
SLAd-PUB-2302
April 1979
(Ml

SIMULATION OF LSI-ll/PDP-11 SERIES MINICOMPUTERS

.I. R. Myers, R. L. A. Cottrell, B. M. Bricaud
Stanford Linear Accelerator Center

P. 0. Box 4349
Stanford, California 94305

ABSTRACT

A functional simulation of the PDP-11 series mini-
computers has been implemented to run either inter-
actively or as a batch job on an IBM 370 computer.
The simulator operates in two modes, the supervisor
mode and the run mode. In the supervisor mode, the
simulator implements a command language, which
allows users to examine and change the contents of
memory, or other addressable registers in the simu-
lated machine. Optionally an instruction trace may
also be turned on or off. In the run mode, the simu-
lation of the intruction set has been tested, by
successfully running DEC’s MAINDEC basic instruction
test on the simulated machine.

The interrupt structure is modeled. The simulation
is open ended in the sense that users may define new
peripheral devices, by including their own FORTRAN
callable subroutines for each simulated device. Cur+
rently the following devices are supported: floppy
disks, a console terminal, a card reader, a card
punch, a line printer and a communications multi+
plexer (DHll). With these devices DEC’s RT-11 ver-
sions 2C and 3B have been successfully run on the
simulator. At SLAC this simulator is proving useful
in debugging software for one of a kind hardware
configurations, such as communications front end
processors, that are not readily accessible for
stand alone testing.

INTRODUCTION

At the Stanford Linear Accelerator Center
(SLAC) , over the last 4 years, many
LSI-ll/PDP-11 stand alone systems have been
developed to provide such diverse functions
as:

>

>

testing a hardware random bit genera-
tor;

closed loop feedback position and
energy steering of a 20GeV electron
beam;

terminal communication multiplexing
to a large IBM 360.1370 computer corn-
plex (the TRIPLEX);

testing of detectors for high energy
physics experiments.

To support the above systems we have devel+
oped a System 370 software package (Ref. 1)
,to support LSI-1 l/PDP-11 program develop-

ment. This package includes a PL-11 cross-
compiler (Ref. 2), a PASCAL cross-compiler
(REF. 3) , a MACRO-ll-like cross-assembler, a

set of macros to enable the IBM ASMH assem-
bler to generate PDP-11 object code,
cross+linker (XLINKll), various utilities t:
aid in file formatting and examination,
downline loading, and file transfers between
DEC’s RT-11 operation system and the THI-
PLEX. Recently we have implemented an
LSI-ll./PDP-11 simulator, which enables us to
extend the program development functions
that can be performed on the TRIPLEX, to
include execution and hence, debugging, of
the binary program. The interrelations
between the various processors is shown in
Fig. 1. Also shown is the “device” via
which the modules (source, object, load) are
transferred between the processors.

The technique of using a large computer
center to develop programs for small comput-
ers has several advantages, namely:

> one has access to sophisticated I/O
devices (microfilm, tapes, graphics,
line printers, etc.);

> data set management, e.g., archival,
backup, cataloguing, are automati-
cally provided;

> makes the small computer conf igura-
tion very simple since it does not
have to support code development;

Contributed to the DECUS Spring Mini/Midi Symposium, New Orleans, Louisiana, April 17-20, 1979.

Program
Preparation

Language
Processors

Linkage
Editors

PDP-11
Based

IBM
Based

Simulator
Based

LEGEND: CHIF = IBM Channel to PDP UNIBUS Link
DL = Serial Line Link
ECP = Emulated Card Punch
ECR = Emulated Card Reader
ERX = Cmulateu Floppy Disk
ECHIF= Emulated CHIF

Fig. 1 Block diagram depicting the interrelation of PDP-11 program
development tools at SLAC

>.uSers only have to learn one editor
. (in our case WYLBUR) and operating

system (in our case IBM's SVS);

> multiple users can develop code
simultaneously;

> capital equipment does not sit idle
when no users are developing code;

> the system can be accessed via tele-,
phone or hardwire line from any site,
including the home.

In addition to these-general advantages,
a simulator provides several features, which
are complementary to the features obtained
by executing, and debugging the program on a
real machine. Such features include the
following abilities:

> A trace is provided that prints the
contents of the registers, etc. after
each instruction. Traces are espe7
cially useful when they can be scan-c
ned by a powerful text editor. They
are also an excellent training tool.

> The code path lengths are simply
determined.

> The execution can be precisely repro-
duced, in particular, the user can
specify when and if interrupts are to
occur.

> One of a kind special purpose ha rdl
ware and production systems which may
not be accessible for debugging may
be emulated.

USER INTERFACE

To the user the simulator appears to have
two modes, the supervisor mode and the run
mode. The supervisor mode implements a com-
mand language (see Pig.2) that allows the
user to perform LSl-11 ODT or console switch
register functions such as:
changing

accessing and
the contents of memory locations

and registers, issuing RESET, and initiating
program execution. Additional supervisor
commands allow the user to set and clear
breakpoints,
and insert

set execution time limits, load
device emulators in the

appropriate UNIBUS addresses, cause inter-
rupts to occur at given interrupt vectors,
select the level of error checking and to
enable or disable instruction tracing. Tfi e
instruction trace produces one line of out-
put per instruction executed. This line
includes the location of the instruction
executed, the instruction in octal and as a
4 character mnemonic, the result of the
instruction, the source and destination
addresses (if relevant) , the PS, condition
codes, processor priority and the register
contents after the instruction was executed.
Instructions to the supervisor may come from
the user’s terminal or from a console file.
The latter facility is used in batch jobs,
and is also used in interactive jobs to pro-
vide a standard set of commands such as:
“toggling In” a bootstrap loader or insert-
ing standard device emulators.

In the run mode the user’s terminal (in
the case of interactive jobs), or terminal
input and output files (in the case of batch
jobs), becomes the console terminal for the

BEGIN

BOOT

CMS

DEPOSIT

DISPLAY

DUMP

EXAMINE

EXIT

INSERT

INTERRUPT

MJLTEN

PROCEDE

RESET

SPECIAL

STORE

SET LIMIT

SET PRINT

SET SPEED

SET TRACE

Enter the run mode, begin
execution.

Boot from DQLl and begin
execution.

(Reserved.)

Change the contents of
a memory cell.

Show the contents of
a memory cell.

Dump memory to the
line printer.

(Same 'as DISPLAY.)

Terminate the
simulation.

Install a device
emulator.

Trap and begin execution.

Pass the next command to the
SLAC monitor.

(Same as BEGIN.)

Perform a UNIBUS reset.

Transfer control to a user*
supplied subroutine.

(Same as DEPOSIT.)

Specify the time limit.

Enable the console log.

Specify the level of
error checking.

Enable instruction tracing.

Figure 2. Commands available from the
supervisor mode of the simulator.

simulator. The simulator in run mode con-
tinues execution of instructions until
either: the time limit is reached, a HALT
is executed, or an error occurs.

SOFTWARE DESIGN

The most convenient way to describe the
design of the simulator software is to say
that it consists of three types of proc-
essors and three sets of control blocks.
The processors, which are described in more
detail below, are:

> a command 1 i ne interpreter/executor
(the supervisor);

> an instruction executor;

Supervisor

Instruction

Executor

Device

Emulator

Command l----l line
Interpreter

Instruction Fetch

Instruction decode

Operand Retrieval

Execution

Storage

UNIBUS referenced ?

Increment timer

Pending Interrupt ?

Find device emulator
I

I subroutine I

i Update Interrupt list]

I return -I

Figure 3. Flow chart of the Sinwlator,

> multiple input/output device emula-
tors.

The interrelation of the processors is
depicted in Fig. 3.

The three control blocks may be thought
of as state tables which preserve the status
of the simulated machine, the simulator
itself, and the software linkages that are
reestablished each time the simulator is
loaded into the computer. Conceptually, it
should be possible to checkpoint the machine
state control block whenever there are no
pending interrupts, however, the simulator
does not have such a capability at the pres-
ent time.

The supervisor is written primarily in
PL/l, a language that has good string han-
dling capabilities. A few small assembler
language subroutines are used to access

3-

orieratincr
.

svstem are not
M a

functions which
available from the high-level PL/l language.
Particular instances of this are to dynami+
tally load one of three possible instruction
executors, or to insert or remove device
emulators.

The instruction executor takes control
when the simulator is operating in run mode.
There are three possible instruction execud
tors. They differ in the amount of error
checking and instruction tracing included,
and hence in their speed of execution. The
user selects which executor is to be used
from the supervisor level through such corn-’
mands as “SET TRACE OFF” or “SET SPEED ON”.
The executor is written in IBM assembler
language. The three versions are obtained
from a single source copy by using condi*
tional assembly techniques.

The device emulator subroutines are writ-
ten specifically for each hardware device
required. Most of these subroutines are
written in MORTRAN, a structured FORTRAN
preprocessor. An example of the calling
sequence of a device emulator is seen in
Fig. 4. Whenever the instruction executor
references a register in the I.10 page, the
simulator determines whether the user has
previously “inserted” a device on the UNIBUS
that will respond to that address. If so,
then the user-supplied subroutine is called.
The user device emulator subroutine may
alter the T/O page and memory locations,
and, optionally, specify a delayed interrupt
and trap vector location. References to
nonexistent devices return control to the
supervisor along with a diagnostic message.
The user may optionally provide a FORTRAN
callable subroutine to intercept such non
existent memory traps.

We have implemented device emulators for
devices such as disks, ASCII terminals, card
readers, card punches, and line printers.
In addition, primitive drivers requiring
user interaction exist for a communications
line multiplexer and an IBM channel inter4
face. Provision is also made for unknown
user devices (UNKlrUNK9).

TESTING THE SIMULATOR

After the simulator appeared to function
correctly, we took DEC’s MAINDEC basic
instruction test and ran it through the sim-
ulator. This revealed several errors mainly
having to do with the treatment of condition
codes, and certain subtle differences fn the
way some instructions are executed on vari-
ous machines in the PDP-11 series. After
these errors were fixed we were able to suc-
cessfully run RT-11 versions 2C and 30 on
the simulator. One further error was later
fixed in the emulation of the EJS ASH
instruction, which is not tested by the
basic instruction test diagnostic.

PERFORMANCE

As a general rule, when tracing is disar
bled, it takes between 20 to 50 IBM machine

-b-

language instructions to simulate the execu-
tion of one PDP-11 machine language instruc-r
tion. Simulation of the operation of
input/output devices may require considera-
bly more instructions than this. However,
the input/output subroutines are called only
wtien the simulator accesses a memory loca-
tion
177777 (:;) .

the I/O page (150000(Y) -
We suspect that the instruction

count could be reduced by judicious recoding
of the addressing mode calculations.

SUBROUTINE CP(BUSADR,TIM,VECADR,PRI)
INTEGER*4 BUSADR,VECADR,PRI
REAL*4 TIM

C Provides a card punch device emulator
C
C Input:
C BUSADR-Address of device register. Can
C contain 1 of 3 values:
c 172470(8)=address of register
C containing 2’s comp-
C element of byte count
C to be written;
C 172472 (8)=address of register
c containing the
C buffer address of
C the bytes to be
C written.
C 0 =this value is passed
C at simulator initial-
C ization time, CP then
C initializes certain
C variables.
c output:
C TIM =Time (in micro-seconds) after
C which, on exit from CP, an
C interrupt is to be fired. If TIM
C is set to 0.0 then no interrupt
C will be fired. If TIM is set to
C to 41.0 then the simulator will
C HALT (ie go into supervisor mode).
C VECADR=Address to which the interrupt
C will vector when it fires.
C PRI =Priority at which the interrupt
C will fire, l<=PRI<=7.
C

CoMMoN /MEM~~A/FILL,MEM~RY,UNIBUS
INTEGER*2 FILL(156)
LOGICAL*1 MEMORY (57344))

1
C FILL
C
C
C MEMORY
C
c UNIBUS
C
C

UNIBUS (8192)
Contains system dependent
variables that the user does
not usually access.
Contains the current contents of
memory of the simulated machine.
Contains the current contents of
the I.10 page of the simulated
machine.

Figure 4

Listing of part of the card punch
device emulator to show the
information &hat is accessible to
the subroutine.

//RACHTVM JOB ,TIME=(2,0)
//VMll EXEC VMll ,GORGN=4 50K
//* PRINTER is for the supervisor print
,//PRINTER DD SYSOUT=A
//* FT09 is the card punch emulator file
//FT09F001 DD DSN=WYL.EA.RAC.OM,DISP=SMR
//FTllF001 DD * (specify simulator mode)

EXAMPLES OF USE

1) RT-11 FORTRAN

One use of the simulator has been to pro-
vide the equivalent of a cross- Fortran com-
piler. This was desirable in order to allow
physicists to write LSI-11 numerical appli-i
cations in a language they are familiar
with. At the same time, however, they did
not wish to have to learn a new editor and
operating system. rt was therefore decided
to run the RT-11 FORTRAN compiler under the
simulator, and then link the object modules
produced by it with other MACRO-11 and PL-‘ll
modules, using XLINKll to produce a downline
loadable module.

To install RT-11 under the simulator the
following steps were performed:

> We created on the TRIPLEX two FORTRAN
direct access files DQ0 and DQl,

which have the same record length as
RT-11 blocks (512 bytes) and the same
number of records (494) as there are
blocks on an RX01 floppy diskette.

> We wrote an RT-11 device handler to
access the DQ files.

> We modi Ei ed the RT-11 bootstrap to
_ access the DQ file and updated the

~~-11 monitor device tables. Then we
generated, on a real LSI-11, a new.
RT-11 monitor with this bootstrap and’
the DQ device handler.

> We transferred the contents of the
two floppies containing the new RT-11
monitor and other processors like
FORTRAN, PIP, LINK, LIBR, ETC., from
the LSI-11 to the DQ0 and DQl files.

-5-

> W’e wrote a simple device emulator to
perform I./O for the DQ files.

DATE 19nAUG+78
INSTALL CR:
INSTALL CP:
COPY DKl:USAMPL.OBJ CP:
FORTRAN/LIST:LP:/OBJECT:CP: DKl:USAMPL.FOR
MACRO/LIST: LP: CR:
-C

D 10Q0=0 (force a HALT from the terminal)
START 1000
/*

> Finally, we “toggled” in the in!::;1
bootstrap via the simulator
sole”.

-It was purely for efficiency reasons that
we chose to modify the RT-11 system to
access the DQ devices, instead of making the
device emulator fully emulate all the func-
tions of an RX01 floppy drive. Also, for
efficiency reasons we removed RT-11 ‘S echo-
ing of characters typed at the terminal,
since the terminal echoes characters itself.

2) Stand-alone terminal concentration code

Tile usual way in which the simulated FOR-
TRAd compiler is run is via a prepackaged
batch job (see Fig. 5)) with the input to
the compiler coming from the emulated card
reader, printout going to a emulated line
printer, ,and the object modules being writ-
ten on the emulated card punch file. In a
later step of the same job, the emulated
cart1 punch OlJtpUt is converted to XLINKll
input format, and saved in an object module
library ready for later linking.

One of the front end processors for the
TRT PLEX is a PDP-11/34 that now supports
about 70 interactive terminals. The operat-
ing system for this machine is a piece of
stand alone code that was originally devel-
oped at Stanford University. This machine
includes several T/O devices that are not
available on any other PDP-11 at SLAC.
Since the PDP-11134 is in regular production
service around the clock, it is difficult to _ _-
provide access to it for.stand alone program
development or debuggin,g. A particular

&OPTION BATCH=.TRUE. ,&END
//FT12F001 DD SYSOUT=A (printer emulator)
//* FT20 and FT21 are the floppy (2x01)
//* emulator files. They contain RT-11.
//FT20F001 DD DSN=WYL.EA.RAC.DQQ,DlSP=SH!<
//FT21F001 DD DSN=WYL.EA.RAC.DQl,DISP=SHR
//PRINT DD SYSOUT=A (term emulator output)
//PROFILE DD * (supervisor command input)
STORE 157744 012706

(Toggle in the bootstrap loader)

STORE 157774 005007
SET TRACE OFF
SET LIMIT 3000000U
STORE PC 157744
BEGIN
EXIT
//FT05F001 DD * (Card reader emulator)
.TITLE CR: CR DEVICE HANDLER FOR VMll
; RT*ll DEVICE HANDLER TO INPUT ASCII

(Source for a MACRO*11 assembly)

. END
-Z
A/FT08F001 DD * (terminal emulator input)

following are RT-11 commands

Figure 5,

Simplified example of the the input for a
simulator batch type job to make an RT*11
FORTRAN compilation followed by a MACRO-11
assembly.

problem arises when programmers who are
unfamiliar with the novel software of this
front end processor attempt to add new fea-
tures or otherwise alter the code.

The simulator has been particularly benew
ficial in performing initial checkouts of
proposed changes to the front end code.
Through the use of the simulator we have
found two anonolies that might have gone
undetected. we were surprised to learn that
sotye initialization code does not run at the
highest priority. unexpected interrupts
received during the initialization period
could (and may have) caused previously unex&
plained start up problems. We also discov-(
ered that some code that has been added
recently cannot be disabled from the con-
sole. Due to the inaccessibility of the
terminal concentrator, these bugs have not
yet been fixed. However we have changed our
operating procedures to by pass the prob-
lerns.

PROBLEM AREAS

No discussion of a software project is
complete without some mention of the fail-
ures as well as the successes. One problem
is the fundamental incompatibility between
the half-duplex input/output hardware of the
IBM 370 computer and the full-duplex
terminal ,support which is provided by DEC.
This incompatibility leads to excessive com-
plexity in the terminal emulation software.
It also forced us to abandon an attempt to
implement ODT exactly as it is performed by
the LSI-11’s microcode. We did attempt to
dodge this problem by doing unbuffered reads
and writes, but the operating system every
head in the IBM software was enormous.

We uncovered a second problem when we
found that XLINK~~ incorrectly linked object
modules produced by the RT-11 Version 2 FOR-
TRAN compiler. This means that currently we
can use only object modules produced by
RT-11 FORTRAN Version 1 as input to XLINKll.

When running RT-11 in the interactive
mode the interaction is most char i tbly
described as sluggish. This is due to the
many processors involved in transferring
characters to and from the terminal. These
processors include: RT-11, the simulator
executor, the device emulator, FORTRAN I/O
+nd the terminal communication processor.

As already mentioned the simulator does
not currently support the floating point
instructions or memory mapping. This is due
to a lack of need for these features in our
cur rent work and they could be included if
such a need arose.

Although multiple
are allowed in the

outstanding interruI)ts
simulator, we find that

one gets diminishing returns on real time
work in general. In particular, the trace
of a multiply-threaded prograrn is almost
impossible to comprehend. The simulator is
used to best advantage to: run in batch node
PDP-11 software (e.g. RT-11 FOH’I’RAN I
MACRO-11, or LINKll) on the TRIPLEX; or in
the case of real time code, to test (usually
interactively) certain sections of the code
such as the initialization code, the inter-
rupt handler, or any
of code.

single logical thread

REFEKENCES

(1) R. L. A. Cottrell and C. A. Logg,
An IBM 360/370 Software Package for
Developing Stand Alone LSI-11 Sys-
terns, Proceedings of the Digital
Equipment Users Society, Vol. 4,
NO. 4, pp 9851991 April 1978.

(2) B.. L. Hitson, PASCAL/P-CODE Cross-
Compiler for the LSI-11, SLAC-
P1’8-2246 (1979).

(3) R. Russel, PL-11:
Language

A Programming
for the DEC PDP-11 Com-

. puter, Edited by T. C. Streater,
CERN 74-24 (1974).

-6-

