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ABSTRACT 

With the problem of chiral symmetry on the Wilson lattice in space- 

time as an objective, we introduce a definition of differentiation on a 

lattice which respects the product rule of Leibnitz: d(fg) = fdg + (df)g 

for functrons f, g. The derivative is essentially a generalization of 

the SLAC derivative on a lattice. With this derivative, chiral (sym- 

metry) currents have all the characteristics that they possess in the 

continuum quantum theory of fields. In particular, the Adler-Bell- 

Jackiw anomaly theorem has the same form as it does in the continuum. 
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1. INTRODUCTION 

In an effort to understand how it could happen that quarks are 

apparently confined (Ref. 1 notwithstanding), Wilson* introduced a 

lattice formalism to describe the large distance behavior of gauge 

theories. The motivation was the apparent success 3 of the conven- 

tional formulation of gauge theories of non-Abelian (Yang-Mills4) type 

in describing the short distance structure of the underlying quark 

quantum field theory. Thus, the idea was that one could cut off the 

short-distance phenomena in the theory if one were only interested'in 

the large distance (confining) properties of the theory. That is to 

say, provided that one cuts off the short distance properties of the 

theory in a gauge invariant and ultravioletly attractive manner (in the 

conventional formulation of Wilson's short distance ideas 5'6'7), then 

one should be able to learn the large distance properties of the true 

continuum gauge theory by studying the large distance properties of the 

cut-off theory. The Wilson lattice theory is presumably just such a 

cut-off theory. 

Clearly, if the underlying quark quantum field theory is a non- 

Abelian gauge theory, then such a theory must confine at large dis- 

tances*. Indeed, Wilson has found that, in his gauge invariant (and 

presumed) ultravioletly attractive lattice non-Abelian gauge theory, the 

strong coupling limit is a limit in which heavy quarks would be con- 

fined. We remind the reader that, in the conventional formulation of 

Wilson's short distance ideas, the coupling constant for non-Abelian 

gauge theories increases beyond computation as one looks at larger and 

larger distances - starting from the conventional ultravioletly 
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attractive short distance region. Thus, it is not unreasonable to 

consider the strong coupling limit of the Wilson lattice Yang-Mills 

theory when one is studying the confinement problem. 

Once one has introduced the lattice in a gauge invariant and ultra- 

violetly attractive manner, then one at some point must consider the 

attendant hadron spectroscopy, in the continuum limit. For , given the 

confining result for infinitely heave quarks, one must then show that 

when one puts dynamical interacting light** quarks (of parton-model 

type8 for example) into the theory, the resulting theory, in the con- 

tinuum limit at least, agrees reasonably well with the properties of the 

known spectrum of light hadrons. One of the nicer properties of the 

interactions between the light hadrons is the PCAC idea' (partial 

conservation of the axial vector current) -where we single out 

0 especially the implications for PCAC for T - YY in the presence of 

10 the Adler-Bell-Jackiw anomaly . Clearly, one would like to feel that 

the Wilson lattice gauge theory was consistent with the ~~'-+yy pre- 

diction of the (anomalous) PCAC equation in ,the limit of zero lattice 

spacing, for example. 

If one looks in detail at the Wilson lattice gauge theory, one sees 

that quite independent of the anomaly, the local chiral currents of 

massless fermions are manifestly not conserved. Specifically, in the 

original version of the theory2, the Yang-Mills-fermion action is (in 

the Euclidean formulation) 
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nl-l 

is an element od the Yang-Mills group, Ua(bnP) is the 

adjoined representative of b 
w ' 

U(bnP) is the unitary representative of b 
w 

in the fermion representation, g is the gauge coupling constant, a is 

the lattice spacing, m is the fermion bare mass. 
0 The remaining 

lattice notation follows Ref. 2. Thus, the fields I$ and b 
n w 

carry 

: the group in the sense that A is invariant under the group transforma- 

tion y : n 

'n l 
U(Y,) 4Jn 

% -+ Tn UQyJ 

b -1 
w -f Y, b w Y n+l; 

U(bJ -f U(y,) U(b,J Ui(yn+CI 

(2) 

(3) 

(4) 

(5) 

The product y b y -1 
n np n+l; is taken from the group multiplication 

law. (As discussed in detail in references 11, the action (1) has the 

unfortunate problem that the fermion spectrum, at g=O for example, has 

been doubled. To each value of the energy E, there corresponds, in one 

space-one time dimension, for example, two distinct values of the momen- 

tum magnitude Ikl. Let us ignore this problem for the moment.) For 

m =0, 0 the action (1) possesses a local Y 5-symmetry. But, if one 

attempts to use Noether's procedure to derive the corresponding formally 
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conserved chiral currents, one will find that this procedure will gen- 

erally lead to the conclusion that the usual currents are only formally 

conserved and local in the limit of zero lattice spacing, as is well- 

known". Further, if one uses the procedures of Wilson 11 and Kogut 

and Susskind 11 to remedy the fermion doubling problem, even 'Local 

y5 -invariance is lost for mo=O in general. 

However, here we do wish to call attention to the SLAC 11 deriva- 

tive on a lattice, which, for a one-dimensional lattice, -NZ j 5 N, is 

given by 

vf(j> = c ike ikj'n f(k) , 
k 

k+, -N 5 n 5 N, 

when 

f (j> = c 
eikj/A f(k) . 

k 

(6) 

(7) 

The parameters L, N and A are related by (2N+l) = LA so that l/A is the 

lattice spacing. The derivative (6) solves the fermion doubling problem 

at g=O while maintaining local Y 
5 
-invariance for mo=O. But, as the 

SLAC group has emphasized, I1 the corresponding formally conserved 

chiral currents are non-local. Indeed, the fact that the SLAC chiral 

currents are non-local has recently been verified by Karsten and 

Smit.12 

Before we proceed further with this discussion, we should like to 

emphasize the following. One can just as easily take the point of view 

that the undesirable aspec,ts of the status of chiral (y5) invariance 

on the lattice are all resolved either by the interactions of the 
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respective theories and/ or by taking the continuum limit. Thus, on 

this view, one would not necessarily expect a lattice version of the 

anomalous PCAC equation. Rather, only after solving the lattice theory 

and taking the continuum limit would one expect to see the result of 

Adler, Bell, and Jackiw. 

One can go further in support of this view by recalling that the 

lattice is supposed to represent the large distance behavior of the 

theory of strong interactions - the short distance behavior is cut-off 

by the lattice spacing. Hence, since the anomaly is a short distance 

10 phenomenon , one could argue that one should not expect any anomalous 

PCAC equation on any lattice with a finite lattice spacing. From this 

point of view, the SLAC 11 treatment of the y 5 invariance is quite 

sufficient, since, for example, the non-local parts of the conserved 

SLAC" chiral currents in a free massless fermion theory have no zero- 

momentum component (large distance component) for N large, where 2N+l is 

the number lattice sites on a given axis in the lattice. The SLAC" 

version of the theory (1) has, for mo=O, conserved chiral currents 

with the same property. 

Returning to our main theme, however, we wish to investigate here 

the alternative possibility - namely that the lattice should be a per- 

fectly good place to discuss chiral symmetry phenomena such as anomalous 

PCAC. Thus, in the next Section, Section II, we shall formulate lattice 

gauge field theory in a gauge invariant fashion in which results such as 

the anomalous PCAC equation will ultimately be seen to occur naturally. 

This will be done by using a generalization of the SLAC derivative (6). 

As a result, local chiral currents are conserved formally. The gauge 
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field variables will be the usual fields A:(n), related to Ua(bnP) 

U (b ) z exp .- 
A w 

(8) 

where r C carry the adjoined representation of the gauge group. Hence, 

the theory will appear, in all aspects, entirely isomorphic to the con- 

timuum theory. 

The key ingredient in our construction will be seen to be the 

introduction a derivative on the lattice which respects the product rule 

of Leibnitz: 

V(fh) = (vf)h + f(Vh) . (9) 

The SLAC derivative satisfies 11 _' 

V(fh) = (Vf)h + fvh +V 
c 

I(j;Ql,a2) f(a,) h(k2) 
> 

(10) 

RlYR2 

where I(j) satisfies (supressing the Rl,R2 arguments) 

VI(j) = S(j) 

and 

S(j;Q,,Q,) = 2G.A 
c 

i(k1+L2)jln 
e + 24 

Ql'P"2 

with v given by (6). Here, f(j) is defined as in (7), and 

h(j) = c e ikj/A h(k) 

k 

(1.1) 

(12) 

(13) 

with k=2T n/L, -N f n 5 N, and 2N+l =I\L. For large N, the support of S 

is for 1 Ql+Q21 >nA. Thus, it is not surprising that the SLAC 

derivative , properly extended, will satisfy (9). We turn now to this 

extension. 
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11. LATTICE GAUGE THEORY AND CHIRAL CURRENTS 

We have interest in theories of Yang-Mills type on the Wilson* 

lattice in the presence of fermions. As we wish to have local conserved 

chiral currents we shall work with the gauge field of the continuum limit: 

A:(n) is the gauge vector field at site n = (no,nl,n2,n3) on 

the Wilson lattice. It will be forced here to carry the adjoined repre- 

sentation of the gauge group G in the Yang-Mills sense: under a gauge 

transformation of infinitesimal type us(n), AZ(n) will transform as 

A;(n) -f A;(n) - EabcW bcn) A;(n) + $ apwa(n) 

whereaFiOa(n) has yet to be defined and E 
abc are the structure con- 

_. stants of the gauge group - g is the gauge coupling constant. 

In defining auoa(n), we wish to arrive at a derivative which 

respects 

a (f f ) = (aPfl)f2 + f a f 
!J 12 l?J2 

(14) 

(15) 

for functions fl(n), f*(n) on the Wilson lattice. This we do as 

follows: We need to have a lattice formalism which conserves momentum, 

rather than conserving momentum modulo 2nR, where n =1/a, with a equal 

to the lattice spacing. For simplicity, consider the one-dimensional 

lattice function f(j) given in (7). Rather than Fourier analyzing f in 

terms of 

k=2rn/L, -N< nz N (16) 

we Fourier analyze with 

k = 2Tn/L' , n = 0, +l, ?2,..., (17) 
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where AL = 2N+l, L = (2N+l)a, and 2~ a/L' is not commensurate with 27~, 

. I.e., a/L' is not rational. Hence n(2T a/L') is never a rational 

multiple of 2~ for any integer n. Thus if we write 

f(j> = c 
O3 ei(ja)(2nnlL')-lnl Ef(n> 

n=--m 

wehave,forN-+-= , o3 

c 
e-i ja(*rn'/L') -ljl efCjI 

.(2n(n-n')lL') -E = cc e 
ija 

, 
J=-" n=--m 

But for E 40, 

m 

c 

-1 
e 

ija(n-n’)(*r/L’)- EljI = 1 _ e i(n-n')(2Ta/L')-c 

jz-W 
( ) 

:(ljl + Inl ) E(n) 

-1 
+ 

( 
1 _ e -i(n-n')(277a/L')-e -1 

1 

-1 

( l-e i(n-n')(27ra/L')-c = 1 

+ e -i(n-n')(27ra/L')-c 
( 

1 _ e -i(n-n')(*na/L')-c 
1 

-1 

( 
-1 

l-e 
i(n-n')(2na/L')-c = ) 

-1 
+ e 

( 
i(n-n')(2*a/L')+c-l 

1 

0 nfn' = 
coth k/2): n=n' 

Thus, 
m 

T(n'> coth (e/2) = c 
e-ija(2inr'/L')-/jlc f(j) . 

j=-co 

(18) 

(19) 

(21) 
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More generally, if we take 
co 

f(j) = nl c e ija 

n=--00 

.(27&L’)-In\ ET(~) 

then 

f(n) = n2 2 eija(2rn'/L')- /j/E,(j) 

J *Z-m 

if 

n1 n2 coth (c/2)= 1 for E+O. 

The derivative of f(j) is now defined to be the generalized SLAC 
11 

derivative 
m 

Of(j) = nl c 
i(2~n,L')eija(2~n/L')-jn( 'T(n) 

n=--co 

(22) 

(23) 

(24) 

(25) 

13 
where E +o in the sense of Feynman. To check that it satisfies the 

Leibnitz rule (9) we compute: 
00 

V(f(j) h(j)) = n1 c 
;(2~n,L~)eija(*~n/L'>-/"\ Efhcn) (26) 

where 
n=- m 

fh(n) = n2 c 
e-ija(2nn/L')-jjj Ef(j) h(j) 

j=-co 

m 

=n2 9 Y . c 
e-ija(2,n/L')-\j IE 

J=-" 

m 

i: c 

ija(nl+n2)-(lnll+ln21) E- 
e f(nl) h(n2) 

n =-co n z-02 
1 2 

(27) 

Ix -+ll+/n*l )E 
= n2 nl y 

c 
6 

n, nl+n2 
coth (~/2) T(nl) %(n,)e 

n1,n2=-00 

cc 

c 

-(In-n2\+/n2\)c 
=n 1 f(n-n2) h(n2)e 

n z-m 
2 
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V(f <j> h( 

- 11 - 

m 

>> = n1n2 c i(2?rn/L')e ija(*Rn/L')-ln[ e r(,-, 
2 

) hCn ) 
* 2 n,n,=-m 

= nlnl 1 { i(2a(n-n2)/L')e ija(*Tn/L')-In/ E: 

n.n,=-m 
’ L 

f(n-n2) h(n2) e 
-(ln-n21+ln21)e 

+ i(2an2/L')e- jja(*rn/L')-InI e ftnmn ) T;(~ 
2 2 

) 

e -(I n-4 +I 9 ) &} 
cl3 

c 

ija(2Tn2/L')-In21 c O3 
= n 1 h(n2)e n1 c i(hrn'/L')f(n') 

n =-CO 
2 

n'=-co 

ija(*rn'/L')-In'/ E - ln'+n21 e 
xe 

a, 

c 

ija(2rrn2/L')-In21 c 
+ n 1 i(2an2/L')T;(n2)e 

n z-00 
*co 

c 

ija(*Tn'/L') 

n1 ?(n')e 
n'=-co 

e-InlIE - In'+n21E 

= h( 

in agreement with 

j> Vf( 

(9). 

> + (vh(j)) f(j) (28) 

In making the last step in (28), we have used Dini's theorem 14 to 

conclude that co 
I c nl i(*Tn'/L') T(n')e 

ija(*Tn'/L')-In'/ c - In'+n21c 

n'=-W co 

-n c i(2rm'lL') f(n')e ija(*nn'/L')-In' E 1 I 
1 n'=-OS 

m 

< nl c 
l*nn’/L’le-I”‘1 Eje-ln’+n2 I”-11 lf(n’)l + (29) 

n' c-m 

-+O 
d-0 , 
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c n1nl=4 i!*rm'/L') f(n'>e ij(Bn'/L')a-In'] e 
(30) 

exists for E J- 0 . 

Returning to (15) we write the general function on the Wilson 

lattice as 

im 

f l(no,nl,n2,n3) = n14 c 2 e -in'R(2Ta'L' 'i,( Lo, Rl, R2, R3) (31) 

RO=-im J$, R, 2 R, 3=-” 

where n'R = n 0 R 
1 

0 f nlR + n2R2 +nR 3 3 ( we shall henceforth take the 

Euclidian lattice as a Minkowski lattice with imaginary time). From 

(25) we have that 

apfl = n14 
c 

-ii (2~/L’)~in’a(2aa’L’) r,(a) (32) 
RoYRlYL2YR3 

is a Leibnitz rule respecting derivative. Thus, we take the gauge field 

Lagrangian as 

where 

Spv(n)- all iv(n) - av XV(n) + gcjbc Ah(n) At(n) (34) 

(33) 

with a defined by (32). Then, 
1-1 

with a,,;(n) in (14) also defined by 

(321, we see that gm is gauge invariant. 

Further, we introduce the fermion representation R carried by q(n) 

in the fermion Lagrangian 

5 =Jl(id - g t (n> * T) $ - ;i, m,$J . (35) 
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Here, -f t are the generators of $I$ in R and m 0 is a gauge invariant bare 

mass operator. Clearly with a,+ given by (32), we see that 

au + i g nu(n) l ;t 

has the structure of the usual gauge theory covariant derivative4 so 

that (35) is gauge invariant (since (32) respects the Leibnitz rule). 

Thus the lattice Lagrangian 

A?JV 
Liz?= F(n) + fln)(ig - g?;;' It>+(n) -q(n)m, $(n) (36) 

is invariant (if au is defined by (32)) under the simultaneous infini- 

tesimal transformations (14) and 

q(n) + (1 - im(n)*P) Q(n) 

T(n) +- P(n)(l + i:(n)*:) 
(37) 

We see that, for mo=O, (36) possesses the local chiral invariance 

under the infinitesimal transformations 

$J (n) + (1 + iS U,)IJ 

(38) 
7 (n) + F (n)(l+i5y5) . 

Further, for mo=O, the axial vector currents B(n)yPy ,Ih+(n) satisfy 

the formal conservation law: 

aFL (JXn)Y, Y 5 TJ, (n)) = 2i$(n)moy 5; $ (n) (39) 

where we take T to commute with "t'. To verify (39), one needs the Euler- 

Lagrange equations on the lattice. But since the derivative (32) 

respects the Leibnitz rule, clearly, the equations have the same form as 

in the continuum limit: The fermion field $(n) satisfies 

(j-8 - gz . z - m,)+ (n) = 0 

F(n)(-i% - gt l r - m,) = 0 
(40) 



is enough to prove the formal relation (39 This 1, as is well known. 9 

Later in this section, we shall show that (39) is invalidated in 

perturbation theory, as found by Adler, Bell and Jackiw. However, 

before turning to this, we should comment about the untraviolet behavior 

of (36). For, as we emphasized in the introduction, one of the main 

constraints on the lattice is that it not change the short distance 

aspect of the respective theory. That is to say, it must not change the 

behavior of gR(t) at short distances, where &R(t) is the Gell-Mann- 

Low-Callan-Symanzik' running coupling constant and t is the logarithm 

of the inverse distance scale in appropriate momentum units. 15 

Specifically, in quantizing (36), one will in general specify a 
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gauge condition, for example, 

(41) 

Then, the quantization can proceed in the standard Faddeev-Popov 16 

manner with due respect to the Gribov-Mandelstam problem. 17 The net 

result (according to the lore) is that in each distinct Gribov copy 

for(41), one has to add the effective ghost related Lagrangian 

gG = $*(n>au Dy(z(n)) $ (n> - $ (a,;(n))* (42) 

where the Cp(n) are the usual ghost fields. Here DV(]i) is the derivative 

of the variation of g 1-I l ? due to the gauge transformation 

(43) 

the derivative being taken with respect to G(n) and evaluated at the 

appropriate representative of the Gribov copy. Here, 

R z exp [-i?Zi;(n)* ?] , (44) 
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where 7 carry the adjoined representation. According to 't Hooft, 

Veltman, and Lee and Zinn-Justin 18 , in each Gribov copy, (36) with 

(41) added is a renormalizable theory. 

The only possible source of a problem with these remarks is that 

the action, represented in our momentum space, may not generate the same 

Feynman rules as in Refs. 16 and 18. However, we can choose 

n1 = 1 ,rl =a 
a coth (c/2) * 

so that, for example, the continuum integrals / dx' and I dk' become, 

here, 

(45) 

/ 

O3 dk' 
m 

FF-+ 
I. 

a coth Cc/*) c 
-00 J+,-co 

Similarly, 

/ 

lo3 dk" f-f 
i.m 

1 
-5% a coth (~/2) c 

-im ,g+O=-ico 

Thus we have the same Feynman rules as given in Refs. 16, 18, and 19 

with the replacements (in the Bjorken and Drell 20 metric) 
co co 

4 
c c 

123 n"=(-im> n, n, n =-co 

(46) 

(471 

(48) 

(49) 

(50) 
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/ d4k . ice co 
-+ 
(2d4 a4 coth z 

C&/2) c c 
a"=-icn t1 k2 3 , ,!L=-00 . 

(51) 

(The i's appear because we are on the Euclidean lattice, which we take 

as a Minkowski lattice with imaginary time.) 

The question of the behavior of gR(t) for (36) may now be addressed 

as follows: Consider the Gribov copy near R=I in (42), for simplicity. 

Clearly, the algebraic structure of the diagrams, such as those illus- 

trated in Fig. 1 for Z3, which determine B(gR) for small gR is the 

same as it would be in continuum theory. So, the only possible dif- 

ference is in the value of the corresponding Feynamn integrals (which 

_. are the sums (50) and (51) in our lattice theory). In particular, for 

computing the logarithmic divergences which determine S(g,) for gB 

near zero, we simply have to vertify that our lattice calculation repro- 

duces, for zero lattice spacing, 15 the same divergences as the con- 

tinuum theory. But, from (50) and (51) we see that for a + 0 (zero 

lattice spacing) and L' -t m , 

n ,n ,n =- co 

(52) 

and 

lim lim 
i 

a+0 L'w (a coth(c/2)4 (27G4 
(53) 

Lo =-iC0 k1 2 3 ,R ,R = -m 

if L'/a -t co in such a way that 

(L'/a) -f coth(s/2) for &CO. (54) 
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For ? d4k = (2r/L'14d4n . Thus, for zero lattice spacing, our sums 

in our Feynman diagrams become the (Reimann-) Lebesgue continuum 

Feynman integrals themselves. Thus, the zero lattice spacing limit of 

our lattice theory is the perturbative continuum theory and hence this - 

limit has the same perturhative B(gR) as the usual continuum theory. 

The result that the zero lattice spacing limit of our lattice 

theory agrees term by term with the perturbative continuum theory means 

that any result of continuum Feynman diagram perturbation theory will be 

recovered in the continuum limit. In particular, the result of Adler- 

Bell-Jackiw, 10 that 

2 
a52x> yuy5 ?I$ (x> = 2iFCxho y5 TgJ (x> + - tr [T tatb] 

161~~ 
(55) 

F vVa(x) FI(‘v~b~xk~v~‘v’ , 

is such a perturbative continuum theory result. It is therefore neces- 

sarily also a result of the zero lattice spacing limit of our lattice 

theory. This is the desired result. 

The reader may object that we have not really verified (55) on the 

lattice with a # O-we have only shown that it holds for a -+ 0. However, 

if we look at the Feynman diagrams for the anomaly (Fig. 21, we can see 

that to be on the lattice the momenta entering the diagrams should be of 

the form (in the notation of Fig. 2) 

ki = $ (Qi0,Qi1,Qi2,Qi3) i = 1,2,3, (56) 

with 

3 

c 
R. = 0 1 

i=l 

(57) 
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Choose such ki. Then, since L' is any number such that a/L' is not 

rational, replace L' with NL' and Qi with NQi, i = 1,2,3, for some 

integer N. Then, ki are unchanged. Hence, we may take N to a. But, 

then, our sum over the internal momenta in Fig. 2, 

i 

[a coth(e/2)] 4 
c 

r",r1,r2,r3 

becomes the Reimann-Lebesgue integral 

(58) 

(59) 

provided 00, N+ m such that 

NL' = a coth(c/2) . (60) 

- Thus, for each momenta set (56), we recover the momentum-space version 

of (55). But, this means we have the result (55) on our lattice: 

2 
av (F(n) ypy5 Ix+ (nN = 2i?(nhno y5 T$ (n) + - 

167~~ 
tr 1; tatbl 

xF UVa(n)FU,v,b(n)c'V"v' 

(61) 

This procedure we just described then completes our construction: 

To define an n-point Feynman amplitude go to momentum space and evaluate 

the amplitude (using the usual continuum space Feynman rules and inte- 

grals) at momenta of the form (56): 

k =e(Q' 
i L' i , Q;lQ 'i *Q ,i3) i = l,...,n (62) 

for Qi c = 0, Qq on the momentum space lattice. Then, to return to the 
i 

position space lattice, simply use our lattice Fourier transform (31). 

Finally, in closing we note that since our derivative respects the 

rule of Leibnitz, 
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2 
-L tr(j: tatb) F pvah) F bh) E I-lvp’v” = 1 

l&T2 1-1 'v ' 41T2 
ap[tr .(T [Av(n) ap,Av,(d 

(63) 

- ,$ gi AV(n) AU, (n) Av, (n)l)~‘~” v’ ] , 

where 

A = Aata . 
v ?J 

Thus the current 

'7 5(n> 
1-I tr A[AV(n)a {I A (n) 

VP v' 

- 5 gi Av(n) Awl(n) Av~(n) 11 EiiV”V’ , (65) 

(64) 

is conserved on our lattice , just as it is in the continuum.*** 
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FOOTNOTES 

* 
The measurements of Fairbank et al.' will be viewed as systematic 

in what follows. Even if these measurements are not systematic 

effects, it is still very difficult (if not impossible) to liberate 

quarks! 

WC 
By "light quarks" we simply mean that the quarks have masses not 

comparable to the lattice spacing and that these masses remain finite 

as the lattice spacing approaches zero. 

*** 
Our result that the anomaly in the Adler-Bell-Jackiw theorem can be 

written as a divergence on our lattice appears to disagree with the 

work of Peskin (Cornell Reports CLNS-395, CLNS 396, 1978) for the Wilson 

non-Abelian lattice theory. The two results can be reconciled by viewing 

our lattice theory as a member of an ultravioletly attractive class which 

is not considered by Peskin. We have no argument against this view. 
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Fig. 1 
Diagrams determining Z3 for the theory (36) plus (42). The wavy 

lines IM are AC propagators. The dashed lines --- are ghost 

propagators. The solid lines are fermion propagators. The Feynman 

rules for the propagators and vertices may be found in Refs. 16, 

18, 19, and 20. 
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Fig. 2 
Diagrams involved in the Adler-Bell-Jackiw anomaly. (a> The axial 

vector-vector-vector vertex. (b) The pseudoscalar-vector-vector- 

vertex. 


