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ABSTRACT 

Relativistic formulae for the deuteron electromagnetic form factors 

are calculated in the impulse approximation retaining terms to all orders 

in Q2/M2 z wc>2. The formulae are given as double integrals over the 

deuteron wave functions in momentum space, and hence can be evaluated 

for any deuteron model. We evaluate these formulae numerically for 9 

different deuteron models: Reid soft core, two Lomon-Feshbach models, 

three Holinde-Machleidt models, and three four-component relativistic 

models. All of the models give results for the A structure function 

considerably below the experimental results; the effect of the relati- 

vistic treatment is to reduce the size of A by a factor of 2 to 5 at Q2 

-2 of 100 fm over what it would be in the nonrelativistic approximation. 

We discuss breifly the role of exchange currents; the pair terms are 

included in our calculation in a completely consistent manner, but the 

explicit pFy contributions need to be calculated relativistically. We 

discuss in some detail the sensitivity of our calculation to the almost 

unknown neutron electric form factor, observing that a GRn roughly twice 

-2 
G 

RP 
in the region of Q2 =lOO fm would enable us to fit the data even 

without any PITY contributions. We discuss the high Q2 limits of our 

formulae, obtaining the result that the form factor falls one power of 

Qz faster than that predicted by the dimensional scaling quark model. 

We also study the low QL limits and give explicit formulae for the 

corrections to the deuteron magnetic and quadrupole moments. 
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1. Introduction and Summary 

Recent measurements1 have made it necessary to calculate electron 

deuteron elastic scattering without making nonrelativistic approximations 

or q2/M2 expansions. Here we report in some detail on a relativistic 

calculation of the deuteron electromagnetic form factors in the impulse 

approximation (RIA), retaining terms to all orders in q2/M2. A short 

description of our results has been published previously. 2 

There are two effects that one must take into account in a relativis- 

tic calculation, and we have done both. 

Ci> The kinematics must be relativistic. Our calculation is 

covariant, and our final formulae contain kinematic effects to all 

orders in (v/c)~ or q2/M2. 

(ii) At least one of the nucleons must be off the mass shell. We 

include the most important consequences of this by allowing the inter- 

acting nucleon to be off shell, while still leaving the spectator on 

shell. In this way, the covariant diagram of Fig. l(a) includes the 

three-time ordered diagrams of Fig. l(b), and important effects such as 

the photon splitting into an ti pair (the "pair current" in other 

language) are properly included. However, in order to do this, we must 

also know about amplitudes for %+d + N, as well as the usual d + NN. 

This is best handled in a unified way by considering a covariant 

deuteron-nucleon-nucleon vertex function, with one nucleon off shell. 

Following Blankenbecler and Cook,3 four invariants must be used to des- 

cribe the deuteron-nucleon-nucleon vertex function. (In a nonrelativis- 

tic treatment, one makes an approximation by putting both nucleons on 

shell so that only two invariants are needed.) The four scalar functions 
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that are necessary can be rewritten so that they have the character of 

wavefunctions. 4 When this is done, two of the functions are the familiar 

S and D state wavefunctions of the deuteron, and there are two additional 

wavefunctions which are not present in the nonrelativistic case. These 

new components of the full wavefunction are associated with the extra 

degrees of freedom present when the interacting nucleon is a virtual 

Dirac particle, and each has the character of a P-state. They are 

numerically small if measured by their contribution to the overall 

normalization of the wavefunction, but in momentum space they and the 

S and D wavefunctions have comparable magnitudes at high momenta. (We 

should note that although the orbital angular momentum of these small 

components is R =l, they do not represent parity violating effects 

because, in common with the small components in the Dirac equation, 

the overall parity of a small component is opposite to its spatial parity.) 

The formulae that we derive are general and may be evaluated with 

any deuteron wavefunctions. In particular, if one chooses to neglect 

the P-states, the calculation gives the deuteron form factor correctly 

to all orders of (q/M)2 for any choice of u and w, the S and D-state 

wavefunctions. 

In addition to deriving the formulae, we have evaluated them 

numerically for a number of deuteron wavefunctions and have examined 

them analytically to determine the behavior of the deuteron form factor 

for very high q2(1 q21 >> M2>. Also, our formulae may be expanded to 
n 

zero and first order in q', where they agree with known results. 

As the description of our calculations is somewhat lengthy, we 

shall present our results at the outset. The next subsection gives our 
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numerical results and some conclusions; in particular, we show the 

deuteron structure functions for several models of the deuteron wave- 

function. Section I-B examines the size of the relativistic effects, 

and Section I-C discusses the sensitivity of our results to the choice 

of nucleon form factor. Section I-D gives some analytic results for 

the behavior of the deuteron electromagnetic form factor at ultra-high 

q2* Section I-E contains comments upon the role of exchange currents 

in intermediate and high energy electron-deuteron elastic scattering, 

Section I-F compares our formulae, expanded to first order in q2/M2, 

to previous results, and Section I-G estimates a theoretical uncertainty 

in this calculation. The full calculation is outlined in Section II. 

A. Numerical results for different deuteron models 

The main results are given in Figs. 2 through 11 which show various 

combinations of deuteron electromagnetic form factors for several 

different choices of the deuteron wavefunctions. In each graph, a solid 

line is inserted as a benchmark representing a nonrelativistic calcula- 

tion using the Reid soft core wavefunction. 5 

In Figs. 2 through 6, we use our relativistic equations for the 

structure functions with wavefunctions calculated from a wave equation 

in which both nucleons were assumed to be on shell. The wavefunctions 

are the Holinde-Machleidt, 6 the Lomon-Feshbach, 7 and the Reid soft core 5 

wavefunctions, and the P-state wavefunctions are zero. These will be 

referred to collectively as two-component models. 

In Figs. 7 through 11, the wavefunctions were themselves also 

calculated from a wave equation in which one of the nucleons is allowed 

to be off shell,8 and they are therefore completely consistent with our 
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formulae for the structure functions. (These relativistic wavefunctions 

are completely described in Ref. 8; briefly they are determined from a 

relativistic one boson exchange model with R, u, p and w exchanges, 

adjusted to give the correct deuteron binding energy and quadrupole 

moment. The r-NN vertex is a mixture of y5 and y5y' couplings, with 

the mixing parameter X defined so that the coupling is independent of 

A when both nucleons are on shell, and is pure y5 when X = 1 and pure 

y5y" when X=0 . The P-state wavefunctions are not zero, but turn out 

to increase nearly linearly with X. These will be referred to collec- 

tively as four-component models.) 

The A function shown in Figs. 2 and 7 and the B function shown in 

Figs. 3 and 8 are defined by the familiar equation, 

da -= dal [A(Q2) + B(Q2) tan2 6/2] (1.1) 
dn dn(NS 

(1.2) 

2 and a = e /4~r = l/137, E is the energy of the incoming electron, 0 the 

laboratory scattering angle of 

1.876 GeV, q is the 4-momentum 

define Q2 = -q2 > 0 so that 

the electron, the deuteron mass is Md = 

transferred by the electron, and we 

Q2 
4E2 sin2 812 = 

1 +2E sin2 9/2 
. 

Md 

The data shown on these curves is from Ref. 1. 

The charge and quadrupole form factors, GC and GQ, together with 

the magnetic form factor GM are defined in Section II, Eq. (2.9). The 
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relations between A and B and GC, G 
Q 

and GM are 

A(.Q~) = c$q2) + -j$ Go + $ G$Q~) 

d d 

2 
B(Q2) = %- 

3M; 
. (1.4) 

In Figs. 4 and 5 and Figs. 9 and 10, the charge and quadrupole contri- 

butions to A, GE(Q2) and [Q4/18Mi]Gi(Q2), are shown separately. Finally, 

the tensor polarization of the recoil nuclei when scattering from an 

unpolarized target is shown in Figs. 6 and 11. When this quantity' 

T (~~1 =ti 

3M; 

‘CGQ+ 
92 G2 
12M2 Q d . 

G2 + -& G2 
C 18M4 Q d 

(1.5) 

is measured, one may be able to experimentally determine GC and G 
Q 

separately. 

All curves in Figs. 2 through 16 were evaluated using isoscalar 

nucleon form factors given by the empirical dipole formulae with form 

factor scaling, 

G ES = [l + Q2:0.7d2 

GMS = 
0.88 

[l + Q2/0.7112 
(1.6) 

where Q2 is in (GeV/c)2. The dependence of our results on the choice of 

form factor will be discussed in more detail in Section I-C. 
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As Figs. 2 and 7 show, all of the models lie below the data for A 

by a factor of 2-10, although the Lomon-Feshbach model gives larger 

structure than the other relativistically calculated models. The reason 

this model is so much larger than the others can be traced to the dis- 

continuity in the S-state wavefunction (see Fig. 12), which introduces 

large oscillations 

at high momentum. 

There are two 

lation changed the 

consistently low? 

in momentum space which keep the wavefunction large 

immediate questions: how has the relativistic calcu- 

non-relativistic result and why are the results 

We discuss these questions in turn. 

B. Size of the relativistic corrections 

One of the major goals of this calculation was to gain some under- 

standing of the size and nature of the relativistic effects. This can 

be provided by a detailed examination of Figs. 13-16, which we will 

discuss now in some detail. 

In Figs. 13 and 14, we have displayed the relativistic corrections 

for the two-component models presented in Figs. 2-6, while Figs. 15 and 

16 display the relativistic corrections for the four-component models 

presented in Figs. 7-11. 

In Fig. 13, we have displayed the ratio of the relativistic calcu- 

lation of A given in Fig. 2 to the non-relativistic calculation for each 

of the models considered in Fig. 2. The figure shows that use of the 

relativistic formulae tends to reduce the theoretical value of A by a 

factor of 2-5 at about 100 F -2 
, and that except for the Lomon-Feshbach 

models, all of the non-relativistic models tend to give about the same 

correction out to about 60 F -2 
. In Fig. 14, we have displayed the 
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relativistic effects on each of the fundamental form factors individually. 

Here we found it more illuminating to display the difference AG between the 

relativistic and non-relativistic results, and because the curves vary 

considerably, we have shown the differences for all the models in Figs. 

14(b), 14(d) and 14(f), but the individual relativisitic and non-rela- 

tivistic results from which differences are calculated are displayed 

only for the HM3 model6 in Figs. 14(a), 14(c) and 14(e). 

Note that both the form factors and the differences tend to oscil- 

late, but in such a way that in all cases the effect of the relativistic 

corrections is to shift the diffraction minima to lower Q2 with a 

corresponding increase in the following maxima. 

In Figs. 15 and 16, we have displayed the relativistic corrections 

for the relativistic models of Ref. 8. The principal differences between 

the results in these figures and those in Figs. 13 and 14 is due to the 

presence of the P-states, which contribute additional corrections. The 

final formulae have terms linear in the P-states (i.e., interference 

terms between the P-states and either an S or D state) and quadradic in 

the P-states, as well as terms independent of the P-states. Any of the 

structure functions could therefore be calculated in four different 

ways: (1) non-relativistically using only the u and w wavefunctions 

from the 4-component model, (2) relativistically, but using only the u 

and w wavefunctions, (3) relativistically, but excluding the terms 

quadradic in the P-states (so that only terms independent of the P-states 

or linear in the P-states are included), and (4) the full result obtained 

by inserting all four wavefunctions in the relativistic formulae. (In 

the first three cases, the u and w wavefunctions must be resealed to 
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satisfy the non-relativistic normalization condition.) For the A struc- 

ture function, the first case is called ANR' the second AN one (f or no P- 

states), the third is AIin (linear in the P-states) and the fourth AFull, 

and information about all of these ways of computing A is presented in 

Fig. 15. In Fig. 15(a), the ratio RFull=APull/ANR is presented for each 

of the three models considered in Figs. 7-11; this gives the total result 

of including all relativistic effects. Figure 15(b) also includes two 

other ratios for the X=1 model: sane = sone/ANR and RIin = AIin/sR. 

The ratio 54 one shows that if the P-states are ignored, the rela- 

tivistic corrections are very similar to the results obtained from the 

two-component models. Comparison RLin and RFull (for the X=1 case) with 

RN one shows that adding the P-states introduces a sizable change in the 

results and that the effect of the terms quadratic in the P-states is 

somewhat smaller than the linear terms, as one might expect. Comparison 

of the RF ull ratios for the three models shows considerable model 

dependence, reflecting the fact that the P-states are very tiny for 

A=0 and increase as X goes from 0 to 1. 

Figure 16 shows the relativistic effects on each of the fundamental 

form factors. In Figs. 16(a), 16(c) and 16(e), we have presented, for 

the X=1 model, each of the four possible cases discussed above, labeled 

NR, None, Lin and Full, together with the difference between the Full 

result and the NR result. The other parts, Figs. 16(b), 16(d) and 16(f), 

show the differences between the Full and NR results for each of the 

three models. We can see from these figures that the total effect of 

the relativistic corrections is to shift the diffraction minima to lower 

values of Q2 (just as we found before) for GC and GQ (when X=0 or .4), 
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but that for GM (and GQ when h =l> we have the opposite effect -- the 

corrections shift the minima to higher Q2. These trends are a result 

of two competing effects: the relativistic kinematics, which tends to 

shift all diffraction minima to lower Q 2 as we observed before, and the 

P-states, which tend to have the opposite effect. For the electric 

form factors, GC and G 
Q' 

the P-state effects tend to be suppressed, so 

that only when they are exceptionally large (A= 1) do they have a 

significant effect, changing the direction of the shift in G Q (where 

the linear and quadradic P-state terms have the same sign) and signifi- 

cantly reducing the shift in GC (where the linear and quadradic P-state 

terms tend to cancel). In GM, the P-state contributions are less 

suppressed, so that the sign of the shift is opposite for all cases. 

We now summarize the observations that can be made from the numeri- 

cal results presented in these two parts: 

(i) The relativistic corrections to A are significant at large Q2. 

The "conventional" two-component models and the four-component models 

511 with X=0 (pure y y coupling for the pion) tend to give very similar 

corrections out to about 60 F -2 , and these corrections depress the non- 

relativistic results and widen the difference between the data and the 

theory. The Lomon-Feshbach models, which are unconventional because 

they have discontinuities in the wavefunction, and the four-component 

model with I\ = 1 (pure y5 coupling for the pion) give different correc- 

tions which are smaller and which can be positive in the intermediate 

region of Q2 around 40 F 
-2 

. 

(ii) Since the four component models with different X give rela- 

tivistic corrections to A which differ significantly from each other, 
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we conclude that these corrections are sensitive to the form of the pion 

nucleon coupling in disagreement with what might be expected on the 

basis of a naive application of the equivalence theorem. 10 Furthermore, 

one should have some confidence in this conclusion since the three four- 

component deuteron models we used are very closely related, 8 and because 

our calculation includes, in a completely unified manner, 11 what other 

investigators often calculate separately as relativistic effects, 12 

renormalization corrections, 13 and "pair" current corrections. 14 

(iii) Using the dipole formula for the nucleon form factors, none 

of the models do a satisfactory job of fitting the data for the A struc- 

ture function. The results are systematically low. One explanation for 

this is that there are sizable contributions to electron deuteron elastic 

scattering from processes that we have not included, such as the iso- 

scalar meson exchange process illustrated in Fig. l(c) and scattering 

from isobar currents as in Fig. l(d). Others have found that the con- 

tribution from the Perry exchange current, in particular, can be quite 

significant 14,15 in 

isobar currents are 

has been calculated 

(iv) The meson 

this Q* range, while the contributions from the 

predicted to be small. 16 Neither of these processes 

to all orders in q2/M2. 

exchange currents are not necessarily the only ex- 

planation for the descrepancy. In particular, GEn is not well known. 

The A structure function is more sensitive to GES = GEp+GEn than to 

GMS = GMp+GMn, and goes approximately as GiS. We have used GEn=O; 
,-. 

but a value of GEn twice as large and of the same sign as G 
EP 

at QL of 

3 (GeV/c)2 is not inconsistent with any data and would enhance A(Q2) by 

an order of magnitude. When the meson exchange and isobar current con- 
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tributions have been calculated to all orders in q2/M2, our theory may 

be sufficiently reliable to permit extraction of GEn from the data for A. 

Further discussion of the role of the exchange currents appears 

below in Section I-E, following the analytic discussion of the behavior 
n 

of the structure functions at ultrahigh QL in Section I-D. In the next 

section we discuss the uncertainties introduced by our lack of knowledge 

of the nucleon form factors. 

C. The nucleon electromagnetic form factors 

Thus far, all of the results presented have used dipole nucleon 

electromagnetic form factors with form factor scaling as in Eq. (1.6) 

with GEn set equal to zero. The nucleon form factors, however, are not 

well measured quantities. The proton magnetic form factor G 
MP 

is the 

best known with uncertainties of 3% to 5% in the Q2 range up to 10 

(GeV/cj2, and there is data I7 up to Q* of 33 (GeV/c)*. Measurements 

of G 
EP 

extend18 only to 3 (GeV/c)*, where the uncertainty is nearly 

100%. The neutron form factors are even less well known. The magnetic 

form factor GMn has been measured 19 up to 2 (GeV/c)2 with uncertainties 

ranging from 10% to 40%. The neutron electric form factor GEn is the 

least well known. It has been deduced in model dependent analyses of 

quasielastic and elastic electron scattering 20 from deuterium only out 

to Q2 of 1 (GeV/cj2. The errors are large, 30% to 50%, but GEn seems 

to have a positive value of approximately .05 in the Q2 range 0.2 to 1 

(GeV/c)2. The slope of GEn at Q*= 0, obtained by scattering neutrons 

from atomic electrons, 
21 is positive and is known to better than 3%. 
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To see how sensitive the deuteron structure functions are to 

reasonable choices for the nucleon structure functions, we have prepared 

plots in Figs. 17-20 of A and B calculated using five different sets of 

nucleon form factors. In Fig. 21 the various curves for GEn used in 

this paper are plotted together with the dipole form for G 
EP' 

The curves labeled IJL were calculated using the form factors from 

Ref. 22. They were obtained from a fit to the world's data for G 
EP' 

GMP 
and GMn using a vector dominance model. In general, this fits the 

proton data well, but it gives results for the neutron that, in our 

judgment, look unreasonable, particularly for GEn (which was not included 

in the fit). The IJL parameterization gives a curve for GEn that goes 

negative at Q2 of 1.4 (GeV/c)2. Above approximately 3 (GeV/c)2 GEn has 

an absolute value comparable to G 
EP 

and thus GEE becomes very small. 

Therefore, the A and B structure functions show a sharp minimum in that 

region of Q2 (see Figs. 17-20) due to this cancellation of the nucleon 

form factors in addition to the usual diffraction features in the funda- 

mental form factors. 

To display results for what we regard as more reasonable neutron 

form factors, we have assembled a collection we call "Best Fit", first 

used in Ref. 1. While they are not obtained from a comprehensive fit 

to all the form factors simultaneously, in each case there is good 

agreement with the present limited data. The proton form factors are 

22 19 
those of IJL. The neutron GM, is taken from a fit by Hansen et al., 

20 
and for GEn we use a formula suggested by Galster et al., 

3-y 

GEn = 1 + 5.6r GEp 
Cl .7) 
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where n, is the neutron magnetic moment, T = Q2/4M2 n' and for G Ep we 

have taken the IJL values. (Galster et al.*' -- used the dipole form for 

To display the sensitivity of A and B to GEn we have also plotted 

in Figs. 17-20 curves in which the Best Fit form factors were used, 

except that GEn was set equal to zero, and the curves are labeled "Best 

Fit + GEn = 0." When these curves are compared to the dipole curves, 

they also show the effect of possible variations in G 
EP' 

Finally, the curve labeled "Dipole + Fin = 0" is an attempt to 

indicate what possible form G En could take to give agreement with the 

data for A(.Q2). This curve employs the usual dipole forms, except that 

the neutron Dirac form factor is set equal to zero. This assumption is 

consistent with the prediction of the symmetric quark model for the 

nucleon structure where.the valence quarks are all in a spatially 

symmetric ground state 23 and gives: 

G En = 'c GMn = -pn TG Ep (1.8) 

This parameterization was also considered by Galster et al., 
20 and it 

gives a value for GEn which is about a factor of two higher than the 

Best Fit value, and is at the upper edge of the large experimental error 

bars in the Q2 range up to 1 (GeV/c)2. Therefore, it is a plausible 

estimate for GEn and is used here simply to give an idea of the size and 

shape of a GEn that might be required to explain the discrepancy between 

the RIA and the data for A(.Q'), assuming for the moment that other 

possible mechanisms, such as meson exchange currents, are not present. 
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If we ignore the IJL curves and consider only the Dipole and the 

two Best Fit curves, we see in each case the curves for A(Q2> lie below 

the data by as much as a factor of ten. The spread in values, mainly 

due to different values for GEn, is less than a factor of two. This 

spread is about the same size as that due to different deuteron models, 

excluding the Feshbach-Lomon models, as shown in Figs. 2-11. The dis- 

crepancy with the data has been increased by making the calculations 

completely relativistic, as pointed out above. 

A major task, then, is to explain this rather large disagreement 

between the RIA and the data. The favorite mechanism suggested as the 

possible source of the extra cross-section needed is the possibility of 

scattering from meson exchange currents. It is clear the meson exchange 

current processes must also be included and calculated to all orders in 

q2/M2 as are the impulse contributions in our treatment before the com- 

parison with the data can be used to deduce information either about 

deuteron wavefunctions or nucleon form factors. However, in the mean- 

time, we can see from Figs. 17 and 19 that it is possible that at least 

some of the difference between the RIA and the data might be due to 

using values for the neutron form factor GEn which are too small. The 

curve where Fin was set to zero are seen to pass nearly through the 

data over the entire Q2 range for the HM3 wavefunction and to give much 

improved agreement with the data for the x=0.4 wavefunction. 

D. Behavior of the form factor at ultrahigh momentum transfer 

In the ultrarelativistic region Q2 = -t >> 4M$ our results can be 

analytically expanded and the leading term in a power series expansion 

Mi/Q* can be obtained. This is of considerable importance for comparison 
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with the quark model 24,25 and to assess the importance of meson exchange 

effects14'15 at high Q2. 

The actual calculations are in Section II-E, and we shall just make 

some comments and state the results here. The high momentum transfer 

behavior of the form factor depends upon the high momentum behavior of 

the vertex function or wavefunctions. If we assume that the wavefunctions 

go like p -N , where p is the magnitude of the relative momentum, and that 

the nucleon form factors go like t -2 , then the deuteron structure func- 

tions go like 

A(t) -f t -(3+ 2N) 

B(t) -f t -(2+2N) 

so that if we define an angle dependent form factor by 

c.1 .9) 

[A(t) + B(t) tan2 0/2] (1.10) 
NS 

da do 
dR = dONS F;(t, f3) = 2 

then at fixed angle, 

? Fd”(t,e) + t-(2+2N) ’ (1.11) 

and the B(t) or purely magnetic term dominates A(t). 

The power N at which the wavefunctions go to zero at large p can be 

determined by studying 26 the (covariant) wave equation which one uses to 

solve for the deuteron vertex function. We use the formulation where 

one nucleon is restricted to the mass shell, 4 and we suppose that the 

binding is given by a series of one boson exchanges with each BNN vertex 

having a form factor which goes like (r2 -t p: + Pi)-", where r is the 

momentum transfer through the boson and pl and p2 are the nucleon four- 

momenta. If the BNN couplings include no momentum dependent terms like 
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r5P PV 27 
,or1: 4 

V’ 
then it is reasonable to choose ~=l, while if there 

are such momentum dependent terms, E= 3/2 would ensure the same asympto- 

tic behavior. In these cases, one would obtain N= 4, and 

A(t) * t-l' 

B(t) + t-lo 

F;(t,e) + t--l0 (1.12) 

To compare our results with the quark model, we must be careful to 

remember that the quark model results are usually stated for the limit 

when t becomes large with s/t fixed. (This was overlooked in Ref. 2 

leading us to an erroneous conclusion.) Using the relationship 

tan2 O/2 =' 
-M;t M2 

= 
(s-M;)~ + (s-M;)t - M;t 

d fl(t/s) (1.13) 
-t 

(where the last part is true for s >> M* d and c.m. scattering angle not 

directly backward), we obtain 

2 
Fd - 

t-(3+2N) + t-ll . 
s/t fixed 

(1.14) 

Since the quark model predicts a t -10 behavior for this quantity, we 

see that the RIA falls faster than the quark model at large t. This has 

implications for the role of exchange currents, which we will discuss in 

the next section. 

E. The role of exchange currents 

Before the experiment of Ref. 1, meson exchange currents were 

expected to dominate elastic e-d scattering at momentum transfers above 
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1 (GeV/c)2. Since the data turned out much smaller than predicted by 

the early meson exchange calculations, 15 there has been some confusion 

about their ultimate role. 

First, we wish to clearly distinguish between the so-called pair 

currents, illustrated in the last two diagrams of Fig. l(b), and terms 

in which the photon couples directly to mesons, as shown in Fig. l(c). 

When four-component wavefunctions are used this calculation consistently 

incorporates all contributions from pair currents, which we find it 

helpful to regard as relativistic effects. In this part our discussion 

will he directed only toward the true exchange currents of the type 

shown in Fig. l(c), not included in this calculation. 

Our discussion should also distinguish between asymptotic Q2 and 

currently feasible experimental Q2- At asymptotic Q2, we have seen that 

the quark model predicts a different and slower falloff with Q* than the 

RIA. If the quark model result correctly describes ultrahigh Q* e-d 

scattering, then the impulse approximation cannot play an important role 

at those momentum transfers, and one can argue that, in nuclear physics- 

terms, the exchange currents dominate. We remind the reader that the 

pair currents are properly included in the RIA, and this means that they 

cannot be among the dominating terms at asymptotic Q*. 

The Q2 region of the American University -- SLAC experiment' is, 

however, not at asymptotic Q2, defined by the condition Q* >> 4M2 = 
d 

16 (GeV/c)2. However, the exchange currents may already be important, 

particularly since our own calculations do not saturate the data. How- 

ever, reaching definite conclusions about the size of the exchange 

currents by subtracting our calculation from the data should require 
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better independent knowledge of the deuteron wavefunction and, especially, 

of the neutron charge form factor. While it is now clear that the early 

calculations 15 were too large because they omitted form factors at the 

nucleon vertices and used couplings that were in some cases too large, 

recent calculations 14 suggest that the pny contribution is nevertheless 

large above 2 (GeV/c)2. However, in the RIA the full calculation differs 

significantly from a calculation that includes terms only to order Q2/Mi, 

so we feel that the exchange current calculations also need to be done 

fully relativistically. 

F. Low Q2 results 

In Section II we show that when (Q/M)* is small, our formulae 

reduce to the correct nonrelativistic limit. In addition to the 

usual integrals over products of S and D-state wavefunctions, we also 

obtain terms corresponding to overlap between these wavefunctions and 

the P-state wavefunctions, and terms corresponding to products of P-state 

wavefunctions. At Q2 =0 these terms give corrections to both the magne- 

tic moment and the quadrupole moment. Most of these results have been 

obtained previously by other investigators 12,28 but we shall record here 

the magnetic moment and quadrupole moment formulae since the corrections 

due to the extra parts of the wavefunction may he larger than the experi- 

mental errors in the measurement: 
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u’d = (1+G2) (l-;Pd -$Pvt- Pv ) 
S 

co 

+ +P,++P 1 

Vt - z Pvs - fi F2 
J 

dr vt vs 

0 

+ $ / dr Mr{vt(u - fiw> - vs(fiu + WI/ + A,, (1.15) 

0 

2 
Md fi 
4M2 Qd = G 

(1.16) 

+[2;2+1]&+s+~,) -+w(2vt+;vs)]+AQ 

0 

where ? 
Md 

2 = (.II~+IJ,- 1) 2~' up and v, are the proton and neutron magnetic 

moments, Au and A9 are additional corrections of order p2/M2, given in 

Section II, Eq. (.2.77), and 

00 

Pd = 
/ 

w2 dr 

0 

m 

Pv = 
I 

vf dr 
S 0 

m 

Pv = 
J 

t 0 

vt dr (1.17) 
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We can also very easily obtain the corrections to first order in 

Q2/M2 to the charge and quadrupole form factors from our formulae, and 

these are given in Section II. It is not surprising that the part of 

our result for those terms which comes from products of the S and D- 

state wavefunctions is identical to that obtained earlier hy Gross 29 

using the same general method that we use here. Friar12 and Coester 

and Ostebee28 use a different technique, hut the calculation of Coester 

and Ostebee and our calculation agree precisely and both have some terms 

proportional to the potential not included by Friar. However, it has 
. . 

recently been shown 11 that the extra "potential" terms we obtain corres- 

pond to renormalization corrections and part of the "pair" current 

corrections if one uses the framework employed by Friar, and that when 

one adds the terms linear in the P-states, our corrections to first 

order in Q2/M2 agree with the sum of Friar's relativistic corrections, 

the renormalization corrections of Gari and Hyuga, 13 and the "pair" 

current corrections. 
14 Hence, it now appears that both approaches agree 

to first order in Q2/M2 as long as one is careful to include all of the 

effects. 

The advantage of our approach, however, is that we automatically 

include corrections to all orders in Q2/M2. In Fig. 22, we have com- 

pared our result with the Q2/M2 expansion for the Reid soft core wave- 

function. Note that the "potential" terms make the largest contributions 

(as observed by Coester and Ostebee 28 > and that the Q2/M2 expansion 

follows the full result out to about 80 Fa2. The "argument" shift pro- 

posed by Friar some time ago is also shown for comparison. 
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We conclude that if one does not require a precise theory, the 

first two terms in a Q2/M2 expansion will probably be sufficient for Q* 

below about 80 F -2 , but that a precise calculation requires the full 

theory even at lower Q2. 

G. Estimate of a theoretical uncertainty 

Our calculation of the RIA makes the approximation that the spec- 

tator nucleon is on shell. In this section we will estimate the error 

involved in this approximation and will see that the error is about the 

size of the terms quadratic in the P-state wavefunctions and small com- 

pared to, e.g., the differences that result from using different wave- 

functions. 

The simplest way to make the estimate is to work with a scalar 

deuteron made from two scalar nucleons. In this case, the d-n-p vertex 

is described by only one scalar function P, which we shall treat as a 

constant. We begin with the triangle diagram as in Fig. l(a), and allow 

the spectator to be off shell, so that 

mO G (.Q~) = iF(Q2) 
4 

% p2 
2 (Do - PO) 

(2~) (P*-M~)((D-~)~-M*)((D~-~)~-M~) 

(1.18) 

where F(.Q2) is the isoscalar nucleon form factor, and we work in the 

Breit frame 

D = Do 9 - 5 1 6) ; D' = (Do,++;) . (1.19) 

Doing the integral in p. by the residue theorem gives three terms, and 

after combining the two terms which come from the interacting nucleon 
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poles we get 

G(Q2) = F(Q2) 2D 
/ 

d3p p2 

0 MO3 

+ 
2D0 + E+ + E 

(E++E~)[(D~+E)~-E~][(D~+E-)~-E*] 
(1.20) 

where E = E(G) = 2% (M2+p > , and E, = E(c-+&. The first term comes 

from the spectator pole and is the term we have kept in our calculation; 

the second term is the correction. The second term is of order p4/M4 

compared to the first term. 

Finally, it can be seen from the definitions of the wavefunctions 

that the P-state parts are typically of order p2/M2 compared to the 

S-state contributions (see Section II). (One might also see this 

directly above by decompsoing the interacting nucleon propogators in 

the first term above into positive and negative energy propogators in 

some appropriate reference frame. The former give the analog of the 

usual S-states and the latter give the analog of the P-states and are 

clearly smaller by a factor p2/M2.) Therefore, one expects the correc- 

tion or the uncertainty to be of the order of the size of the contrihu- 

tions quadratic in the P-states. A glance at Fig. 15(b) shows that the 

correction is roughly of the size of the difference between (AFull/%) 

and (A.Lin'ANR) 9 which is not negligible, but which is nevertheless 

smaller than other effects at low Q2. The uncertainty is about 10% at 

Q2 = 4 (GeV)2. 
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11. 

This 

tic 

(D) 

for 

A. 

The Calculation 

We now turn to a description of the details of the calculation. 

section is divided into 7 parts: (A) Kinematics, (B) The Relativis- 

Impulse Approximation (RIA), (C) The Matrix Elements of the Current, 

The Final Formulae, (E) The Ultrahigh q2 Limit, (F) The Formulae 

Low q2, and (G) Numerical Evaluation of the Integrals. 

Kinematics 

The matrix element of elastic e-d scattering is 30 

A = e2 & y" dib Gp(q2) 

q2 
(2.1) 

where u and E are fermion spinors and k and k' are the 4-momenta of the 

initial and final electrons; D and D' will be the 4-momenta for the 

initial and final deuterons. Also 

q!-J 3 (D' - D)u (2.2) 

and 

-q2 = -(D'-D)~ 5 Q2 2 0 . (2.3) 

The interaction of the deuteron with the virtual photon is fully des- 

cribed by the vector function Gu, which can be decomposed into 3 scalar 

functions according to31 

G'(q*) = - 
i 
Gl(q2)(c'* l [)(D+D')' 

+ G2(q2)[F%'* l q) - 6% l q)] 

2 - G3(q ) (6 l q)(E'* l q)(D+D')' 
2 c-2 .4) 

2Md 
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Here 5 and 5' are polarization 4-vectors for the incoming and outgoing 

deuterons, respectively, and satisfy 

5 l D = 5’ . D’ = 0 . (2.5) 

It will be convenient to do much of our calculation in the Breit 

frame, where 

q = (0 , 6) 

D = (Do,-& 

D’ = (Do , 

k 
Do = M; + +Q2 (2.6) 

and we choose 6 to he in the positive z direction. Note that because 

of the convention (2.3) Q* is both the negative of the square of the 

4-momentum transfer and the square of the 3-momentum transfer in the 

Breit frame, and Q will always represent 161. In this frame, the three 

polarization states of the incoming deuteron are 

Eu(+l) = (0, Tl , -i, 0) / AT 

9 (0) = (-Q , 0 , 0 , Do> / Md (2.7) 

where the argument of the 5 refers to the component of the spin in the 

z direction and not to the helicity. 

In the Breit frame Gu can be rewritten in terms of quantities with 

a non-relativistic appearance if we introduce rest frame polarization 

vectors 
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$(.+1) = t;q+l) 

5;(o) = (O,O,O,l) . 

Then, in the Breit frame, 

Go (q2> = 2D0 $6" 
i 

l to) Gc(.q2) 

+ 

[ 

G;* l 5 Go l 6) 
_ 3 q(;, . ;;*)I GQ(q2) 

2M; 

Z(q2) = Do 
- 

* +,* + 

Md 
6,tC, l Q) - i;*ti, l $1 G,(q2) 

(2.8) 

(2.9) 

where we have used.the charge, magnetic, and quadrupole form factors 

GC = G1+ $G 
Q 

GM = G2 

GQ 
= G1 - G2 + (l+n)G3 (2.10) 

where r, = Q2/4Mi, GC(0) = 1, GM(O) = pd in units (2Md)-I, and GQ(0) = Q, 

-2 in units Md . As we do our calculation, Eq. (2.9) will be useful in 

letting us pick out GC, GM and GQ directly. 

Also in this section we will collect a few formulae related to what 

we call the relativistic deuteron wavefunction, or, more precisely, the 

bound state Bethe-Salpeter wavefunction with one leg on shell. Consider 

a deuteron with momentum D and polarization 5 breaking into nucleons of 

momentum p and D-p, conserving energy and momentum. The momentum p is 

to be on shell, p2=M2, forcing the other nucleon to be off shell, 
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(D-pj2 # M2. The d-n-p vertex function and the deuteron wavefunction 

are defined by 

<psl+(.O) ID<> = 
[M-I-Y l (D-P)] Fx (p,D) 5,CzT (p,s> 

L/S (M"- (D-pj2) 

= $u(p,D) 5, . (2.11) 

The first line defines the Blankenbecler-Cook' d-n-p vertex function, 

T, which is a 4~ 4 matrix in dirac space and is a function either of D 

and P or equivalently of D and the relative momentum prel, 

P = 
rel P- +I) . (2.12) 

We will specify the vertex function further only to note that four scalar 

functions are imbedded within it: 

p= p GiJ FY +MP,,~ - 
M-Y* (D-P) 

M )C 
Hv~ +Lpu 

M rel I 
(2.13) 

F,G,H and I are functions of pzel, and our results could be written in 

terms of them, but we have chosen instead to use four equivalent func- 

tions now to be defined and whose nonrelativistic analogs are obvious. 

Equation (-2.11) defines the wavefunction, 4 which as written above 

has two suppressed indices, one dirac index for the off-shell nucleon 

and one spin index s for the on-shell nucleon. In the rest frame of - -- 

the deuteron g= 0, crel= $, and we define 

A 
'!'s.$P,Md)60A = (2.14) 

where Md can be a shorthand for the &vector CMd, 6, . 
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This definition was motivated by the observation that the propaga- 

tion of an off-shell particle (momentum -s) can be viewed as a super- 

position of positive and negative energy on-shell states. (.If D-p could 

be on-shell, the second term would be absent.) Using the decomposition 

M + Y l (Md - P) 

M2 -@fd-d2 

u(-G,r) U<-&r) 
2E -Md 

P 

v( G,-r) G(G,-r) 

Md i 
(2.15) 

where E 
P 

= (M2 + ;2)', we get (still in the rest frame) 

Ep (23 
P 

- Md' 

i&-r) 6; $,(P,Md) c GT(;,d 
(2.16) 

EM 
P d 

Now a small amount of manipulation allows us to define the four wavefunc- 

tions that we will use in stating our final results. We have4'8 

VJp = -A- 
& [i u(p) - -L w(p) z*i, + 

fi ) 
3w(p>s 851; l To 
fi 1 I 

(io,) 
rs 

6,$ = J- - 3 

4% w- 
TV,(~) i~*i,x~o + fi v,(p) C l i, (icr,) 

1 1 rs 

(2.17) 

where u and w are the familiar momentum space S and D-state wavefunctions 

and vt and vs are the spin triplet and singlet P-state wavefunctions, 

respectively. Care should be taken to observed that the matrix indices 
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on the RHS of the equation are reversed from those on the left-hand 

side. The numerical factors have been chosen to give the momentum 

space normalization 

co 

J 
p2dp(u2+w2+v:+vi) = 1 . 

0 

(2.18) 

The Fourier transforms are 

m 
u. = 2 

$/ 
- 

r IT p2 dp j,(pr) u(p) 

0 

co 
w(r) = 2 

r u- 7 p2 dp j,(pr) w(p) 

0 

Vt9s(r) = p2 dp j (pr) v,,,(p) 1 , (2.19) 
r 

0 

and in coordinate space 

Q) 
J dr (u2 + w2 + vt + VI) = 1 . 

0 

(2.20) 

B. The relativistic impulse approximation (RIA) 

The calculation is based on the diagram shown in Fig. l(a). The 

full diagram is 

Gp(q2) = -i 
/ 

d4p ,,{ (M+tiT) C?(p',D') 5;* 
M+$'-p 

(2T)4 tM2-p2-ie M2- (D'-p')2-is 

FU 
M+$-$ 

M2 - (D-P)~ -is 
&.p,D) CA C 

I 
(2.21) 
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where C is the Dirac charge conjugation matrix, Fp the isoscalar nucleon 

current 

Fu = Fls(.q2) Y' + 
icr" 
T 9, F2,(q2) (2.22) 

where FIS and F2S are the Dirac and Pauli isoscalar form factors norma- 

lized so that 

Fzs(0) = -0.12 (2.23) 

and I' is the deuteron-nucleon vertex function for the incoming deuteron. 

The vertex function for the outgoing deuteron can be computed from that 

for an incoming deuteron by 

r-t’;: = y” r+ y” (2.24) 

To obtain our starting formula, we perform the integration over po, 

retaining only the positive energy pole from the spectator. The validity 

of this approximation has been discussed elsewhere 32 and in Section I-C. 

We next substitute the relativistic deuteron wavefunction defined in 

Eq. (2.11) to obtain 

G’ (.q2) = 2D0 
/ 

d3p + ;;,(P',D')S'* 
P 

V 

(2.25) 

The a and ~1' are Dirac indices, s is a 2-component spin index, summation 

over repeated indices is implied, and 

-V 
J, 

sa - 

QV 0 

sci 
1 Y t 

a a 
(2.26) 
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We shall now write each deuteron wavefunction as a rest frame 

wavefunction boosted to the Breit frame. Our notation now will be that 

p is the spectator momentum in the Breit frame, pl is the spectator 

momentum when viewed in the rest frame of the initial deuteron, and p 2 

will be the same momentum in the rest frame of the final deuteron. In 

the rest frames, the 3-vector part of the spectator momentum is the same 

as the 3-vector part of the relative momentum that we used in defining 

the wavefunctions u, w, vt and vs. 

The Lorentz transformation properties of the JIia are evident from 

its structure. First we note that any spinor is given by 

u&s) = S(Lp) u&s) (2.27) 

where L 
P 

is a boost in the G direction, and that 

S(Lp) = e' l ; c/2 

cash 5 = Ep/M (2.28) 

and 2 are the Dirac matrices (not to be confused with the index a). 

Then for any boost Al in the z direction 

S(A,> u(A;li: , s) = u(;,s')~!;~) (Rl) 

w2)” fl’(nl) u-T(*;li:, s) = u-T(;,s’> gsvs 
(Rl) (2.29) 

where R 1 is the Wigner rotation 

R1 = Lplhl L -1 

*1 p 

(2.30) 
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Therefore the wavefunction in the moving frame is 

5, $ia(p,D) = aat(-*,) &+;,a,(P1,Md) ka;;!2)(R1) (2.31) 

where Sx 0 are the polarization vectors (2.8) of the deuteron in its rest 

frame, and Al is now the boost from the rest frame of the initial 

deuteron to the Breit frame, 

AIMd = D 

*1 Pl = P 

*, 5, = 5 . (2.32) 

We now use (2.31) to replace the wavefunctions in (2.25) with rest 

system wavefunctions. We obtain 

G’ (q2) = 2Md 9@2)*(R2) 6;; T; .(p2,Md) ss 2 2 

-lJ XF aa' 5 x OX 'slat(p19Md) gssl (1'2)(R1) (2.33) 

where the transformed form factor F" is 

3 = &A,) F' StA,) (.2.34) 

and A 2 and R 2 are the boost and Wigner rotation for the outgoing deuteron 

A2 Md = D' 

-1 
A2 = Al . (2.35) 

Substituting the decomposition of the wavefunction into 9' into 

our formulae and remembering that summation over repeated indices is 
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implied gives us the result 

G’ (q2> = 2Md 
J I 

+t 
d3p JI 

r2S2 
G,) p* lJ+ 

'Ir2'1 Slrl 
G,) 

+J, 
+t + 
r2S2(P2) :;'; *; r (Q 

21 11 

+J, 
-t + 
r2S2(P2) ;;-: +; r (Cl) 

21 11 

+JI 
-+ 3 “p- - 

r2S2(~2) Fr r $s r (cl) 9i;$;)(R;lRl) (2.36) 
21 11 

where the current matrix elements are 

p* = 
'25 

$- 2-C,,r,) F’ u(-&,rl) 
P 

p-+ = 
r2r1 

f- 3;,, -r2> 2 u(-C1,rl) 
P 

;‘“+- = 
r2rl 

$ ;(-G2,r2) 2 vdl ,-r,> 
P 

F”i-- = + a;,, -r2) ? v($l,-rl) . 
'29 P 

(2.37) 

Equation (2.36) has a structure which can be easily understood. 

It gives the form factor as a sum of 3 types of terms 

Gu (q2) = GF(q2) + G;(q2) + G;-(q2) ’ (2.38) 

where the first term, the (tt) term, corresponds to the virtual nucleon 

being in a positive energy state both before and after the interaction 

and is the relativistic generalization of the usual nonrelativistic 

impulse approximation. If the P-states of the deuteron were negligibly 
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small, this would be the only term which would contribute. The next 

term in (2.38), the (+-) term, corresponds to the overlap between posi- 

tive and negative energy states. Finally, the last term gives the 

contribution from products of negative energy states alone. 

The Wigner rotations R1,2 are 

. . 
-&a w 

. 

&/a 
&u 4 

(R1,2) = e 
-+34 e 2 2 1,2 e2 3 (2.39) 

where 9 is the azimuthal angle of 5: and 

(Ep+M)(Do+Md) - + p,Q 

@‘fd (El +M) (EP +M) (Do +Md) 

;P~ Q 

$Md (E1+M) (Ep+M) (Do+Md) 
(2.40) 

In these formulae, p, = pcos 8, p, = psin0, and El = (M 
2 +2 l/2 

+pl) . 

The rotation R2 has the same form, but with El replaced by E2 = 

(M2+;;)1'2 in the denominator and Q replaced by -Q in both numerators. 

When these results are combined we obtain 

gw2) -1 
Jtl + i';:* ($x6/2) 

CR2 R1) = 
Md&E1+M)(E2+M) 

where 

&P = MdEp + DOM ' 

(2.41) 

(2.42) 
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C. The matrix elements of the current 

The matrix elements of the current are straightforward, but tedious 

to claculate. We will merely list the results here, which can be 

expressed as matrices in a 2~ 2 spin space. 

To calculate the charge and quadrupole form factors we need only 

the time component of the current, F". Each of these matrices can be 

given in terms of two scalar functions: 

+ 2;: l (c x 6) 
I 

Yh . (2.43) 
J(E1+M)(E2+M) 

The expression for FoO-- 
"o* has the same form as that for F , ad 

"o-+ F = (p-)+. 

The X's and Y's are given in the formulae below, where Q = 151 

and P, = pcose, p, = psin8 and K = Md(E1+M)(E2+M). 

a*= F1 2E ~~54 - 
p,2Q2 

P P 
"/Np + - + P2 

2M; ' 

Kyft= F2 
FIEp+ M 

&-E 
d p 

Kx+- 
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QEp) 

m-- = F2EJtt- F2 2 2 
1 P P ZlQ Pl 

Ky-- = 
FIEp + 

F2 yy4f 
P (2.44) 

To calculate the magnetic form factors we need the spatial com- 

ponents of the current. We calculate the (+) component defined as 

;(+I = 1 
[ 

p 
Jz 

-I- Gty)] (2.45) 

For these components it is convenient to introduce four scalar func- 

tions to describe our results: 

--w%w-;(+)++= Qx++c;‘+ y++ I z*;:.;: AttQ;:.; 
&E1+M)(E2+M) 2p- 2p- P- 

1 

-df.L&(+)+-= x+-u+, Y+- I Zbu I A+-:.; 
J(E1+M)(~2+~) 2p- 2p- 3 

P- 
1 

(2.46) 

where p- = -g- (P,- ip,) and GL = (Px.Py'OL The decomposition for the 

(--) components is the same as for the (+l-> components, and the decom- 

position for the (-+) components is the same as the (+-). The functions 

are: 
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Ki*= F1 
2D2 
-+ (M2 + p:, + 

2DOE M 

Md Md 
“-P:+ Mpp 

I 

F2E JZ? 

) 1 F2 22 
+ 2DOM + 2~ Ep P, Q 

2 PzDO 
KZ* = F1 2p, M - 

DO 2 

d 
F2 M Pz Pl 

3 L 
Pl 

KA*= F12 - F2 2 
-%i ‘1 Md 

2D E 
+A& 

Md I P 

F2Q2 2 
+ 2MMd DOpz - Ep(DoEp + md> 

I 

QP,~ 
KY+-= Fly -+Qpz + DOEp 1 F2 2 

d 
+~QP, + md I 

2 
Pl 

n+- = F1 F 
d 

Q(D E + MdM) - 2D;pz 
OP I F2 2 2 

-2MQ p1pz 

KA+- = 2 
-F1 Do Pl 

l2 
KX-- = -F1 p: - ~EpcAlp 

Ky-- = FL2pfJ1C - 
r2 2 2 

P 2M Q plEp 

DO 
KZ-- = F2 M p, P; 
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x-+(P) = X+-(P) ; Y--+(P) = Y+-(-p) 

z-+(p) = -z+-C-p) ; A-+(P) = A+-c-p) . (2.47) 

It is now a straightforward matter to combine these matrix elements 

with the Wigner rotations and the expressions giving $' in terms of u, 

w> v t and v 
S’ 

Since the indices for the wavefunctions in matrix form 

CEq. (2.17) I are reversed, the expressions in (2.36) become a trace of 

products of Pauli matrices which are not difficult to evaluate. The 

terms in GC and G Q can be separated by averaging over 4. The results 

are given in the following section. 

D. The final formulae 

In this section we quote the final formulae. Each of the form 

factors can be written as a sum of three terms 

Gi = G' + G; + G;- (2.48) 

where i = C,Q, or M for the three form factors. Letting j stand for 

(tl-) , or (+-), or (--), we denote the typical 

The Gi's must be computed 

products of the momentum space 

m 

G; = 
s p2 dp 
0 

Using the notation 

numerically by 

wavefunctions: 

+1 

. 
term by Gi. 

double integration over 

dz 
1 

8~ E 4; . (2.49) 

-1 GP 

u1,2 = u(p1,2) - Jz: 1.W(Pl 2) 
, 

w1,2 = Jz _2_W(.Pl 2) 
, 
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t 3 
9,2 = - -z J-- V&P1 2) , 

?,2 = d-7 vs(Pl,2) (2.50) 

the S's are: 

+t 
6 = (2ApX++ - pfQ2Y*) UlU2 

1 w1w2 + $JlW2 + 32 

PlP2 1 
+ (x++ +2&y*)LWlW25 2 2-t 

P 3 g Md ', Q ('1 "2' 

+ Y++Q2p: -$JlU2 

u1w2 
---y (2Pzz-P:) 

p2 

+ 
w1w2 
-yy ($1 l S,) (Plz Pzz- ; Pf ) 
PlP2 I 

[ 
3u1w2 

+ (X*+2&8pY++) p: Q2 2 
WW QE 

p2z + -++ $(PlzP2z- +PfI 

p2 PlP2 d 1 

- y* 2 2 
p, Q v2 i 

SM" = 2Md 
1 

(U1U2 + UlW2) 
L 

2dp(X*+A*) - 3 (Y++- QZ*) 
3 

u1w2 +- 2 -(X*+~A++)P~(~~-$ p2z) - Z*(Ap p2z+ ?,,2) 

p2 
1 

+ 
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+- 
4 = 2(2e~$~X++pfQ~Y+-) 

vs 
Q + f U2 p plzQ 

1 

t S 

+&- w2v1 Q2p2 L + 1 w2v1 
IM Qp2z ($1 l z2) 

P2Pl d -? 2 
P2Pl 1 

+ 2(X+- 
p,2Q2 

-UpY", --y- 
[ 

U2vs w2v: p2z W2VS 
--- 

Pl 
2 

P2Pl 
-QEp+ -y-- 
Md 

6, l G,) 

P2Pl 1 
- 2Y 

+- 2 2 2 u2v: (2Jtl +Qp 
p,Q 3 - 

) 

Pl P lZ 

t 
= 4M; 1 (2c/ttpX+-+p;Q2Y+-) 

-"2v1 Plz + U2VS Plz 
~ - -- 

Pl Q Pl Q 

w2v; P: 
- -- (Pzz 

w2vs P2z 
2 Q +iPlz) + 2 -Q (PlzP2z- ;P:) 

P2Pl P2Pl 1 

+ <x+- 
2 3 U26 

I 

1 U2VS 
-2JllpYf-)P1 yp--- 

1 2 Pl 

t 
w2vl 
- P2z(P2z 

W2VS 
+ 2 + 3Plz) + 2 (PlzPZz - $PlI 

P2Pl P2Pl I 

-I- 2 U2e I 
+y p,- 

Pl 
‘2Ap + QP,,)~ 
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2’4d ( 
t 4; = - ( >[ v; vl 

Q 1”’ <+< 
-X+-(.2plzcAp + $ Q $1 

+ Y+Jtfp + “+‘“&lp - ;Qp,,) - A+-QP; 
I 

+Q ~1~) - A+- 2plzJup 1 
VSW2 

2 

+- 2 -(X+ + 2A+-> P, CAP - -$p2z Q) 

PlP2 
Md 

Z+-QE 
’ 

Md 
(Ap~2z+ +QP,~) 1 

l ;,, w p 
Q2~;~2zEp 

p 2z+;Q~3 - 
2Md 

+ Y t + + P'd, + z+-(;I l ;,)(,Ac6 - +QP~~) 

+ A+-(plz P2z - P:) (2Mp p2z + 9~:) 

+ (2dpX-- + p,2 Q Y--l 

+ (2JcdpY-- -X 
-- 2 2 2% v2vl 

17~~9 Md 
PlP2 
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-- 
@Q i 

2dtvx-- v>; =2$ 'P-- 
Q2 Iv2 

C$P;-PlzP2z) 

v?: 3 4 VtVt p2E 
+ Y-- - 

PlP2 -i-PI 
- (2dzpY-- +x--) --g * 

d 

v;v; 
+ (2ycLpX--+ p:Q2Y--) - 

(p1zp2z- 

PlP2 Q2 
2 v)J; 

+ 2(2JtlpY---x--) 3 - (Plz+ 
Q PlP2 3 p2z) i 

Pl”(Ap + Qplz) - 
y--dM Plz 

Qp 

+ z--(p Jtt - 
lz P 

$Qp:, + A--p; '2Ap + Qplz) 

vyv; 
+- 

PlP2 

% +- 
PlP2 

-- 
-x-- +QP,~P~~+ 

y &pp2z 
Q 

-X--dp(& l ;,) - (X-- + 2A--1 p2z 'Ap plz - +QP,~) 

- y-- 3 
-- 

GlG2) + z P2z CAP + +Qplz) 1 I I 
(2.51) 

Recall that & and s2 are the relative 3-momentum of the incoming 

and outgoing deuteron, respectively. We have 

-+ DOpz 
p1,2 = p, ' Md p, 

= CPL 9 Plz,2z) (2.52) 
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E. The ultrahigh Q2 limit 

The ultrahigh Q2 limit means that Q2 >z 4M2 d' This is beyond the 

range of current experiment, but asymptotic formulae are of particular 

interest as discussed in Section I. 

As a first step toward determining the power dependence of the 

form factors on Q2 in the ultrahigh Q2 region, we study the generic 

overlap integral 

1C.Q) = / d3p u(pl) u’ (p2) (2.53) 

where u and u' stand for any one of the four deuteron wavefunctions, 

and pl and p2 are the magnitudes of the Lorentz transformed 3-momenta 

given in (2.52), i.e., the magnitudes of the internal relative momenta 

of the incoming and outgoing deuterons evaluated in their respective 

rest frames. We will assume that 

U(P) - P-N 
P+(x) 

(2.54) 

In order to discuss this integral in a reasonably general way, we 

assume that each of the four wavefunctions has a momentum space expan- 

sion of the form 

c 

C 
U(P) = 

i 

i p2 + 0: 
(2.55) 

which corresponds to a position space expansion in Hulthen functions 

of different range 

u(r) = 
SC 

-Bir 
h e 

r 2 ici r (2.56) 
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If we define the nth moment of the coefficients as 

Mn = c 
i 

ci 8; (2.57) 

then when the first n moments of the coefficients are zero, the reduced 

wavefunction u(.r) will go like r n-l at the origin, and the momentum 

space wavefunction will go like p 
-(n+2) if n is even and p -(n+l> if n 

is odd. 

The problem has, therefore, been reduced to understanding the 

behavior of the typical integral 

/ 

1 
Iij (.Q) = d3p 

(P; + 8;) (P; + l35) 
(2.58) 

where, from (2.52) 

2 
p1,2 = p,2 + -+ (DIP,+- $(IE~)~ 

Md 

(2.59) 

For comparison, the corresponding momenta in the non-relativistic case 

are simply 

2 
P, = P: + (P, +_ ;Q12 (2.60) 

The integral (2.58) can be evaluated exactly by first integrating 

over p, in the complex p, plane and then doing the p, integration by 

standard means. The result is 

Tij = 2 (":~i::'"~(; - arctan [-$$ T]) 

- ":yi;'"(: - (2.61) 
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where 

Yi = Jiq- (2.62) 

It is then a straightforward matter to expand this result in a power 

series in Q -1 , and obtain the results quoted in Ref. 2. 

However, it is useful for our purposes to discuss the behavior of 

(2.58) from another point of view. From (2.59) we see that the minimum 

value of pf (pr pz) occurs when 

P, = 0 

Pz=k2M njMT=,+ . 
d d 

(2.63) 

At these two points, which we shall refer to as the "end points," one 

wavefunction has p 2 =0 and the other wavefunction has 

p2 -N - Q4M2 
4 . 

Q -tm 4M d 

(2.64) 

One might expect that the integral would be dominated by contributions 

from the end points, as is the case non-relativistically. However, 

examination of the full denominator in (2.58) shows that, as Q-+03 the 

denominator is of order Q4 over the entire region defined by 

P, 5 Q (2.65) 

so that the end points are not specifically favored. (Non-relativisti- 

tally, the denominator is of order Q 4 everywhere, except at the end 

points where it is of order Q2.) Away from the end points, the Q4 

behavior comes from a Q2 behavior from each wavefunction, which means 
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that the momentum of each wavefunction is large. Hence, we conclude 

that the original integral (2.53) goes at ultrahigh momentum transfer 

like 

I(Q) -+ Q- (.2N-1) (2.66) 

where the extra power of Q comes from the volume of the region (2.65). 

(This can be obtained by expanding (2.61).) 

Finally, we turn to the question of how the form factors themselves 

behave at ultrahigh Q2. Since the wavefunctions do not peak in any well 

defined region, the behavior of the kinematic factors will determine 

what region of the p,, p, space dominates the integrand. For example, 

if an extra factor of p, can be found in the numerator, it must be 

assumed to be of the order Q, and the integrand is dominated by the end 

points, whereas a factor of p, in the denominator will tend to restrict 

the integrand to small values of p, 5 M. Note, however, that a single 

power of p, in the denominator will contribute a factor of 

- Q-llnQ (2.67) 
Q +m 

since the integrand will reach large Q before convergence is imposed by 

the wavefunction. 

Finally, when the kinematic factors are thoroughly examined, we 

obtain the following results: 

GC - 
Q +a, 

GQ - 

GM - (2.68) 
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where we have assumed a Q 
-4 falloff for the nucleon electromagnetic form 

factors. 

The behavior of the A and B form factors follows from Eq. (.1.4), 

and ignoring the log Q terms we obtain the results given in Eq. (1.9). 

The final results depend on N, as discussed in Section I-D. 

We turn now to a discussion of our low Q2 results. 

F. The formulae for low Q 2 

Formulae for low Q2 have been obtained previously, and so we shall 

take the low Q' limit of our formulae mainly to show our agreement with 

the earlier work. By low Q2 we mean that n = Q2/4M; << 1, so it is 

only necessary to retain terms of first order in (.Q/M)2. However, we 

will not assume Q2 is so small that it is much less than $2, a typical 

value of the integration variable. Assuming that the dominant contri- 

butions come from the (+t-) parts, we will calculate these to first 

order in (Q/M)2, and the remainder only to lowest-order. Furthermore, 

we will calculate the magnetic form factor only to lowest-order, since 

the leading contribution from this term to A(QL) is only of order T-I 

anyway. 

With these simplifications, the momentum space formulae can be 

written (following the standard style for low Q2 results) 

GC 
= GES DC + (2GMs - GEs) DE0 

GQ = GES Q D + (2GMs - GEs) D; 

GM = E M 
GES DM + GMS DM (2.69) 
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where GES and GMs are the isoscalar electric and magnetic form factors 

of the nucleon, related to FIS and F2S by 

GES = FIS - 

GMS = FIS + F2S 
(2.70) 

and the D's are body form factors involving the deuteron wavefunctions. 

We have, 

DC = DC * + D;- 

so 
DC 

sot = D;'* + DC 

-- 
DQ = DF+DQ 

= D "*+D sot 
Q Q 

M 
DM 

= D"*+DM-- 
M M 

E 
DM 

= D;* + DE+ + D;-- 

where 

u1u2 + w1w2 P2& l s2> 1 
-- 

DC = 1 

(2.71) 

soft 
DC 

= 3Q2 

16M2 p+p- 
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D, 
so+ = SJX? 1-A u-vt+G+ l 6) + +vs+(.;+. 4) b 

D++ 
Q 

-- 

DQ 

Dso++ 
Q 

D"* 
M 

- P2Gl l 6) 

Ii 

=- 
3vs+vs 3 - - z Vt+vt- 1 

- + (I;+ l 6-j 1 
= d3p 

Q2 4M2 J 4n 

3 
- -c Pl 2 cc-* 6) P: II 
= + fi u+w- P2($-. ij) 



3 Vt+Vs- 

6 p+p- 

2 
Eu- = 

DM 
_ & W+"- gp, -t - - 

4Tr 
P:P: Q2 

(P- * ';;) (G+ l C-) 

-26 6, ’ 6) vs+u-+ 6 <;+ l Q) Vt+ u- 

E -- DM = 

vt+vs- -+ 

+ : P+P- 
(P+$ + (:,*s)(;-*s)) 1 (2.72) 

The arguments of the momentum space wavefunctions have been abbreviated 

1, 2, +, or -, depending on whether they are pl, p2, p+, or p- (cf. 

Eqs. (2.59) and (2.60)). P2 is the Legendre polynomial. 

+t +t 
As stated above, in the largest terms D C and D 

Q ' 
we retain the 

integrands accurate to first-order in n. In this case, realizing that 

if Q/M << 1 then p/M << 1 also, we expand (-2.59) to obtain 
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+ 
p1,2 = ;,+fi $GJ 

32M2 

p1,2 = I;, 21 , (2.73) 

where cr=M~ and E is the binding energy of the deuteron. In all cases f; 

represents a unit vector in the x" direction (for any x). 

While the low Q2 formulae (2.72) are simple enough, it is possible 

to reduce them to a single integral if we transform them to position space. 

(Unfortunately, this is not possible for the exact formulae (2.49).) To 

do so we use the identities 

W(P) Y2M(P) = 
.-+ + 

w(r) d3r elp ' r Y2M(r) --r-- 

J 
.-+ -t u(p) Yoo(;)) = 1 u(r) 

-G d3r eip ' r Yoo(;) 7 

. J .+ -t 
v(p) 'lM(;)) = v(r) d3r eip l r YIM(;) r 

(2.74) 

.* + 
r 

W(P) Yoo(P) = 1 -45r s 
d3r eip l ' Yoo(f) F+ 3 

/ 
w(r') dr'- 

,2 
0 r 

I 

All the angular functions in the formulae (2.72) can be expanded in 

Y am'~ so that the only combinations needed are those given above in (2.74). 

It also turns out that terms involving the integral over w cancel. 

ft- ft For the more complicated terms DC and D 
Q 

, we note that except for the 

factor M~/D~ all of the (Q/M)2 terms come from the arguments pl and p2, 

and, using a Taylor expansion, we can express these terms as: 
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/ d3p Md 
D f(Plz 9 P2z 'P,> 

0 
(.2.75a) 

z (1 -s)Jd3p[l +g$+ p2$a2 Q2--+] f(p+z,p-z.pL) 

c* l-sl_-~~ - 
8M2 16M2 aQ2 IJ d3p f(~+~ > P-, 9 P,) 

"+a2 + p_2+a2 f(p+Z,p-z,pI) 
2M2 2M2 1 (2.75b) 

The last term on the RHS of (2.75b), with the Schrodinger operators 

P:+a2, gives rise to the "potential" corrections included by Coester and 

Ostebee28 and also by Gross. 29 Only the first set of terms was obtained 

by Friar. 12 In order to remove the "potential" terms we would have to 

remove also the last term from the previous expression (2.75a), but we 

would then lose the other derivative term (obtained by Friar) in (2.75b). 

Hence, from the point of view of our calculation the "potential" terms are 

essentially interrelated with the other corrections. 

Next, we give the position space form of these low Q2 results. If 

'c = Qr/2, and j, is the spherical Bessel function of order R, then 

m 

DC = 
s dr jock) [u2 -i-w2 *v: +vi] 

. b 

dr j,(z) (u2 + w2) 

+ sl d2 -~drjU(1)[u($+a2)u+w(-$-+>+u2)w] 
M2 dQ2 o 
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X 2 w2 

2 - Mr 

00 
LD = 
6fiM; Q / 

2 2 

o dr j2(') 
Vt 

uw 
-- - 

;; + 2fi - 5 1 
- 

( 
$+&$)j dr j2(T) [uw - $1 

+ 92 d2 -jdr j2CIl [w($+ ayu 
2M2 dQ2 o 

+ u- 
( 

++-$+ a2)w - g(-$+-$+CX')w] 
dr 

co 

D:" = s i 
dr [t&mu'-& wu - rww l3 

0 

X 

[ + (j,(T) + j,(t)) + $j- (j,(.c> + j,(.T))] 

+ Mr u $vt + u6 vs 5 (jO(T) + j,(T)) 
1 1 

- Mr(6 wvt) 
[ & (j,(T) + j,(T)) + $ (johI + j,(T))] 

+ Mr@$vs) [$$ (j,(T) + j,(d) - & (jOW f j,(d)]\ 
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M DM = 
/ 

dr [(2u2 - w2 - vi - 2fi vtvs) jo(T) 

0 

+ (fi uw + w2 - v’t + Jz VtVs> j,(T)] 

m 
E DM = 

s R 
3 2 dr TW (j,(T) + j,(T)) 

0 

+ F kt(f+-u-w)- ys(u ++w)) (j,(T) + j,(T)) 

+ vtvs fi(2j,(T> - j,(T)> 
I 

(2.76) 

Finally, we record here the additional contributions to the magnetic 

moment and quadrupole moment presented in Eqs. (1.15) and (1.16). They are 

written as integrals over the full momentum space wave functions and their 

derivatives (denoted by a prime). 

AP = [ p2dp [-;;;' [(U + fiw)(fiU-W) +$U-wj2- 3v:) 

+E-M) 
+A L 

-p 
V 

u-w) (VA+ 
8vt $' + -(7v; +p> 

5fi 

Vt + 5 (37~; - 16 p> 
3 

1 -w v (al-w) 
-xE2t 

+ p3 
fi E(E+M)2 

-Luv 
5Jz t 

++WVt 
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03 
+ J p2dp 

0 

9ci + 1lJz -puw'+ 5 UW+L 3Jz 1 2 5fi - + 
5 (E+M)~ 1 - Tpuw'- TU -uw 3 $w2 I 

I 

+2&-L 
5 E(E+Mj3 

uw\ + F,] p2dp ~L~(-puw'+pVsv;-3uw~ 

0 

+ & [ 22fi -$u2+T- 12 2 uw+Ew +vt 
1 

+ Ah eM 
15 r. 

(al-w&w;- vt) + 2(u+ fiwxpv;+ iv,) 
I 

+2 -L- (&l-w, Vt 
i 

(2.77) 
J? E(E+Mj2 

We now turn to a discussion of the numerical evaluation of the integrals. 
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G. Numerical evaluation of the integrals 

The two-dimensional integrals in Eq. (2.49) were carried out in a 

straightforward manner. For a given value of z, a vector of values of 

the integrand were prepared for each IJ i on a regularly spaced grid with 

spacing Ap and maximum value pm,,. The integrals were performed using 

a Simpson's rule over the Ap, AZ grid. At each Q2 point we first evalu- 

ate the integrals using GES = 1.0 CO.0) and GMs = 0.0 (l.O), and then 

from the linear Eq. (2.69) we determine the deuteron body structure 

functions DG, DQ, Dz, DE, DE', and D so 
Q ' 

The full deuteron structure 

functions can then be found quickly for arbitrary nucleon form factors 

without costly evaluation of the integrals for each case. 

Tests were made to establish that the numerical procedure was 

convergent as a function of the grid sizes Ap and AZ and for the end 

point pm,. The criterion for convergence was that a given decrease 

in step size or increase in pm,, should change the results for the 

charge, quadrupole, and magnetic contributions to A, Eq. (1.41, by less 

-2 than 1% over the entire range of Q2 from 0 to 200 fm . Each parameter 

was tested independently while the other two were set to a convergent 

value. The final parameters used were: 

P = 12 fm-l max 

Ap = .04 fm-l 

AZ = .Ol 

The maximum value of ~1,~ for which momentum space wave functions 

are required is given by Eq. (2.59) with z=l.O, p=p,,, and Q2=<ax. 

For dax= -2, 200 fm -1 this gives ~l,~= 24.5 fm . A table of regularly 



I 

-58- 

spaced p-space wave functions with grid size Ap= .04 -1 fm was prepared 

in advance of the structure function calculations. Wave functions at 

arbitrary p were then obtained by linear interpolation from the table. 

Approximately 45 seconds of computer time on an IBM 370/168 were required 

to evaluate all the structure functions at one value of Q2 for one choice 

of nucleon form factors. 

The numerical values for the deuteron wave functions in position and 

momentum space for the relativistic models were readily available using 

the coefficients for the expansion in hankel functions (of imaginary 

argument) given by Buck and Gross. 8 The numerical values for the Reid 

soft core wave functions in momentum space were obtained here by numerical 

Fourier transformation from the values given in r-space. 5 For the HM and 

LF models, values were obtained from an expansion in hankel function 

(idential to that used in Ref. 8) fit to the original points in momentum 

space or position space as supplied by the authors. The position space 

wave functions used in the non-relativistic formulae were obtained by 

analytic Fourier transform of the momentum space functions. 
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FIGURE CAPTURES 

Fig. 1. (a) The relativistic Feynman diagram which describes the impulse 

approximation (RIA). (b) Three nonrelativistic time ordered 

diagrams included in the RIA. The lines moving backward in 

time are anti-particles. (c) and (d) Two examples of processes 

that are not included in the RIA. Diagram (c) is a meson 

exchange contribution and diagram (d) is an isobar contribution. 

Fig. 2. Numerical evaluation of the relativistic formulae of this paper 
n 

for A(QL) using various two-component deuteron wave functions. 

The models included are: Reid soft core, labeled RSC (Ref. 5); 

three Holinde-Macheidt models, labeled HMl, HM2, HM3 (Ref. 6); 

and two Lomon-Feshbach models with different percent D states 

(Ref. 7). For comparison the solid line labeled RSC-NR, is the 

result obtained from the nonrelativistic formulae evaluated with 

Reid soft core wave functions. Dipole nucleon form factors were 

used in every case. The data for A(Q2) are from Ref. 1. 

Fig. 3. Numerical evaluation of the relativistic formulae for B(Q2) 

using the same wave functions as in Fig. 2. 

Fig. 4. The charge form factor contribution to A(Q2) evaluated using 

the relativistic formulae and the same wave functions as in 

Fig. 2. 

Fig. 5. The quadrupole form factor contribution to A(Q2) evaluated 

using the relativistic formulae and the same wave functions 

as in Fig. 2. 

Fig. 6. The recoil deuteron tensor polarization T(Q2> evaluated using 

the relativistic formulae and the same wave functions as in 

Fig. 2. 
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Fig. 7. Numerical evaluation of the relativistic formulae for A(Q2) 

using various relativistic deuteron wave functions given in 

Ref. 8. The parameter A which differentiates the models is 

described in the text. For comparison, the solid line labeled 

RSC-NR, is the result obtained from nonrelativistic formulae 

evaluated with Reid soft core wave functions. Dipole nucleon 

form factors were used everywhere. The data points for A(Q2) 

are from Ref. 1. 

Fig. 8. Numerical evaluation of the relativistic formulae for B(Q2) 

using the same wave functions as in Fig. 7. 

Fig. 9. The charge form factor contribution to A(Q2) evaluated using 

the same wave functions as in Fig. 7. 

Fig. 10. The quadrupole form factor contribution to A(Q2) evaluated 

using the same wave functions as in Fig, 7. 

Fig. 11. The recoil deuteron tensor polarization T(Q2) evaluated using 

the relativistic formulae and the same wave functions as in 

Fig. 7. 

Fig. 12. (a) the S state, (b) the D state, and the two P state deuteron 

wave functions, (c) vt and (d) vs, for all the models used in 

this paper. Note that the vertical scale of the S state wave 

functions is different from the scale of the others. The wave 

functions are all precisely defined in Section II. 

Fig. S3. Relativistic corrections to the structure function A(Q2). The 

ratio of A calculated with the relativistic formulae of this 

paper to A calculated with the usual nonrelativistic formulae 

is given for each model shown in Fig. 2. Dipole nucleon form 

factors were used. 



-65- 

Fig. 14. Relativistic corrections to the fundamental form factors GC, 

GQ and GM. In parts (a), (c) and (e) we show the relativistic 

and nonrelativistic result as well as the difference between 

the relativistic and nonrelativistic result for the HM3 model 

only. In parts (b), (d) and (f) 

the models of Fig. 2 are shown. 

were used. 

the differences for all of 

Dipole nucleon form factors 

Fig. 15. Relativistic corrections to the structure function A(Q2). 

(a) The ratio RF ull defined in the text is given for each model 

shown in Fig. 7. (b) The three ratios RN one' RLin and RFull 

are compared for the A= 1 model of Ref. 8. Dipole nucleon 

form factors were used. 

Fig. 16. Relativistic corrections to the fundamental form factors GC, 

GQ and GM. In parts (a), (c) and (e) we show for the h=l 

model, each of the four possible ways of claculating the form 

factor discussed in the text, labeled NR, None, Lin and Full, 

together with the difference between the Full result and the 

NR result. In parts (b), (d) and (f) we show the differences 

for each of the relativistic models in Fig. 7. The mixing 

parameter X which differentiates these models is described 

in the text and in Ref. 8. Dipole nucleon form factors were 

used. 

Fig. 17. Effect of various nucleon form factors on the deuteron struc- 

ture functions A(Q2), evaluated using the relativistic formulae 

and the two-component Holinde-Machleidt model HM3 (Ref. 6). 

The various nucleon form factors are: Dipole from Eq. (1.6); 
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IJL from Ref. 22; Best Fit described in the text; Best Fit + 

Fig. 18. Effect of various nucleon form factors on the deuteron struc- 

ture function B(Q2) evaluated using the TN3 two-component model 

in the relativistic formulae and the same nucleon form factors 

as in Fig. 17. 

Fig. 19. 

20. 

21. 

22. 

Effect of various nucleon nucleon form factors on the dueteron 

structure function A(Q 2 ) evaluated using the relativistic wave 

function model for X=0.4 (Ref. 8) and the same nucleon form 

factors as in Fig. 17. 

Fig. Effect of various nucleon form factors on the deuteron struc- 

ture function B(Q2) evaluated using the relativistic wave 

function model for A= 0.4 (Ref. 8) and the same nucleon form 

factors as in Fig. 17. 

Fig. 

Fig. 

Various estimates for the neutron form factor GEn used in this 

paper. The curves are: IJL from Ref. 22; Best Fit described 

in the text; Fin =O leading to the form given in Eq. (1.8). 

For comparison, the dipole curve G 
EP 

is also shown. 

Comparison of our result with various approximations discussed 

in the text. The ratio of A calculated with various approxi- 

mate relativistic formulae to A calculated with the usual non- 

relativistic formulae is displayed. All curves are for the 

GEn = 0, same as the Best Fit form factors except the neutron 

electric form factors GEn was set to zero; Dipole + Fin = 0, 

the same as Eq. (1.6), but with the neutron Dirac form factor 

Fin set equal to zero. 

Reid soft core wave functions with dipole nucleon form factors. 
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