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ABSTRACT 

Developing the idea of fast particle mixing due 

to a strong nonlinearity of the beam-beam interaction, 

the distribution function of the weak bunch in the ,_ 

phase space of vertical motion is found. The features 

of this distribution are discussed and compared to the 

Gaussian one. 

(Contributed to the Symposium on Non-Linear Dynamics and the 

Beam-Beam Interaction, Upton, New York, March 19-21, 1979.) 
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1. INTRODUCTION 

In the previous work by the author' an approach to the problem of 

the interaction of a weak bunch with a strong one was developed, in which 

the interaction was assumed to be the source of an additional diffusion 

force. The derivation essentially uses averaging of the force (or the 

"kick") and its square over the perturbed distribution function of the 

weak bunch. The average of,the first power of the force was assumed to 

be zero whereas the average of the square of the kick resulted in increase 

of the bunch size. The calculation of the equilibrium bunch size was 

the subject of that paper. 

Under these conditions, the distribution function of the weak bunch 

in vertical article coordinates appears to be Gaussian in contradiction 

with known experimental observations (see, for example, Reference 2). 

As the next step in developing the above mentioned idea, in this 

@aper we find the distribution function of the perturbed weak bunch. 

The calculations are done for the same model as in Reference 1, namely 

one dimensional vertical motion in an electron storage ring. Damping 

as well as other sources of stochastic forces in the motion are also 

taken into account. 

Section 2 is almost word-for-word the same as Section 2 in 

Reference 1; it is repeated here for the convenience of the reader. 

In Section 3 we find the distribution function,and in Section 4 we 

discuss its features. 



-3- 

2. EQUATION FOR THE DISTRIBUTION FUNCTION 

Let Y and 9 = dY/dt be the excursion from the median plane and 

corresponding velocity of a particle of the weak bunch at the 

interaction point. It is convenient to consider particle coordinates 

in units of the vertical size C of the strong bunch (C = m ): 

Y = Y/C 9 (1) 

; = 4/c . (2) 

If the length of the strong bunch is much less than the wave length 

of the vertical oscillations then by one passage through the strong 

bunch the coordinates of the particle are changed by: 

Ay = 0 , (3) 

A; = F(Y) . (4) 

The actual dependence F(y) can be found at least in principle for 

any given particle distribution of the strong beam. Taking this 

change into account we can write the following equation for the 

particle distribution function f(t, y, $> of the weak bunch: 

g+;g -2u A- (if) 22 6f 

63 
-uQy-y 

6Y 

= 
40 s(t- $) f[tk, y, ;+F(Y)]-~~~, YY ; I} l (5) 

The left hand side of this equation describes the change of the 

function f due to particle oscillations with a frequency OQ and a 

damping rate a. The right hand side represents the change of particle 
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density in the phase space (y, $) due to all possible reasons but 

beam-beam interaction (the first term) and due to the interaction 

occurring at the times t k = to+ 2sk/wn, k= 1, 2, . . . , (the second term; 

n is the number of interactions on one revolution). 

If we are not interested in details of the fast time variations 

of the distribution function which are of the order of magnitude of 

one revolution period or less than the sum on the right hand side of 

(5) can be simplified: 

c 6(t - tk) f[tk, y, ;+F(y)l - f(tk' y, +) 
> 

k 

a 
E 

f[t, Y, ;+F(y)l - fCt, Y, $1 } . 

We can further expand the difference in (6) into series in F(y) 

and retain the first two terms of the expansion. The term proportional 

to the first power of F(y) can be considered as part of the restoring 

force acting on a particle. The parabolic potential well is then 

distorted, which causes deviation of the distribution function from 

the Gaussian form. 

The second term we treat in exactly the same way as in Ref. 1. 

Using the idea of the fast mixing of particles due to strong nonlinear 

force, we can substitute the coefficient F2(y) by the values obtained 

from averaging it over an ensemble of the particles of the weak bunch. 

Let us define the diffusion coefficient due to interaction as 

qint = E <F2(y)> , (7) 
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where brackets stand for averaging the function F2(y) over the 

distribution function f(t, y, ;), which satisfies the following 

Focker-Planck equation: 

(if)- [a2Q2y+g F(y)] F = (qO+qint) 62f 
6Y aG2 

3. THE DISTRIBUTION FUNCTION 

Let us denote 

dU 
dy 

= u2Q2y + g F(y) , 

4 = 
qO + 'int 

From (9) we find 

222 

s 

Y 
U(y) = q + E F(Y) dy 

0 
, 

. 

when we choose the integration constant in (11) in such a way that 

u(0) = 0. 

It is easy to check directly that the function 

is the stationary (af/at = 0) solution of equation (a), C being a 

normalization constant. 

It can be evaluated from the condition 

aD 

// 
d; dy f(y, ;) = 1 . 

-00 

(11) 

(12) 

(13) 
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Another unknown constant in (12), namely q, should be found from 

(10) and (7): 

0 / 2sw 
F2(y)e ’ dy 

9 = q, + 2 -OD 

OD 

/ 

2d.J (y) 

0 4 dy 

. (14) 

J 
-0 

Let us instead of q introduce a dimensionless variable, d: 

d2 = q/aw2Q2 . (15) 

Then for d we have the following transcendental equation: 

d2 = 1 + 114 (d) , 

where 

11 = nw 4raw2Q2 / 

QD 

a(d) = 
/ 

F2(y)e-V(Y)dy 
/f 

-,-'(')dy , 
,a0 -(P 

(17) 

WO 

(19) 
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Substituting the solution d of equation (16) into (12) we finally 

get the distribution function: 

(20) 

e-v(Y) dy 

0 

4. DISCUSSION 

The resulting distribution function (20) is still Gaussian in 

velocity ;. The characteristic constant d2 of the distribution no 

longer has the simple meaning of the dispersion, as it has in the 

limit of vanishing current. 

Let us look at this more closely, assuming that the distribution 

function of the strong bunch is Gaussian in all three dimensions. 

In this case the function F(y) from (4) is known to be: 
3 

F(Y) = b#b(Y) , 

where 

5 I % = ‘2nwQAQC (m +b) (m -b)] 

1 

+b (Y) J 
du 

= Y exp (-uy2> 

0 &Ti7 

In these expressions 

AQ = e2Nf3 I C2E(Ch + ~1~1 

c 21) 

, (22) 

. (23) 

(24) 
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is the Courant parameter giving the linear tune shift of the vertical 

betatron oscillations of the weak beam particle due to the electro- 
4 

magnetic interaction with the strong bunch containing N particles. 

E is the particle energy and B is the value of betafunction at the 

interaction point. Ch and C are the dispersions of the strong bunch 

distribution in horizontal and vertical planes. 

Parameter b is defined as follows: 

b = Wh) / Jl- CC/Q2 (25) 

For a small aspect ratio of the beam, 

b = C/Ch . 

The function 4,(y) describes y -dependence of the force acting 

on a particle from the side of the strong beam. For small values 

of Y 

o$Y) .a! 2(JiTT;T - b)y C26) 

gives the linear part of the force. 

It is interesting to find <y2> using (20), assuming the force 

F(y) to be linear: 

From (l9) we get in this case: 

. W) 

v(y) = y2 Cl+ 2nAQ/Q) 
d2 

GW 
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Averaging y2 over the function (20), it is easy to find 

<y2> = d2 
, 

2[1+2nAQ/Q1 
(29) 

as it should be. The term in brackets in the denominator of (29) 

describes the change of the oscillation tune due to beam-beam 

interaction. 

In general the changes of the function (20) in comparison to 

the distribution function at zero current are the following: 

1. The characteristic constant d2 is bigger than one [cf., (1611, 

making the distribution function broader in y as the current of 

the strong beam increases. 

2. The potential well is narrower than corresponding parabola 

for an attractive force [cf., (19)1, making the distribution 

narrower in y (compared to the corresponding Gaussian shape) 

for the given value of the current of the strong beam. 

3. The change in V(y) also changes the normalization constant 

of the distribution function. 

The last comment is connected with equation (la), which determines 

the characteristic constant d by equation (16). From the function 

F(y) in the integrand of equation (18) should be subtracted its linear 

part, since only the nonlinear part of the force can bring the particle 

motion to stochasticity. One way to do this subtraction was discussed 

in detail in Reference 1. In contrast to this, such a subtraction 

should not be done in the integrand of equation (19) since that part of 

the calculations does not use any averaging over the distribution 

function. 
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