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ABSTRACT 

It is shown that several published calculations of the 

process 

e+e--+ Gq;i 

in the one-photon exchange approximation are in error. The 

calculations are all (at least) missing a factor of 2/x3 in 

the differential cross section 

do/dxldx2 

in the rest frame of the virtual photon, where x i &Y/2 is the 

energy of the particle i in the final state in this frame 

and particle 3 is the gluon G. The reason for the omission 

is traced to the failure of these authors to heed the con- 

straint of four-momentum conservation when changing to the 

parameters xi. Phenomenological consequences of this omission 

will appear elsewhere. 

(Submitted to Phys. Rev. D.) 
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In view of the popularity of the QCD theory as a candidate for the 

strong interaction dynamical theory, it is not surprising that a number 

of authorsle4 have considered the process 

e+e-+Gqq 

in the one photon exchange approximation. The diagrams of lowest order 

in the QCD coupling constant g are illustrated in Fig. 1, along with 

the kinematics. For those not familiar with QCD, the Lagrange function 

is written here as 

where 

is 
IJV 

= a;5 -ax -gE,bcA;A; . 
IJV VP 

(1) 

(2) 

In (1) and (2), + AP is the gluon gauge field and e+bc are the color 

gauge group structure constants (we will use SU(3) for the color group). 
-f 

Thus, g is the gauge coupling constant and t are the generators of the 

color group in the fermion representation, which we call R. Notice that 

we take the mass matrix to be trivial (a multiple of I) in color and in 

flavor. The flavor group will be suppressed throughout. Thus, a sum 

over flavor is to be understood in (1). The ghost and gauge fixing 

terms are not relevant for Fig. 1 and, hence, are not shown in (1). 

From the diagrams of Fig. 1 one sees immediately that, aside from 

the matrix elements 

tL ab 

at the gluon-q-6 vertices, the computation is entirely analogous to 

the computation of photon bremsstrahlung in e+e-+l.I+v-Y. 5 Thus, we will 
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ultimately wish to compare any answer we get with the known results 

of Ref. 5, for example. 

Our purpose for the present communication is to point out how 

all of the calculations in Refs. 1-4 are missing a factor of 2/x3 in 

the e+e- center of momentum frame, where (see Fig. 1 for the kinematics), 

for mq = 0, 

(pi + pj)2 E s(1 - xk) , i # j # k, i, j, k = 1,2, 3; (3) 

here 

S = (ql + q2j2 (4) 

is the square of the e+e- center of momentum frame total energy. 

We will always have in mind the limit m +O in (1) so as to facilitate 
4 

comparison with Refs. 1-4. Further, we will always work in the 

center of momentum frame so that 

Q z q1+q2= (6,d) . (5) 

Thus, from (3) we see that xi&?/ 2 is the energy of final state 

particle i in this frame. 

Since we intend to depart from the results of Refs. l-4, we will 

be thorough in deriving the correct expression for 

da/dxldx2 . (6) 
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To begin, we note that in the Bjorken and Drell conventions6 the 

amplitude of Feynman for the process in Fig. 1 is 

M= (2*14g(Q- pl- p2- P,) (ql) (-ieya) u(q,) 

I 
. 

X ;a(~1) (-ieQfvB) + -$ Y, + in 
2 3 9 

(-iS~,v,E~)v,(p,) 

f U,(Pl) (Digt&yhEi) 4 +$ ?m + is 
;'l 3 q 

(-ieQfuB) vb (~~1 
i 

(7) 

Here 

Pi = (Ei,Gi> , i= 1,2, 3 , qi = (E,$,) , qy = (E,-$2) , 

and, to repeat, 

and the spinors u and v are those of Bjorken and Drell.' The gluon 

wavefunctions e 
A 
j will ultimately be summed over and we have written 

the photon propagator in the gauge of Feynman. Clearly, E=&-/2. 

Also, eQ, is the charge of quarks of flavor f-we intend to sum over 

such flavors. The masses of the quarks, m , and the masses of the 
4 

leptons, mR, will ultimately be taken to zero. We keep them at 

m f 0 Z rn$ only for a technical convenience in the standard manner 
4 

of Bjorken and Drell.' 
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6 
The cross section is defined as follows: 

do = [(Rate/unit volume) / (incident flux/unit volume)] 

d3pl d3p2 d3p3 

x-- ~ 

(2r) 3 m3 ad3 

. 

Following Bjorken and Drell,' we identify the rate per unit volume 

with 

I#12/VT 

(9) 

(10) 

where VT is the total volume of space V times the total time T in 

space-time. Thus, technically 

VT = (21~)~6~(0) , (11) 

in agreement with Fermi. The incident flux, in these normalizations, 

is simply I$,-G,l, as explained in Bjorken and Drell,6 where = 1 is the 

velocity of lepton i, i=l, 2. Thus, for PEP and PETRA energies, the 

flux factor is simply 2 in the relevant units. We thus arrive at the 

textbook6 result 

(27~)~6~(Q- pl- p2- p3) I 2 mi 
do = 

V T I=,-=21 0 

-- E2 1 t-id2 t-id 1 
2 I-ii12 mi q Q"f 

s2 E1E2 (2E3) 

(35, - ti3+ m )Yaua(pl) 
- 
(p2+ p312 - .mi - ic 
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+ Gb(P2)YcI 
Ga(P,)YB 

(3, - 14~ + m > 

tib jb 

. 
X 

(P2+p3)2 - mg + is 
yfhv (p,) + G,(P )tJ Y ex 

1 abX~ 

(ti, ti3 + m > 
’ tpl+P3)2 - mt q y%b(p23("i' ;;;;d3P3) ) 

+ is 
(12) 

where E + 0 is Feynman's epsilon and should not be confused with the 

gluon wavefunction si . At this point, we have retained trivial factors 

like I-ii12 = 1, for we want this calculation to be pedagogic. 

We intend to sum the cross section (12) over all final states and 

to average over the initial states. Thus, following Bjorken and Drel16 

we divide (12) by (2sl + 1)(2s2 f l), where s1 is the spin of the initial 

particle i , i = 1,2. Here, s1 = s2 = l/2, and (2~1 + 1) (2s2 + 1) = 4. 

Further, we will need the relations ( in the Bjorken and Drell' metric) 

c 
x*x’ = 

E. -6 ( ghX’ 
J 9 effectively jj 

helicity 

and 

c vatql)qql) = (4, - ma) 2mk aB 
spin 

(13) 

(14) 
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c uatq2)qq2) = 
spin 

c (vbq (P2))a('b(P2))8 = 
spin 

‘A, + ma) 
2m$ 

a8 

(*2 - m> 
2m ' a6 &bTb 

q 

(15) 

(16) 

($1 + mq) 
.- 

2m a@ 6 , 
4 * aa 

, (17) 

together with ? = T so that (we are using the Einstein summation 

convention) 

c tj+ tj 
ba ab = rT (R) (18) 

a,b 

where r is the number of generators for SU(3) and T(R) is defined by 

tr ti $ = 6 T (R) . 
ij 

~ There is the elementary group theory result 

(19) 

rT (R) = d (R) C2 (R) = 4 (20) 

since R is the triplet-(vector) representation of SU(3). Here d(R) 

is the dimension of the representation R and C2(R) is the value of the 

Casimir operator for the representation R. 

The word "effective" in (13) is written to remind the reader 

that the current to which the massless gluon in Fig. 1 is coupled is 

conserved, so that the replacement for c x* A’ 
helicity Ej cj' 

implied by (13) 

amounts to adding and subtracting the same terms from the squared matrix 

element sum, as explained in Bjorken and Drell.6 Thus, the replacement 



I 

does not alter the cross section da. 

Using (13) - (20), one arrives at 

dcx = 

X 
tr1yad1YB421 C4) ( gXX') 1 

4m 2 
I! 

- oi 
4m2 

tr Yxti2YxT 
L 

(jl - $9 u”d,Y%l--a] / 

4 

[ 

(Q-~~)' - rni 1' + tr[y~(~-~2)y~~2V,'(~~-~)y~~~ 

I/([ 

(Q-plj2 - mi] [(Q-P,)~ - mi 

+ tr YxtilYAt 
[ 

($,- fl,u%,v” (14~ - Cz)] / [(Q- p2j2 - m;] 2 

d3Pl d3P2 d3P3 
X 

wg 
. 

In arriving at (21), we have taken mq,mR -t 0 in traces over the 

y-matrices. The relations 

(q-pi)2 -mt = s(l-xi) + mi , i= 1,2, 

then allow us to write the denominator factors 

[(Q-pi)' - mi1 

(21) 

(22) 

(23) 

as 

s(l- Xi> (24) 
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for, E has been taken to zero. In this way, we arrive at 

da = 
(2~)~6~(Q- pl- p2- P~))~ 

VT $1-2, 
I 

, - 2 ($$)? ':(2Ei2E3) 

, 

where (following the methods in Bjorken and Drel16) 

L 
aB 

E 9 tr yadlYBd2 = 
[1 qlaq2B + q1f3q2a - tga8 1 

(25) 

(26) 

in the limit m&+0, and 

H aB = - -+ tr Y,~,Y~(#,- 
1 

O)va#,v%, - fl) / Cl- x112 

+ Y~(~l-O)Y~~2Ya(O-~2)Y~~l~/ (l-x1)(1-x2) 

+ Y~~lYx(~2- @YB#2Ya($2-@ / tl-x2)2 1 
= 2s (l-x1) 

Ir 
P; P; + PEP;- 3 s(l- UB 

x3> g > 

- (l-xl) ( (Q-~l)~pl~ + pl"(9-~1)~ - $ sxlgaB )I I (l-~l)~ . 
+ [ ( (I- x2) p; p; + p; p; - 3 SCx3)gUB ) ' 

a(Q-p2)B + ~~9Q-p~)~ - -+ -2 g cl' 
il/ 

(1-x2)2 
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+ ((x3- 2)(P7 P!j + P; P$ + s(l-x3) ga8 

-p2)a (pl+p2)' + (Q-P,-p2)' (Pl+p2)a 1 
+ 2PY P; (l- Xl> + 2p; Pi (1-x2)}/&x1)(1-x2) 

t 

for mq+ 0. 

It may be verified by explicit calculation that 

QaHaB = 0 = HaBQP . 

a$ Thus it follows that in computing L,,H , we may replace 

with 

-q2 in Lc16-- for, 

q1 = Q-q2 . 

This gives 

(-) La,HaB = a@ 
2q2aq2$H 

(27) 

(28) 

(29) 

(30) 

With the definitions in Fig. 1, we find 

-LaBHa = (2s~(4(l-xl;~l~x2)[.:~l+cos%~ + x:(l+cos%2)l ) (31) 

where 

( t2 l ii 

1 

2 cosei , i-l,2 ; (32) 
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here, q2 
,. 

is the unit vector in the z2 direction and pi is the 

unit vector in the ci direction, i = 1, 2. 

-t 
The result (31) then gives, for Iv, - =,p, 

da = 

Q = p1 + p2 + p3 
( 1 

(34) 

throughout our calculations. Otherwise, 64(Q-p1- p,-p3) # S4(0), 

and the rate/(unit volume) will vanish! In particular, if we change 

variables from si, i= 1, 2, 3 to some other variables, we must 

remember that this change in variables must be carried out under the 

constraint that 

Following Fermi we have used one of the factors of 64(Q-p,-p2- P3) to 

set the other such factor equal to ~~(0). Thus, do is being evaluated 

. -on the surface where &4(Q- pl- p2- p3) = S4(0). This means that we must 

maintain (and have been maintaining) 

64(Q-~,-~2-~3j = S4(O> 

I.e., under the constraint of four-momentum conservation: 

Q = 
( Pl + p2 + p3) . 

(35) 
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Indeed, integrating over d 3 p3 we have 

da = (2*)4s4(o) 6(&-El-E2-E3) 

VT 23 IT 

X ( x;(l+cos2el) + x;(l+cos2Q2) 
> 

S 712 (l- X1> (l-x2) xlx2x3 

x i&l2 dl;l( d(cos61) d$l 1c212 d(c2( d(cosB2) d6, > (36) 

where $i are the azimuths of Gi respectively. But, since Ei = xi&/2 

when (35) is satisfied, we have that 

E4 (0) 6 (fi- El - E2 - E3) = g4 (0) 6 (6 x+/2 - x2422 - X34&) 

= ti4(0) 0 A- 6(2-x1-x2-x3) . 
G 

Further, since IGil dl;il = EidEi, we have 

s4(o) pi I I I 6 i 

But, for mq+O, 
-k 
I I pi 

(37) 

Xi dxi ,i=l,2 . (38) 

= Ei. It follows that for m = 0 
q 

64(O> Fi\2dJ;i( = S4(0) -$$ 3 X: dxF 
0 

, i = 1,2 . (39) 

Hence from (39) we have 

da = (2n)"a4(o) - 
VT 

x 6(2-x1-x2-x3) x1 x2 dxl dx2 d(co&+ d$l d(cose2) d"2 . (40) 
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At this point, it is convenient to treat the term proportional 

(1+cos281) in (40) by rotating the s2 coordinates so that 

d(cose2)d$2 = d(cosa) dg, where 

h 

i;,*p, 4 cos a (41) 

, a is the angle between $1 
-t 

i.e., and p2' It is well known that the 

Jacobian of a rotation is one in magnitude. Here, B is the azimuth 

of c2 about Gl . The integral over this azimuth then gives HIT, 

since (l+cos2e1) is independent of B. One then needs for the 

(l+ c0s2el) term, for xl, x2, cOsel, $lfixcd, 

/ 6(2-x1-x2-x3) d(cos a) . (42) 

However here one has two choices: 

(a) one can use the fact that as a consequence of the integration 

3 over d p3 

63 = -cl - ;2 (43) 

so that 

x3&-/2 = E3 = (44) 

(b) one can remember that 64(o) = 64(Q-~l- p2- p3) so that for 

m -+O 
q 

s(l-x3) = (Q-P,)~ = (P~+P~)~ = 2pl l p2 = (:)x1x2(1- cos a) . (45) 

We will differentiate (45) with x1,x2 fixed and conclude that 

a) 
> 

= 
xl,x2fixed 5x2/2 (46) 
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so that for fixed x x 1' 2 

JS4(0) 6(2-x1-x2- x3)d(cosa) = [64(O)6(2-xl-x2-x3) & dx3 
12 

= d4(O> -2-- 
x1x2 . 

(47) 

If we had used (44) we would have concluded that for m -+ 0 
9 

G -x = c 
2 3 -2 (x:+x;+ 2x1~~~0s a)1'2 

so that 

? x1x2 = --- . (48) 
xl,x2fixed x3 

But, the derivative (48) is not at Q = pl + p2 + p3; for if we satisfy 

G4(0) = S4(Q- pl-p2- p,) and if we hold xl and x2 fixed, then we 

cannot change for the time component of 

s4(0> = S4(Q-P1- P2 - p3) requires 

& = Q" = . (49) 

Thus we cannot differentiate (44) when 64(O) = 64(Q- pl-p2- P3), as is 

true in da. For differentiating ;3 I I at fixed x1,x2 means 

Em 

&a+ 0 

I 
(50) 

cos (a+ &a) - cos a x1,x2 fixed 

and hence involves changing G3 I I at fixed xpp inconsistent with (49). 

We must use (46). It appears that Refs. l-4 are using the unphysical 

result (48).7 
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Substituting (47) into (40) for the coefficient of (l+c0s~8~) 

we obtain the contribution to da 

du(l), 
(2a)4s4(o) e4g2 q Qg (2~) (2) x++ c0s2ell 

VT lr5 28s (1-x1)(1-x2) x3 
dxldx2d(cos81)d$l . 

The coefficient of (~+cos~~~) in (40) then gives, 

by symmetry in I++ 2, an analogous contribution da (2) to do, obtained 

from (51) by interchanging the subscripts 1 and 2 : 

,,(2), 
(2~)~6~(0) e4g2c 2 f Qf &I (2) x; (1 + co2e2) 

VT 7r5 28s (1 -x1) u- x2> x3 dxldx2d(cos82)d$2 . 

(52) 

Adding do(l) and do(2) and integrating over d(cos6i)d$i gives 

do = 
(4n)(x;+x;)(2n)(2+ 2/3) dxl dx2 

Cl- Xl) (1 - x2> x3 

(2?l)4s4(o) c2 
2 2 (4 f Qf) (x;+x;, 2 

= 
VT 'ae s 

a 

0 

- dxl dx2 
c (1-x1)(1-x2) x3 

2 ai (4$Q3 (x:+x;, 2 
=- -a - 

3 S c (l- 
0 

xp-x2) x3 
dxl dx2 (53) 

where x 3 = 2-x1-x2 because S4(Q- pl- p2- p3) = S4(0) =VT. 

Here oe = e2/4*, uc = g2/41T. 
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The spin averaged point-like cross section for efe--+qq is, in the 

same QCD theory, in the one photon exchange approximation 

4J2 2 ( ) f 'f ae 
opt = 

S 

. (54) 

Thus we have 

1 do 2 ac (xi + x;, (55) =- . 

apt dxl dx2 3 IT (1-x1)(1-x2) 

As advertised, (55) differs from Refs. l-4 at least by the factor 

2/x3 = l/w3 where 

w,G = massless gluon energy E3 . (56) 

There is a further disagreement with Ref. 1 on the numerical factor 

in (55). 

The phenomenological consequences of (53) will be discussed 

elsewhere. ' However, we do wish to mention that the famous two 

logarithm infrared behavior known5y6 to characterize the bremsstrahlung 

of a massless gluon in tree approximation is inherent in (55), because 

of the (2/x3) factor; this behavior is necessarily absent from the 

results of Refs. l-4. 
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FIGURE CAPTION 

1. Feynman diagrams for the process e+e- * G si in the one 

photon exchange approximation to the lowest order in g, the 

gluon coupling constant. In order to facilitate comparison 

with Refs. 1-4, we use the notation of Ref. 2; G is the gluon. 
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