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ABSTRACT 

A new calculational procedure for polynomial lattice field theories 

is discussed that utilizes an anharmonic basis and a general orthogonal 

transformation of coordinates. The standard blocking procedure is shown 

to correspond to a discrete Haar transform of the field coordinates. 

Some generalizations of the Haar transform are given which allow one to 

block an arbitrary number of sites. This is applied to both the energy 

density and to the correlation functions. In this paper only an 

"unperturbed" problem will be discussed, but the unperturbed Hamiltonian 

will be chosen using a variational principle -- it includes couplings 

and nonharmonic effects in a very nontrivial way. Numerical results 

will be given for certain critical indices for a $4 theory in one space 

dimension. 
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correlation function will be evaluated. Numerical results are then 

given, with maps of the ordered and disordered phases, selected critical 

indices, and the correlation function. 

The 2 site blocking procedure is then reinterpreted as a particular 

orthogonal transformation -- the Haar transform. 6 The Haar transform is 

then generalized to blocking M sites at a time and applied to M=4. 

This case leads naturally to the introduction of the discrete Walsh 

transform7 which will be fully discussed in the next paper in the series. 

Finally, some concluding remarks and a brief discussion is given. 

II. The Anharmonic Oscillator 

In this section we present a brief summary of known results for the 

one dimensional anharmonic oscillator and also establish our notation 

which will be used heavily in subsequent sections. We define the 

oscillator by its Hamiltonian 

H(X,f2) = p2+A(x2 -f2)2 (2.1) 

and its ortho-normal eigenfunctions $m(A,f2 ;x) with eigenvalues En(X,f2) 

that satisfy 

H&f21 g$,f2;x) = En(X,f2) $+,f2;x) , (2.2) 

where 

E ,,tX,f2) ;r En(A,f2) n = 0,1,2,... 

We also define the diagonal moments g&f21 by 

m 

Q3 
X,f2) = 

I dx Iom(Lf2;x)12 xN , (2.3) 
-co 
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The moments QN(X,f2) are related to the energy eigenvalues through the 

relation8" 

4A c4(h,f2) - 2f2(N+2) c2(h,f2) + f4(N+l) <(X,f2) 1 
= 4(N+1) Em(X,f2) c(X,f2) + (N+l) N(N-1) c-2(X,f2) . (2.4) 

This equation for N= 0 is the familiar virial theorem. 

It is interesting to note that given the function E,(X,f'), &J. of 

the moments QN(X,f2) (even N) are determined. An application of the 

Feynman-Hellman theorem yields 

a E (Lf2> = 2x 
;3f2 m 

f2 - <tX,f2) I 
(2.5) 

which determines <(X,f2) from Em(X,f2). Using these and the fact that 

<(X,f2) = 1, is sufficient to determine all of the moments from Eq. (2.4). 

Even though there are no "closed form" expressions (at the time of this 

writing) for the Em(h,f2), there exist techniques 
9,lO for their practical 

computation to any desired accuracy (i.e., at least to twice the preci- 

sion to which the reader has the decimal digits of IT committed to memory!). 

Even though the energy eigenvalues and the moments appear to depend 

on two parameters, X and f2, this can be simplified to one through the 

scaling relations 
11 

Em(X,f2) = X 1/3 E (1 f2?3 m 3 ) 

and 

Q3 X,f2) = x -N/6 (f-pf2p) (2.6) 

In Fig. 1 we have plotted Em(I,f2) and <(1,f2) for m=O and 1. These 

were computed using the methods of Ref. 10. 
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Asymptotic expansions for E and Q2 in limiting regimes are easily 

computed from perturbation theory using the techniques of Swenson and 

Danforth. 8 For f2 >, 1 and X = 1, the result is 

3 

whereas for f2 << -1, the relevant expansions are 

EO(.f2) - f4 + &]fj 3 
8filf13 

- o(f-$ 
I 

Q;(f2) = ' 3fi 1 - - 
2filfJ w3 

+ o(f-6) 
I 

(2.7) 

(2.8) 

For notational simplicity we 'shall sometimes omit the subscript m when 

referring to the ground state m= 0, and omission of the argument X will 

imply A=l. 

III. An Example 

In this section a simple calculation scheme will be developed that 

is analogous to blocking two sites at a time. In latter sections this 

will be reinterpreted in terms of orthogonal transformations, improved 

and generalized. Consider a one-dimensional periodic chain of N= 2n 

coupled anharmonic oscillators, whose Hamiltonian is given by 

N-l 
H = P2Q + x(x;- 

22 f ) + A(x&+~- Xa) 
2 
I (3.1) 

R=O 

with xN = x0. 
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Our procedure will be to perform a transformation on pairs of 

coordinates and to "integrate" or "freeze out" the resulting oscillators 

which have the highest frequencies. This procedure is then repeated, 

and after each such iteration, the number of "active" oscillators is 

decreased by a factor of two. After m such iterations, there are 2n-m 

oscillators remaining, and the effective Hamiltonian takes the form 

2 n-m -1 

Hm = 
C[ 

cm + ail + Xm(xi(m)2- fi)2 + Am(xi+l(m) -~i(rn))~ 1 R=O 
(3.2) 

with 
co=0 , X0=X , o=f , Ao=A f2 2 

and 

x0,(0) = XR 

The notation used here is somewhat cumbersome but will prove convenient 

when generalizations are considered in later sections of the paper. 

The procedure for obtaining Hm+l from Hm is as follows. Write Hm 

in terms of the "slow" and "fast" coordinates 

xO,(m+l) = x;n. (ml + x&+l (ml 

Jz 
!2 = 0,1,...,2n-m-1-1 

xl,(m+l) = 
x~kb) - x&+1 Cm> 

ie 

with xl(O) = xR, and the corresponding 

next step is to find the variationally 

(3.3) 

momenta pO,(m+l), p:(m+l). The 

best wavefunction of the form 

,n-m-l , 

JI = L n 'I ~(Xo(m+l),F~(m+l) ; xL(m+l)) $jhl(m+l),Ff(m+l) ; x:(m+l))a 

R=O 
(3.4) 
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The four parameters X0 ,(mtl), Fi l(m+l) are determined by minimizing 
, , 

thHrn+). One finds easily that 

A0 b+l) = Xl(m+l) = x,/2 - Amtl 

and 
A 

Fi(m+1) = 2f2 m - 3Q20m+l , F;(m+l)) - p 
m 

A 
F:(m-l-1) = 2fi - 3Q2(Xel , l$b+l)) - 3 F Y (3.5) 

m 

where Am/Am = Ao/Xo = A/A. 

Finally, one determines Hm+l by freezing out the fast coordinates 

x:(m+l); 

2 
n-m-l -1 

H m+l = l-l dxi(mfl) 4 Orntl, F:(m+l) ;x:(m+l)) 
R=O 

2 
n-m-l -1 

' Hm l-l @(A m+l,F:(m+l) ; x~b-+l)) . 
a=0 I 

This Hamiltonian achieves the same form as Eq. (3.2) with 

f2 
A 

m+l 
= Ft(m-l-1) -i-F 

m 

A m Am 
A m+l = 2 , %l+l = 2 

and 

sm+l = 2~~ + E(Xm+l,Ff(m+l)) 

+ F;(mCl) 

(3.6) 

(3.7) 

- 6Q2(x,, , Ffb+l)) Q2(Xm+l , $h+l)) . 
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One continues this procedure until n iterations have been achieved. 

The "mass" of the lightest excitation at the m th stage is determined by 

F\ = E1(Am, F:(m)) - EO(Am,Fi(m)) . (3.8) 

We notice that this entire "pruning" procedure is equivalent to 

choosing a trial wavefunction at the m th iteration that is given by 

n-k rm2 -1 

lJ,(X,~ . . . ‘“N-1) = & b!. d(Ak$F;(k) ; x;(k)) 

2 n-m -1 
X II 

R=O 
$(Xm,Fi(m) ; xi(m)) , 1 (3.9) 

where the X~'S and the p ,o,l(k) 's are given by the above equations. 

Matrix elements depending on the original coordinates xR are easy 

to compute by expressing the x R 's in terms of the "fast" and "slow" 

coordinates. This will be done in general in Section VI. Using the 

formula (to be derived in detail later) one finds that after m iterations 

'j-1 1 
X;e/2m, (m) XR = m (-1) c 2j/2 Xck/2j+j) + 2m/2 ' (3.10) 

j=l 

where [a] is the largest integer not exceeding a, and R. is the j th 
J 

binary 

digit (0 or 1) of the integer R, 

m 

c 

. 
R = !Lj 2J or Rj .= ca/2j1 - 2c11/2j+ll . 

j=O 

As a simple example, let us compute the two-point correlation function 

($, 9 x x ~1 k&m ) at the m th level. Using Eqs. (3.9) and (3.10) we find that 
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m 

Grn 3 XkXk$m) = c 
(-l)kj-l-aj_l 6 Q2(h. , F:(j)) 

j=l Ck/2jl,CR/2jl 25 

. 

If f2 and A in Eq. (3.1) are sufficiently positive, then the solu- 

tions to Eq. (3.5) have a simple behavior -- F:(m) becomes large and 

positive while F:(m) becomes large and negative. In fact, the behavior 

of Fi for large E! is 

Fi(n+II) - 211Fg(n) + (2"-1) A/A . 

Thus for very large distances, the correlation function, Eq. (3.11) is 

dominated by the last term. Using the scaling relation and (2.7) one 
., 

finds the leading behavior 

(3.12) 

Numerical results will be given in the next section. 

Iv. Numerical Results 

A. 

Let us first make a simple numerical check of the transformation pro- 

cedure by discussing N uncoupled anharmonic oscillators. That is, if one 

sets A=O, Eq. (3.6) h as degenerate solutions, F~(m+l)=F~(m+l). The per- 

turbation that is neglected at each stage in the procedure is of the form 

w = 3xm+1 xi Cm) 2 -Q2(hm~F~(m)))(x~(m)2-Q2(hm,F:(m)j) , 
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This perturbation vanishes in the ground state (by design) but does 

contribute to second order via the excitation of both anharmonic oscilla- 

tors to their second excited state (it is only the first excited state 

that can become degenerate with the ground state as FL -t m). This 

energy shift will be computed shortly for one illustrative case. 

Let us denote the energy per site in the m th level of blocking by 

eCm) l At the zeroth level, since no transformation has been made, e(0) 

is the exact energy of one oscillator. The question is how do the errors 

in e(m) build up as m + m? We find that e(.m) grows and saturates as m 

increases. The numerical results for f'=O and A=1 are: e(O)=1.0604, 

e(l) =1.0758, e(2)=1.0779, e(4)=1.0782, and e(20)=1.0782. Thus the 

error after 20 stages is only-1.7%. For f2 =l, the error is somewhat 

larger: e(O)=1.1378, e(l)=1.2{04, e(2) =1.2306, e(4)=1.2322, and 

e(20) =L 1.2323, a final error of -8.3%, whereas for f2= -1, the errors 

is smaller: e(O)= 2.6778, e(l)= 2.6823, e(~2)= 2.6830, e(4)= 2.6831, and 

e(20)=2.6831, a final error on only 0.2%. We therefore conclude that 

there is no tendency for the error in the energy to continue to grow as 

m -+ m. In fact, as one adds in a coupling between the sites, most of 

the F2(m)'s become more negative, and the error probably even decreases. 

One can easily estimate the second order energy shift due to the 

WR given above by using standard closure arguments. The result for X=1, 

=0, and m=l is a negative correction to e(1) given by f2 

E(m= 1) = 1.07576 - 0.01826 

= 1.0575 

which reduces the zeroth order error of 1.5% to an error of only 0.3%. 

Details of this simple calculation will be given later. The analogous 



I 

-ll- 

calculation for f 2 = 1 is 

E(m= 1) = 1.22044 - 0.09652 

= 1.12392 , 

an error reduction from 7.3% to 1.2% and for f2=-1 the result is 

E(m= 1) = 2.6823 - 0.00512 

= 2.6772 , 

an error reduction from 0.2% to 0.02%. 

B. 

In this section we examine the general numerical behavior of the 

recursion relations which were derived in the previous section. Given 

a pair of coupling constants f2 , A we investigate the large m behavior 

of A, and f . It is sufficient to consider the caSe ~'1 since other m 
values of A may be handled by the scaling relations used in Section II. 

We find two distinct behaviors of the fz as m -f m which depends on the 

A and f2 values: in case one we find that 

lim f2 -+ 00 m m+m 

whereas in case two we find that 

lim f2 -t -03 . m m3a 

In case one, since fi -t +, we see that the mass gap El-E0 is 

going to zero. We call this the ordered phase. It is analogous to the 

magnetized phase of a ferromagnet for T < Tc. In case x, fi becomes 

large and negative (at the same time that Xm decreases), so that the 

physical mass 1-1 is finite and is given by 
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2 
IJ = lim -4X, f2 . 

m+m ( m ) (4.1) 

Numerically we find that this converges to a constant independent of m 

for large m. This phase is analogous to the disordered phase of a 

ferromagnet with T > T c, in which the correlation length is finite. 

The two phases are separated by a one dimensional critical surface 

(a line). We have computed the approximate location of this line (the 

dashed line in Fig. 2) using the method described in the previous section. 

Note that this line behaves incorrectly in the region A + 0, f2 > 0. 

This is because it is variationally disadvantageous to transform to the 

"fast" and "slow" coordinates in this region. Indeed, here it is better 

to use a local wavefunction. 

This leads to another possible criterion for determining the phase 

of the system. One determines the best wavefunction glen for which 

(4JmJ4Jmm) is a minimum. If this minima is reached only when m + m (that 

is the best variational wavefunction correlates oscillators which are 

infinitely separated) then we call the system ordered. On the other 

hand, if the best wavefunction is attained for a finite m, then oscilla- 

tor which are infinitely for apart are not correlated; the correlation 

length is finite, and we call the system disordered. This is shown in 

the solid curve in Fig. 2. 

In the region A * 0, f2 -f m one may alternatively invoke a spin l/2 

approximation which involves a diagonalization of H within the restricted 

basis spanned by states of the form 

N-l 

r-l 4 (X,f2-A;x,) 
R=O mk 

, 
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where m R = 0,l. Following Stoeckly and Scalapino' one writes 

N-l 

H= 
c 

lp2 + (x2 - (f2-A))2 - 2Ax x 
1% R R a+1 

+ f2 - (f2-A)2i . 

R=O 

and with respect to this restricted basis, the Hamiltonian becomes 

HT 
E1+Eo 2 + f4 - (f2-A) 2 1 

N- 1 

- c[ 

E1 - E. 
2 a3(.R) + 2AT a#) ++I) 1 , 

R=O 

where T is the square of the transition matrix element between m =0 R 

and 1, 

T = 1 <O\xll> I2 . 

The exact solution to this truncated problem is well known. There is a 

second order phase transition at the point where 

AC = & (El(ft) - Eo(ft)) l (4.2) 

If f2 >> 1 then 12 

1'2 f5/2 e -4f3/3 
, 

2 and T = f . Thus the critical value of A'for f = fc >> 1 behaves as 

AC = 
l-I2 f1/2 e -4fZ/3 

C . 

We have used this form for large and the "exact" numerical results 

(cf., Ref. 10) in Eq. (4.2) to yield the dotted line in Fig. 2. 



-14- 

Using Eqs. (3.11) and (3.12), we have also computed the magnetiza- 

tion, M, which is defined in terms of the correlation function as the 

limit 

M2 = lim <J,IxOxR)$> , (4.3) 
R+m 

The number of iterations (or "prunings") was chosen sufficiently large 

so that the numerical result had converged to several significant 

decimal digits. 

For f near its critical value fc, the magnetization behaves as 

M N (f2-fE)B (4.4) 

where one might expect !3 N l/8. In Fig. 3, the magnetization to the 

8th power is plotted vs. f2 for A=lO. One sees that the series of 
\ 

implying that B is very close to l/8. ' points is essentially linear, 
A 

We have not bothered to estimate an error. A calculation for A = 1 

yields a similar result. 

v. A reinterpretation - The Haar Transform 

The preceding blocking procedure first involved an orthogonal 

transformation (a 45' rotation and inversion). This then allowed one 

to find in a simple way the variationally optimum A, F2 values for the 

unperturbed Hamiltonian for each variable of the form Ho = p2+h(x2-F 22 ) . 

The essential point to be emphasized in this method is the orthogonal 

transformation of coordinates given by Eq. (3.3). Is there a useful 

characterization of such transformations, and can they be generalized to 
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blocking larger number of sites together? The answer to both these 

questions is in the affirmative as we shall now show. 

Consider the case of four sites, N= 2n=4. The 2x 2 blocking pro- 

cedure applied twice in this case results in a transformation of the 

individual site coordinates x. to the final coordinates, r R' of the 
J 

following form 

where 

r = H4x 

H4= + C5e1) 
This is the well-known discrete Haar transformation. 13 This trans- 

formation follows naturally from the expansion of an arbitrary function 

in terms of the Haar functions, 6 which are a complete set of orthogonal 

functions in the interval O-l and which take on only the values, 0, 21, 

+fi, +_2, etc. They are defined as (for 0 < t < 1, and extended periodi- 

cally outside this interval) 

haar (2"+j , t) = p(t) , 

with n = 1,2,... and j = 0,l ,***, 2n- 1, where 

x;O) (t) = 1 
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45 O<tct, 

x,(O) (t) = 4 k;<tck 

0 %ct<l 

. . (5.2) . 
2n/2 j2-n < t < (j++i)2-n 

x(j)(t) = 
n -2n'2 (j +G)2-n < t < (j +1)2-n 

0 elsewhere . 

As a further example, the discrete Haar transform for eight sites 

can be written in the convenient product form 

r 

10 0 0 0 0 0 o-It--++++++++ 

01000000 
t 

++++---- 

0 OJZ 0 0 0 0 0 ,++--0000 

1 
H8 = -& 

000~0000~ oooo++-- 

I 

(5.3) 
00002000 +- 000000 

olo 0 0 0 2 0 0 oo+- 0000 

(00000020 I 
\ 

oooo+-00 

Lo 0 09/o 0 0 2J L oooooo+- 
rows of the matrix H look not where -I = 21. One notices that the top 

unlike squared-off sinusoidal waves but the bottom rows, the high fre- 

quency part, do not resemble such waves. This is as one expects from 

any blocking procedure; the longest wave lengths are treated more 

accurately than the short wave lengths. 

This transformation can be performed directly on the Hamiltonian 

and then the expectation value taken in a selected set of states. The 

most natural one is a set diagonal in the r's with adjustable parameters 

cX,F2) l 
Note that for N sites, there are N independent coordinates and 
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N independent F's to choose. The 2 by 2 blocking scheme is highly 

degenerate in choosing the F values -- there are N/2 degenerate F's at 

the first step, N/4 at the second, N/8 at the third, etc. The last two 

F's are not degenerate. This degeneracy pattern changes with the number 

of sites in the blocking scheme. 

In the 2 site blocking shceme of Section III, the choice is made 

for the F's at each stage or level by neglecting the (further) couplings 

between the slow modes. This is not necessarily the optimum choice, as 

we shall see later, but is a simple one and is in any event variational. 

This means that while the energy values may be satisfactory, other 

quantities, such as the correlation function, may have considerably larger 

errors. In a later paper we shall show how to compute all such quantities 

with an accuracy that approaches that of the energy. 

Let us now turn to a generalization of the Haar transform which 

corresponds to blocking M sites together and retaining the "slowest" 

oscillator coordinate. 

VI. M Size Blocks 

In this section we will consider a more ambitious blocking calcula- 

tion in which M sites are considered together and then the M-l fastest 

oscillators are frozen out. The remaining slowest oscillators are in 

turn coupled to each other in blocks of M and the process repeated. 

In this section we shall work out the general coordinate transformation 

implied by this blocking scheme and its inverse. The explicit correla- 

tion function will then be discussed. 
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The block size will be denoted by M and the total number of lattice 

sites will be N, where N=M". As the blocking process is carried out, 

one needs a coordinate notation that provides three pieces of informa- 

tion: m, which is the position within a block of M sites (0 5 m -< M-l); 

R, which denotes which particular block the site is in; and k which 

denotes the level or stage of the procedure. Thus we introduce 

x;(k) (6.1) 

n-m as the general coordinate notation, where 0 I R 5 M -1. The original 

site variable xR is given by 

XR - x0,(0> - (6.2) 

At the first stage one performs a general orthogonal transformation 

T among M sites: 

x;(1) = 2 5 <.L+j(o) 9 
j=O 

(6.3) 

where we have normalized T to have all +1's in its top row, i.e., T oj =l. 

The M-l fastest oscillators are frozen out and only the slowest, labeled 

m=O, is retained for the next level. At a general level, we define 

M-l . 

x;(k+l) = c ~ ~. a+j (k) . 
j=O 

(6.4) 

The inverse transformation is also easily derived by a recursive 

procedure. Since T is orthogonal, 

M-l c mi ' T TmJ = M 6 ij . 

m=O 
(6.5) 
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Thus, for example, the inverse of (6.3) is 

M-l mRo 

XR = xi(O) = 
c 

T m 
- x[a,M,m + J- x0 

fi a CL/M](l) ' (6.6) 
m=l 

where R o is the zeroth base M digit of the integer R, or, in other words, 

Ro= R - MC&/M] , 

where Czl is again the greatest integer not exceeding z. After the 

repeated application of Eqs.(6.6) and (6.4), one achieves 

k M-l 
T 

XR = CL 
,-j/2 Tm'Lj-l m 

XCa,Eljl(j) + Makj2 xFelMk](k), (6.7) 
j=l m=l 

where R. is the j th 
J 

digit in base M of the integer R, 

11. 
J 

3 [,/Mj] - M[Q/Mj+'] . (6.8) 

Note that for M=2, and 

T= ” [ 1 1 -1 

we recover Eq. (3.9). 

The generalization of Eq. (3.7) for the wavefunction to blocks of 

size M is given by 

k Mn-j M-l 
$,(x, l l l X~-l) = 

l-l l--In 
$(Arn(j> , F:(j) ; x:(j)> 

M n-k- 1 

X I-l $(X,Ck) d;(k) ; x;(k)) . (6.9) 
R=O 

The couplings at the stage j are determined recursively in terms of those 
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of the previous stage (j-l) by the variational principle (e.g., the 

generalization of (2.9)). 

In terms of these parameters, the correlation function is given by 

k M-l 

'~klX~X&' I+,> = CC M-jTmaj-lTma'-lgcQ,~~j, Ce,,MjlQ2(Xm(j),Fz(j)) , 
j=l m=l 

+M -k 6 CL/M~I,CP/M 1 k Q2( ~o(kLF;(k)) l (6.10) 

These relations are easier to apply than to write. 

One can easily apply these formulas to more general blocking pro- 

cedures. For example, after coupling M sites together in a block, one 

could freeze out M-2 variables and leave 2 oscillators free to couple 

at the next stage. Further generalizations are straightforward. 

VII. Four Site Blocks 

It is quite interesting to apply the previous discussion to the 

case M=4. In this case, there is an orthogonal transformation that is 

very convenient to use since it diagonalizes the periodic derivative 

term exactly and puts the quartic interaction into a convenient form 

for our method. This transform is called the discrete Walsh transform. 14 

For example, for 4 sites, the coordinates transform as 

r = W&X 

where 

1 1 1 1 
w4 1 = -z i 1 1 -1 1 -1 -1 -1 1 il l 

1 -1 1 -1 

(7.1) 

(7.2) 

This transformation is defined with respect to the discrete Walsh 
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functions. It is straightforward to define them in the continuum but 

the discrete situation is all that we will need here. For the case of 

N= 2n points, we define the base 2 representation of the integers h and 

j as 

n-l 

k = 
c 

kr 2r 

0 

n-l 
j = c jr 2 

0 

where kr and jr only take on the values 

the interval O-N can then be written as 

(7.3) 

0 or 1. The Walsh function on 

(7.4) 

r=O 

The label j is the position label and h is the analogue of the momentum 

or frequency label. Obviously waa(k,j) = waa(j,k), and 

(waa(k,j))2 = 1 . 

With the orthogonal transformation given by (7.2), the periodic 

derivative coupling term becomes (x4 z x0) 

3 

c b xi) 
2 

i+l- = 2(r:+r$ + 4ri , 

i=O 

and the quartic term is 

4 $ xi = $ k; + 3G +P?) + 24r0rlr2r3 = 



I 
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and of course, since W4 is orthogonal, 

As a simple example, the transformed Hamiltonian of Eq. (3.1) for 

N= 4 becomes (with X=1) 

H= c2 +.$.kbi + 3xriri, -8f2ri +4f4) 

!L=O !Z'#k 

-t 2A(rf + rg + 2r:) + 6r0r1r2r3 . 

Using the anharmonic trial functions, one finds X = l/4 and 

2 
FO = 4f2 - 3 

C( 
Q2 1/4,F; - A/x 

a#0 

2 
F1 = 4f2 - 3 

C( 
Q2 l/4, F; ,) - 4A/X 

ll#l 

F; = 4f2 - 3xQ2(114,F;) - 4A/X 

a#2 

Ff = 4f2 - 3xQ2(1/4,F;) - 8~/h . 

a#3 

(7.5) 

(7.6) 

These are easily solved. 

To proceed the the N > 4 case, one must include the further coupling 

term in Eq. (2.3), freeze out F:, Fi, and Fi, and then proceed to the 

next stage by blocking the slowest oscillators with coordinates r 0' The 

coupling terms between the blocks of 4 change the A terms and the equa- 

tions satisfied by the F's at the (j+l)St level take the simple form 
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(a = 0,...,3) 

Fi(j+l) = 4fj2 - 3 
c ( 

Q2 X j+l , Fi, (.j+l)) - OR+ l)A/h , (7.7) 
R'#R' 

where hj+l = Xj/4, Aj+l = Aj/4, and the f2 parameter for the r. coordi- 

nate in the pruned Hamiltonian is 

f2 j+l = Fi(j+l) + A/X . (7 -8) 

Numerical results for this model will be presented in another paper. 

To clarify the connection and differences between the M=4 and the 

M= 2, or Haar transform, cases, it is interesting to compare the N=8 

case given by Eq. (5.3) to the 4 site blocking just discussed with N=16. 

The orthogonal transformation for this latter case is 

r = M16x 

where 

U 

U 

U 

1 
Ml6 = x 2:: 

0 
0 
0 

U U U 

U -u -u 

-u -u U 

-U u -u 
0 

0 0 
. 

2w 

0 0 
0 2w 0 
0 0 2w ) 

with 

and 

u = (1 1 1 1) 

-1 1 -1 -1 

w = ( 1 -1 -1 1 1 -1 1 -1 ) 
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VIII. Discussion 

Since this is only the first paper in a series, the conclusion will 

be kept brief. In this paper, we have discussed a one dimensional $4 

lattice theory using a general anharmonic basis with a selected ortho- 

gonal transformation of variables. Both the energy density and the 

correlation function were discussed and evaluated numerically. The 

calculation of other critical exponents and order parameters can easily 

be carried out. The choice of the parameters in Ho were made by imposing 

a variational principle at each stage of the "pruning" procedure which 

neglected higher level couplings of the "slow" coordinates. This pro- 

cedure could clearly be improved. 

Some good points of our procedure described in this paper is that 

it is expected to be good for large A and since an infinite number of 

states (i.e., a complete oscillator) are retained after each "pruning" 

step, it should certainly be better than truncating to a finite number 

of levels. It is also possible to compute higher order corrections to 

the energy and correlation functions as will be shown later. Among its 

deficiencies are those of any finite blocking procedure, the high fre- 

quency part of the spectrum is poorly treated -- the ultraviolet and 

renormalization properties are certainly wrong. This defect will be 

remedied in paper II in this series. Another shortcoming is the fact 

that the F's are not chosen so as to minimize the final energy but for 

reasons of simplicity are computed at each stage by neglecting further 

couplings. One undesirable feature of our rather extreme orthogonal 

transformations is that as A + 0, the calculational procedure chooses 

either a full transform or a local wavefunction (which ever yields the 
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best energy value). This poses no problem but is not as smooth as one 

might wish. 

In further papers we shall demonstrate how to improve the lowest 

order (but variational) results given here by unusual versions of per- 

turbation theory to improve other observables, such as the correlation 

functions, so that they are as accurate as the energy. We shall also 

apply this approach to treat other models, higher dimensions, and the 

high frequency part of the spectrum. 
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FIGURE CAPTIONS 

Fig. 1. A plot of E(f2) and Q2(f2) for the double oscillator 

potential for the ground and first (odd) excited state. 

Fig. 2. A plot of the boundary between the ordered and disordered 

phases as a function of f2 and A for X = 1. The solid 

curve is using the criteria of comparing the rotated to 

the local energy. The dashed line is a straight iteration 

of the equations. The dotted line is the result of the 

spin one-half approximation. 

Fig. 3. A plot of the eighth power of the magnetization vs. f2. 

The critical exponent for the magnetization seems to be 

quite close to one eighth. 
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