2). = l$a 1 + aN + bN2 

Q2 Q4 

(4.1) 

(4.2) 

where the RR are again free parameters,. Our results are shown in Table 
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Table I 

The x2 for QCD and the degrees of freedom (d.o.f.) obtained 

using Eqs. (1.16) or (1.32) for M3(N,Q2) and Eqs. (1.21)- 

(1.23) for xF3(x,Q2). Data are from Refs. cl21 and c211. 

Data Quantity 
Tested x2 d.o.f. X2/d.o.f. 

BG (.Q2 ' 3) M3@,Q2) 10.9 14 0.78 

BG (Q2 > 1) M3(N,Q2) 20 29 0.69 

CDHS (Q2 > 3) xF3 b, Q2) 19 42 0.45 
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11. They indicate that order l/Q2 terms with coefficients of order 

1 GeV2 could account for the observed scaling violation; this is also 

clear in Fig. 8. Since coefficients of this size are difficult to rule 

out on theoretical grounds, we see that higher-twist effects can have a 

large impact on QCD analyses. 

For study of higher-twist contributions using xF3, we assume 

(following Eq. (1.27)) that xF3 can be parameterized in one of the 

following two forms: 

xF3 (x, Q2) + dJ;;(1-x)2/Q2 1 (4.3) 

or 

xF3(x,Q2) = C + d&(1-x)2/Q2 + e&(.1-x)/Q4 3 

(4.4) 

Our results are shown in Table III and Fig. 9. Again order l/Q2 terms 

could account for most or all of the scaling violation. 

We are not necessarily suggesting that higher-twist terms alone 

account for the observed scaling violation, but these results do suggest 

that their impact on analyses of scaling violation could be substantial. 

The question arises whether the data could separate the scaling 

violation of QCD from the scaling violation of higher-twist terms. We 

have used two methods to investigate this question. We assumed the 

following form for M3(N,Q2): 

M3(N,Q2) = 
5-J 

(Ln Q2,/h2)dN 

(4. 5) 

In the first approachwe left both a and A as free parameters and used 

data for Q2 > 1 GeV2. We found a = 0.12+ 0.90; clearly, this is not a 
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Table II 

The x2 and relative probabilities for the given forms of moments using 

BG data L-121 with Q2 in GeV2. The relative probability for QCD is 0.50 

and x2 per d.o.f. is 0.8 (Q2 > 3) and 0.7 (Q2 ' 1). 

BG Data Form of M3(N,Q2) x2 per d.o.f. Relative 
Probability Parameters 

Q2 > 3 1+a 
Q2 

0.9 0.35 a= 0.8 kO.2 

Q2 ,+zE+kg a= 1.8 20.8 
> 3 0.8 0.51 

Q Q b= -0.8 kO.6 

Q2 > 1 1+% 

Q2 
0.9 0.16 a= 0.8 kO.1 

Q2 > 1 
2 

1+ aN+bN 

Q2 Q4 
0.9 0.12 a= 0.6 k0.2 

b= 0.05k0.04 
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Table III 

The x2 and relative probabilities for the given forms of xF3 using CDHS 

data c211 with Q2 > 3 GeV2. The relative probability for QCD is 0.50 

and x2 per d.o.f. is 0.45. 

Form of xF3(x,Q2) x2 per d.o.f. Relative 
Probability Parameters 

+ d&(1-x)2 

Q2 1 0.57 0.13 d= 0.4kO.2 

+ d&(1-x)2 

Q2 

+ e&(1-x) d = 1.5kO.7 

Q4 1 0.50 0.41 
e=-4.0k2.0 
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useful result. For the second method, it was further assumed that 

aN/Q2 <c 1 for Q2 > 3 GeV', so that the value of A could be determined 

independent of the value of a by using BG data with Q2 > 3. Then holding 

A fixed at that value, the magnitude of a could be determined using all 

BG data with Q2 > 1 GeV2. We found a = 0.17 kO.04. However, there was 

2 no improvement in x , and this value of a means that aN/Q2 is not small 

as was assumed above. Similar results were obtained from analysis of 

CDHS data. One concludes that the present data cannot separate 

C-h Q2/A2) -dN behavior from (1 -I- aN/Q2) behavior. It follows that the 

value of A obtained for QCD when higher-twist contributions are neglected 

may be absorbing the effects of these terms. 

C. Can Power-Law and Logarithmic Scaling Violations Be Distinguished? 

As discussed in Section II (see Eq. (2.25)), fixed-point theories 

exhibit power-law scaling violation of the form M3(N,Q2) 0: (Q2) 
-bN where 

the numbers bN are not determined. For discussion of these hypothetical 

fixed-point theories, we have chosen two quite different parameteriza- 

tions of bN. In one case we assume there is no N-dependence and in the 

other case we assume the N-dependence is the same as for QCD except for 

an overall coefficient. At first thought, it may seem that one should 

be able to distinguish power-law behavior from the logarithmic behavior 

[(log Q2/A2)-dN] of QCD. We have argued in Section III that tests of 

QCD and alternatives should use only data with Q2 > 3 GeV2. As can be 

seen from the first part of Table IV, with present data for Q2 > 3, it 

is, in fact, impossible to distinguish these two behaviors. 

It is interesting to observe that while fixed-point theories are 

absolutely as good as QCD for Q2 > 3 GeV', it appears (at first glance) 
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that they would be completely ruled out if data with Q2 > 1 GeV2 were 

considered, as is shown in the second part of Table IV. However, note 

in the third part of Table IV that the addition of quite small higher- 

twist terms to fixed-point theories allows an excellent fit to the data 

even for Q2 > 1 GeV2. The reason QCD without higher-twist terms does 

so well at low Q2 is that it has a pole at low Q2, whereas the fixed- 

point predictions are finite until Q2 equals zero. However, the QCD 

pole is an artifact of the perturbation expansion, and its effects cannot 

be considered as valid predictions of the theory. It is critical to 

consider the impact of higher-twist terms before arguing that data prefer 

QCD over other theories. Here we find that the present data do not 

distinguish QCD from fixed-point theories. 

D. Are Anomalous Dimensions A Good Test for QCD? 

From the lowest-order QCD predictions for the moments, Eq. (1.16), 

one sees that 

M3(M , Q2) 3 
%M 

= 
M3 (N , Q2) 

constant (4.6) 

for all Q2 when rNM = dN/dM. Equivalently, one can take the logarithm 

of Eq. (4.6) and write 

1nM3(N,Q2) = r,,hM3(M,Q2) + constant . (4.7) 

Thus, it has been suggested Cl21 that QCD can be tested by determining 

rNM from the data using either Eq. (4.6) or Eq. (4.7) and comparing it 

with the QCD prediction dN/dM. However, this test is affected by both 

a and 
S 

l/QL corrections which can modify the basic QCD predictions. 
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When the second-order expressions for the moments, Eq. (1.32), are 

substituted into Eq. (.4.6), one finds [233 that the equality can no 

longer be satisfied at all Q2. Therefore, the above test is ambiguous 

when these corrections are included. If one wishes, one can set 

a [M3(M, Q2,1rm 

aQ2 
= 

M3(N,Q2) 
0 (4.8) 

to determine rNM as a function of Q2. The lowest-order QCD predictions 

for various N and M are shown by the horizontal lines in Fig. 10 while 

the shaded areas indicate the range for the second-order QCD predic- 

tions, based on the value of Q2 and A used in evaluating rNM. Since 

the prediction for rNM is of the form rNM = dN/dM + @'(a:), there exists * 

the same type of lowest-order QCD ambiguity for A as discussed in the 

introduction. Thus in this separate expansion, the A to be used in 

evaluating r NM is not necessarily the same A as one obtains in fitting 

the moments. -We have argued that tests of QCD should use Q2 > 3 GeV', 

however we have shown for comparison the Q2 > 1 GeV' values as well. 

Our values are different from those originally reported by the BG 

experimentalists C121. We have used an improved error analysis and for 

one bin we use extrapolated BG data. For the Q2 = 63 GeV2, x=0.05 bin 

we use xF 3 = l.l* 1.1 instead of Oh0 (see discussion in Section III>. 

Note that QCD is in good agreement with the data for Q2 > 3 GeV2 although 

the error bars on the data for these large Q2 values are quite large. 

A question which is crucial to use of anomalous dimensions as a 

test of QCD is: Are the results shown in Fig. 10 (which are consistent 

with QCD) unique predictions of QCD or are these ratios also likely to 
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arise from other sources. In fact, we find that the observed values 

of r NM are very similar to those which are likely to arise from higher- 

twist terms. Consider a form which includes one higher-twist term but 

has no logarithmic or power-law [(Q~)-~N] behavior: 

M3(N,Q2) = 

one then-finds 

and 

%M ; + for small a 
7 l 

(4.9) 

(4.10a) 

(4.10b) 

The data for rNM do, in fact, resemble the N/M dependence which results 

from Eq. (4.9). If one uses 

M3(N,Q2) = 1+ aN+- bN2 

Q2 Q4 
(4.11) 

then one finds that rNM z N/M as long as a and b are positive and are of 

order 1 GeV2 and 1 GeV4 (respectively) or smaller. It is evident from 

Eq. (4.7) that on a plot of en M3(N,Q2) versus Len M3(M,Q2) the slope is 

equal to rNM. In Fig. 11, we show such plots for QCD and for Eq. (4.11) 

(with a and b taken from the last entry in Table II). Note that the 

comparison of the theoretical curves with the data on this plot is 

misleading since the strong correlations between M3(N,Q2) and M3(M,Q2) 

(discussed in Section III-C) are not evident. The plot does show, 
n 

however, that for a significant range of QL the slopes (rm) predicted 

by QCD and by Eq. (4.11) are very similar. 



I 

-43- 

We find, then, two conclusions about use of rNM. First, it is 

likely that higher-twist contributions will not significantly affect 

the QCD predictions, so that rNM z dN/dM remains a prediction of the 

theory. Second, given the role of higher-twist terms, one. can question 

whether conclusions about alternative theories with different N depend- 

ences can be believed. Among such hypothetical theories are those with 

scalar gluons [25] for which the anomalous dimensions change much more 

slowly with N than do those of QCD. The predictions for rNM of such 

theories may be drastically altered by the presence of quite small 

higher-twist terms. 

Given the lack of precision of second-order predictions for rNM 

and the confusion generated by the presence of higher-twist terms, we 

believe that great caution should be employed in using anomalous dimen- 

sions as a test for QCD. But it must be noted that QCD (with or without 

higher-twist terms) is entirely consistent with the data for rNM as it 

is with all other data discussed here. 

E. Can the Data Choose the Best Definitions of us and A? 

As discussed at the end of Section I, use of second-order QCD 

calculations of the moments [9,10] for fitting to the data involves a 

choice of which definition of A and which value of the parameter p to 

use. Recall that G = llN-pdN in Eq. (1.39): 

M3bJ,Q2) = 
% 

(lb Q2/AE)dN 

1+ 
G + BN1nLn 

Ln Q2/A2 
. (4.12) 

P 

There are several possible approaches to choice of A and as. The 

calculations C9,lOl of the AN were done in the minimal subtraction 
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scheme using dimensional regularization. The AN contain factors of 

.&(.4n)-yE coming from expanding around dimension n=4 in the dimen- 

sional regularization method. Since these factors can be considered as 

artifacts of the regularization scheme, one can choose 3 

P = 1n (47r) - YE M 2 (4.13) 

in order-to remove such factors from the AN ClOl. 

There is another approach to this problem which would be ideal if 

the data were perfect. That approach is to allow p to be another free 

parameter in the fit. This would have the result of minimizing the 

effects of third-order terms (and other higher-order terms) for the Q2 

range and moments of interest. Using data with Q2 > 3 GeV2, we find 

P = -1.6 with a large uncertainty of about 210 and no improvement in 

x2* It is interesting to note, however, that using data for Q2 > 1 

GeV2 we obtain p = 2.3kO.6 (similar to Eq. (4.13)) and x2 per d.o.f. 

is reduced from 0.7 to 0.6 (d.o.f.= 29). Given the role played by 

higher-twist terms it is difficult to judge the significance of this 

last result. 

A third approach to choosing the parameter p lies in trying to 

find a theoretical justification for the assumption that a particular 

choice of p will minimize the uncalculated third-order terms (and 

higher-order terms) in the moments. The most apparent theoretical 

assumption is that if the second-order term is small, higher-order 

terms should also be small C231. One finds that for the Q2 range and 

moments of interest, the second-order terms are minimized by choosing 

P M 2; for 1 < Q2 < 100 GeV2 and N= 2-6; the ratio of second- to first- 

order terms then averages about 0.07. It is interesting that p M 2 is 
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indicated by all three approaches. 

We have remarked previously (Section I) that the value of as(Q2) 

is renormalization-scheme dependent, but of course as(Q2) is not a 

directly measurable quantity. With as(QL) defined by Eq. (1.30) for 

p=O, one finds (using Eq. (1.38)) for other values of p that 

% 2 Ln 1n Q2/Ai + P 

BO 

.& Q2/A2 
P 

. (4.14) 

us(Q2) could have been defined by Eq. (1.30) for a value of p other than 

zero; then various formulae in this paper would be modified accordingly. 

However, with the present definition it is interesting to note three 

cases. For the first case, p=O, we find that the second-order correc- 

tions to the moments and to as(Q2) are about 25% of the first-order 

terms. For p r -1.3 we find that the second-order term in as(QZ) is 

minimized (it is near zero), but in the moments the second-order term 

is about 40%. Finally for P M 2 we find (as discussed above) that the 

second-order corrections to the moments are minimized. However, the 

second-order term in as(Q2) (in Eq. (4.14)) is very large (65% at 

Q2 =lO GeV2 and 100% at 

As a result as(Q2) 

perturbation expansion; 
3 

Q2 = 1 GeV2). 

is small for p=2 only by an accident of the 

in fact, it goes to zero as Q2 drops to 1 GeV2. 

The a,(Q') curves for these three values of p are shown in Fig. 12. It 

is clear that it is not possible to quote the value of as(QL) (much less 

A) except in the context of particular definitions of A and p. With 

more precise data, it may be possible to identify the best choice for 

A and p (that which will minimize higher-order corrections in physical 

quantities). 
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V. CONCLUSIONS 

In our analysis we found again and again that quantum chromodynamics 

gave as good or better fits to the data as any alternative. This was 

true down to Q2 =l GeV2 whether or not higher-twist contributions were 

included. Since higher-twist contributions have not yet been calculated 

in QCD, it would be useful if one could estimate them from the data. 

Unfortunately the data at present are not precise enough to allow this 

estimation. When considering hypothetical alternative theories, we 

found that the inclusion of small higher-twist terms allowed for fits 

to the data almost as good as those for QCD. The inability to separate 

QCD from alternatives under these conditions results from a lack of 

sufficiently precise data at sufficiently high Q2 (where higher-twist 

terms are likely to be small). The corrections of second-order in as 

do not introduce any serious problems in testing QCD. The parameters 

A and as are not meaningful except in second-order calculations when 

particular definitions have been expressed. Again more precise data 

at high Q2 may suggest the most practical definitions. We have argued 

that tests of QCD should be done only with data for Q2 > 3 GeV2, 

However, accurate low Q2 data could still be helpful in sorting out 

higher-twist effects. 
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FOOTNOTES 

1. When calculated to second-order in as, the anomalous dimensions 

have the general form yN = yz + (-l)Nyf: so that the yN for even 

N are not defined by a unique analytic continuation from those 

for odd N. However, N the numerical difference between yf: - yB 

and-y: + yz for even N is quite small and this subtlety will be 

ignored in our phenomenological analysis. See Ref. cl71 for 

further details. 

2. CDHS results in this table are obtained by interpolating between 

neighboring data points. 

3. In the scheme with p = ln (48) - yE which is the 15 scheme of 

Ref. ClOl, we find hi = 0.287 k0.148 GeV for Q2 > 3 GeV2 with 

Nf given by Eq. (3.1). 
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Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

An example of a current striking a quark of momentum fraction 

x which arises from a quark of momentum fraction w after gluon 

radiation. 

target-mass effects in this Q' region. 

The solid curve is an x-scaling fit of QCD to the data of Ref. 

Cl21 while the dashed curve is the corresponding c-scaling 

prediction of QCD. Elastics are shown in an extra bin from 

x=1 to x=1.1 where the area under the data point in this bin 

is equal to the area under the elastic spike at x=1 in the 

original data. Note that a significant elastic contribution 

is present and that the x- and S-scaling curves are quite 

different at this value Q2=1.7 GeV2. 

Same as Fig. 4 except that Q2=3.9 GeV2, Note that the 

elastics are now negligible and that the x-(solid) and 

g-(dashed) s ca 1 ing curves are nearly identical. 

A comparison of ordinary moments and Nachtmann moments from 

the data of Ref. cl21. Curves are drawn connecting the data 

points to help guide the eye. The two types of moments are 

significantly different for Q2 < 3 GeV 2 indicating large 
7 

-53- 

FIGURE CARTIONS 

Kinematics of deep-inelastic lepton scattering. q, labels 

the transfered momentum and p the initial nucleon momentum. 
LJ 

A diagram which depends on the gluon distribution in the 

nucleon but which does not contribute to the F 3 structure 

function. 
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Fig. 7. Nachtmann moments computed with and without elastic scattering 

contributions. Curves are drawn connecting the data points 

to help guide the eye. Data are from Ref. cl21. The curves 

show a significant elastic contribution for Q2 < 3 GeV2. 

Fig. 8. Nachtmann moments for N = 2-6 from the data of Ref. [123. 

The solid curves are the QCD predictions for these moments. 

- The dashed curves show a fit assuming that all scaling 

violation comes from a term of the form aN/Q2 with a= .8 

GeV2. The QCD fit is excellent, but the fact that the dashed 

curve fits the data as well indicates that higher-twist 

effects could be significant. 

Fig. 9. xF3(x,Q2) at various Q2 values. The CDHS data (Ref. [Zll) 

were interpolated and placed into large bins for display 

purposes only. The solid curves are the QCD predictions 

based on integrating the Q2 -evolution equation with the 

boundary condition xF3(x,152.4 GeV2) = Cxa(l-x)~. The 

dashed curves show a fit assuming that all scaling violation 

comes from a term of the form d&(l-x)2 

Q2 
with d= .4 GeV2. 

As in Fig. 8, the QCD fits are excellent, but the fact that 

the dashed curves also fit the data indicates that higher- 

twist effects could be significant. 

Fig. 10. Values of rNM for various combinations of N and M from the 

data of Ref. Cl21. Data points are shown for data with 

Q2 > 1 GeV2 and for Q2 > 3 GeV2. The lowest-order QCD pre- 

dictions are indicated by solid horizontal lines while the 

shaded regions show a reasonable range for the second-order 

QCD predictions which are not precisely defined. 
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Fig. 11. The data (Ref. c121) for M3(N,Q2) are plotted versus the data 

for M3 (M, Q2) on a log scale. The solid curves are the pre- 

dictions of leading-order QCD while the dashed curves (which 

are quite similar) are the results of using Eq. (4.11) with 

a=0.6 and b=0.05. This plot does not indicate the strong 

correlations between M3(N,Q2) and M3(M,Q2); the actual uncer- 

tainties are more like ellipses with their major axes along 

the curves. 

Fig. 12. The values of as(Q2) computed in second-order QCD using Eq. 

(4.14) with p = 0 (solid curve), p = 2 (dashed curve) and 

P =-1.3 (dash-dotted curve). This plot indicates that it 

is not meaningful to quote the value of us(Q2) even within 

a given renormalization scheme without specifying the defini- 

tion of A. 
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