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ABSTRACT 

An analysis of two-dimensional, massless SU(N) Yang-Mills theory 

initiated previously is continued and extended. The fermion propagator 

in the presence of a non-Abelian potential is constructed exactly, and 

the corresponding (induced) vacuum fermion currents and their divergences 

are deduced. The analysis of the color-singlet current and the associated 

bound states reveals the non-existence of massive color-singlet bound 

states. This fact together with the previously established existence 

of massive "colored" states characterize the spectrum, save for possible 

massless exitations. A consideration of the bosonized version of the 

theory reveals the symmetry breaking and the associated mass generation 

to be a Schwinger-like mechanism. An Abelian model illustrating this 

analogy is briefly analyzed and discussed. 
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I. Introduction and Summary 

In a recent work' we reported the outline of a calculation in two- 

dimensional massless SU(N) Yang-Mills theory (to be here referred to as 

QCD> that showed the existence of a degenerate family of N2-1 massive 

"colored" 2 bosons. Since this massless theory is expected to be the 

strong-coupling limit g >> m (g is the coupling constant, m the bare quark 

mass) 3 of massive QCD, the above result is implied for the strong-coupling 

limit of massive QCD as well. This behavior is contrary to what is 

believed to happen in the 't Hooft model (i.e ., massive QCD in the limit 

of large N), and it gives support to the conjecture 3 that the model is not 

valid in the strong-coupling regime. In this paper a more extensive 

analysis of massless QCD is carried out which, among'other things, establishes 

the non-existence of massive color-singlet bound states in the theory, thus 

yielding a particle spectrum basically different from that of the confined 

phase. How does this come about? In order to provide an answer to this 

question, and before entering the details of the main analysis of this 

paper, it is useful to consider a simple Abelian model which will essentially 

reproduce the behavior described above and at the same time will identify 

the mechanisms of symmetry breaking and mass generation which occur in the 

non-Abelian theory. 

The model, which is a variant of the Schwinger model, contains two 

species of massless fermions, q, and q b' and is defined by the Lagrangian 

density 
1 

9 = qaii4qa + qbii(qb - ; (q,vFLqb -I- Fbynqa) AP - 1 F 
4 ?Jv 

F'v 

(1) 

- ?A F =aA -8A 
lJ' I.iv u v v v' 
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j: = 4 (ii,?qb + ~bY'qa), j i = (qa-?qa + qb-?qb) 9 (2) 

appropriately regularized to insure current conservation, one can calculate 

the corresponding vacuum currents 

cjp) = (OUTlj~lIN) /(OUTIIN), (,jE) = (OUT/j: IIN) /(OUT 11% (3) 

induced by the "external potential" 

(AP) = (OUTIA~IIN)/(.OIPT[IN). (4) 

In much the same way as in the original solution of the Schwinger 

model, 6 one obtains 

2 
( j!) = c (gl"" - Eua^‘J> (Au), ( ji) = 0. (5) 

Combined with the field equation for A (in the Landau gauge), the first of 

these gives 

(a2 +<) (gpv - i??) (Au) = JCL. (6) 

Again, as in the Schwinger model, and for the same reasons, fermions have 

disappeared and a massive boson has appeared. Moreover, this boson couples 

to the "triplet" qq channel, with the "singlet" channel remaining non- 

interacting, as may be seen from the following propagators: 

where J is an external c-number current provided for the purpose of 

carrying out functional operations. 5 With reference to the currents 

-i(OIT [jF(x)jz(y)]]O) =$ ($'a2 -aFLaV)a (X-Y), (7) 

'i(OlT [j:(x) jI(y)]lO) = 2 (gvva2 - apa') D(x-y), (8) 

where A (D) denotes the (Feynman) propagator for a boson of mass e2/2a 

(zero) . The designations "singlet" and "triplet" have been used in 
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reference to an obvious interpretation of the above model as a broken SU(2) 

Yang-Mills theory in which all but one of the gauge degrees of freedom 

have been frozen out, leaving an unidirectional (in internal space), i.e. 

Abelian, field. 

Essentially the behavior observed in the above model, appropriately 

generalized to an analogously broken SU(N), will emerge from the analysis 

of massless QCD in the following sections. Thus the color-singlet quark 

current will remain free, 7 while the color current will develop an axial 

anomaly which will serve as the source of mass generation. These properties 

of the currents will in turn lead to the non-existence and the existence, 

respectively, of massive color-singlet and colored bound states in the 

spectrum of the theory. 

The rest of this paper is organized as follows: In Section II we 

formulate the theory in a functional framework and proceed to construct the 

quark propagator in the presence of couplings to external SU(N) and U(1) 

gauge potentials. In Section III this propagator is used to derive the 

induced vacuum currents and their divergences. An alternative derivation 

of these current divergence relations is also given here. The above- 

mentioned properties of the currents, which essentially characterize the 

spectrum of the massive states, are deduced in this section. The fermion- 

antifermion equation derived previously within a new bound-state formalism 

is employed in Section IV to establish the non-existence of massive color- 

singlet states. In Section V, the theory is bosonized, and the existence 

of massive colored states is deduced from the infrared behavior of the 

theory. Concluding remarks are presented in Section VI. To make this 

paper self-contained, part of the material in Ref. 1 will be repeated here, 

often in a more detailed manner. 
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where 

II. Construction of the Quark Propagator 

The Lagrangian density for massless QCD including a coupling to a c- 

number colored current Jy and a coupling of the color-singlet quark current 

to a c-number potential Up may be written 

1 w L? = Fi$q - F Gi Ginv + Bin (jy + Jr) - ejpTJp, (9) 

G. =aB .lJ - 
lW p iv -a B v ip + gf ijkBjpBkv ' Ji - g~~~'iS , 

.?J 
J = Qy'q, [A X ] = if i' j ijk'k' tr (Xihj) = 1 6 2 ij ' (10) 

. 1= 1, . . ., N2-1 . 

Here a contraction over color as well as spin indices is implied in the 

definition of the currents. The rest of the notation is defined by 

g 
00 = 11 

-g = 1, y" = a3, yl = io2, u5 = y'yl = 01, and ~'1 = 1, where spV 

is the antisymmetric tensor. The extraneous objects J and U will of course 

serve an auxiliary function and will be set equal to zero for arriving at 

physical results. 

The first step in the analysis is the elimination of quark variables 

by means of functional methods.5 Thus we consider the vacuum expectation 

value 

ii 
iv 

= (OUT IIN) , (11) 

and proceed to calculate the vacuum currents induced by B. and U. Defining 11-1 

the quark propagator in the usual way by 
t 

Sky) = -i (OUTIT [q(x)5(y)ll IN)/(OUTIIN) , (12) 
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we obtain the Schwinger equation 
5 

-fv [ia: - eu’-‘(x) + gXi A:(X) 1 S(X,Y) = 6(X-Y) 9 (13) 

where 

A!(x) = z!(x) - i sJ *(x) . (14) 
iv 

Note that the gauges for U and B have been left unspecified. 

While the solution of Eq. (13) in the absence of the non-Abelian 

coupling (i.e., g = 0) is straightforward and well known, the solution of 

the full equation is a non-trivial matter. 
8 Thus, following Schwinger', 

we make the transformation 

where 

S(X,Y) = exp [Q(x) - Q(y) 1 S’ by> , (15) 

O(x) = e / d2x' So(x-x') y'Un(x') , (16) 

thereby eliminating the Abelian coupling and leaving 

rp [ia: + g$A!+) 1 S’ (x,Y> = 6 (X-Y> . (17) 

Note that So appearing in (16) is the free fermion propagator given in 

Eq. (21) below. 

The solution of Eq. (17) is achieved by considering its light-cone 

decomposition, 

s' = s'+ + s'- ) $' = *+cy , A' = + (l+y5) , (18) 

and by writing 

s' (x,y> = T+(x) g-1 (Y> so+ (X-Y) + K(x) TI1 (y) s(-j- (X-Y) , (19) 
t 
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with 

S,‘(x) = - & Y, [P $- -I- in6 (l) <x,> E <x.$1 1 , (20) - 
where P denotes the principal value, E gives the sign of its argument, 

I!c 
and the definition a+ = a = a - o t al for the light-cone components of a 

1-1 

has been adopted. Note that a, = 23/8x-+ and that So 
It, 

was obtained from 

Eq. (18) and 

So(X) = - &- y,x~/(x2 - ie) . cm 

The equations obeyed byZ* emerge upon inserting (19) in (17); they 

are, in differential and integral forms respectively, 

ia+s; = - ghi Ai+ CT+ ) (22) - - 
and 

z+(x) = 1 + J d2xts; k-x’ > L-g++ (x’ > 13; (x ‘1 , (23) - 

where s 
?I 

0 is obtained from S o' by omitting y+/2 from the latter. We now - 

observe that the Ansatz 

X+(x> = T+(x) 7+(x+) , (24) 

T+(x) = T - 1 
exp [igXi 

I 
d2x'6(l)(x, -x*') 0 (X.+-X; ) Ai&)l} , 

where T denotes ordering with respect to the non-trivial integration in 

(241, and a careful partial integration in (23) using the property 

ia+T+ = -ghiAi+T, ) (25) - - 

F+ (4 = 1 + T*(x) -& I dx; [ 1 

xi+is 
qx; = + a, xl) 

x - 
+ - 

(26) 
1 s+<x’ = - m, x; ) I . 

X -xJ-iE - ‘f 
L!L - 
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The use of Eq. (24) in (26) in turn gives 

. 
k(“+) = 1 - gdx; 

1 
1 

- is 
[T& = co) xl ) -11 ~+(x; > . (27) - - - X A -x t 

With rc+ thus given by this one-dimensional integral equation, we have com- 

pleted the construction of the quark propagator in terms of ordered 

exponentials and the solution of Eq. (27). For later reference, we record 

here the full expression for the quark propagator 

Sky) = elrp L@(x) - Q(Y)] [T+bd~+(x,) ~;l(y+)T+ -I- (Y)n+ 

(28) 
-1 

+ T_(x).r_(~_)~--~~(y-)T_ (YM-I Soby) . 

We pause here to call attention to the fact that in going from (22) 

to (23), the usual causal boundary conditions were incorporated into the 

solution. That Eq. (22) admits of a wide class of solutions only one of 

which satisfies (23) emphasizes the fact that as usual care must be exercised 

in constructing the causal propagator. Moreover, it must be pointed out 

that the above construction is valid for any gauge and that, the appearance 

of light-cone coordinates notwithstanding, it is not committed to light- 

cone quantization. 

III. The Induced Quark Currents 

In this section we shall derive expressions for the induced singlet 

[U(l)] and colored [SU(N)] quark currents, defined respectively as 

I~'IIN)/(ouTIIN) , t (j"> =(OUT 

(jt) = (OUT Ijn"(IN)/(OUTIIN) . 
i 

(29) 

(30) 
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These are in turn related to the propagator by the formulae5 

(j'l(x)) = -i lim tr yP[l+ieUv(x)EV] S(x+s/2, x--E/2) 
{ > 

, (31) 
E-t0 

(j!(x)) = -ig lim tr ~'hi[l-igXjA~(x)~v] S(X+E/~, x-~;2) . 
w-0 

(32) 
Note that the appropriate line-integral factor insuring gauge invariance 

for each current has been included. 

It is at this juncture that an essential simplicity of the massless 

two-dimensional theory surfaces; to wit, each of the U(1) and SU(N) currents 

depends on its corresponding field only. Accordingly, the induced U(1) 

current is calculated from Eq. (31) to be 

(j'(x)) = - !$ (guv - 25") u (x) V , (33) 

which, save for the factor of N accounting for color multiplicity, is 

precisely what it would be if the non-Abelian coupling were absent. 

Similarly, when the implied operations in (32) are carried out, one obtains 

2 
(jr(x)) = &A!(x) +g tr [Xi 

as+(x) 
ax 

+ 

as-- (XI 

+ 'i ax 
g--l (x) r%;1 , a; = (1, + 1) , 

(34) 

where the trace is to be taken over the color indices. Clearly, this 

current only involves A:, as asserted above. 

Indeed the decoupling just demonstrated may be used to factorize the 

generating functional (OUT~IN) in a rather trivial way. From Eqs. (9) and 
t 

(291, one obtains 

(j"(x)) = a G/SU~(X) ln ((0~~11~)) = - F (gn" -Iu$v)uv(~). . (35) 
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This functional differential equation is easily integrated to give the 

factorized form 

(OUT[IN)=exp g 1 J d2xd2x' Ul.'(x)(g ~v~%,~v)uv(~')} [(OUT/IN)]e=O. (36) 

Clearly then, .1-I the color-singlet current J is (in the physical limit 

e=O which will henceforth be enforced) as it would be in the free case. 7 

Therefore, from the propagator 

-1 ~O]Tki~(x)jv~x’)l 10) = $ 8/6uv(x’) <j’(x) > 

(37) 
= - f (gl-lV - P’^a”)S (x-x’) , 

one can see that 

j'(x) = -JE ESIV au z (~1 , (38) 
7r 

with 2 a canonical pseudoscalar massless field, in accordance with a 

free fermionic current. 

We return now to Eq. (34), and consider the vector and axial-vector 

divergences for the current (jr(x)). These are most usefully expressed 

in the following implicit forms 

ap(ji)= -gf.. A n (jku' 9 
1Jk j (39) 

g2 .., - g f.. A.'((Jk,,) - G %,) , 
uk J 

(40) 

where the'dual vector 2'" is defined to be E lJv a V’ As expected, these 

relations may be rewritten concisely in terms of the gauge-covariant 

derivative 
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D' =6 ij ij av + g f. .%n 
IkJ 

. 

Dik(j )=O 
kr.l 9 

($i) = $ suv(aPAiv - avAin +gf ijkAjuAkv) ' 

(41) 

(42) 

(43) 

(44) 

Equations (42) and (43) are respectively statements of gauge invariance 

and axial-vector anomaly for the theory.g 

Before proceeding further, it will be useful to provide an alterna- 

tive derivation of Eqs. (42) and (43) and the corresponding result for 

the color-singlet current. This alternative method will avoid the 

elaborate construction of the quark propagator and, relying on differ- 

ential properties, will lead directly to the expressions for the current 

divergences. Though limited in its results, it will provide an independent 

verification of the preceding calculations. 

The alternative method is based on a "two-body" equation which is 

derived within the context of a formalism developed recently. 10,11,12 

To introduce this equation, we define the operators ZZf according to 

L?+ = r,[iaI + ghiAy(x)] , LX?: = y,[iaE - gX:Ai (x)] , (45) 
X 

so that Eq. (17) may be written as 

2; S(x,y) = 6 (x - y) l (17') 
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Let n' be a unit vector, nnn' = 1. Then the sought-after equation may 

be written 

[pow) + 
X 

q(2)cJ?-(2)]s(x y)C = 0 , 
Y , (46) 

where C is the charge conjugation matrix, and where the superscript (1) 

[(2)] indicates matrix multiplication onto the first (second) set of 

spin and color indices carried by SC. Furthermore, the characteristic 

simplicity of the spin algebra requires that SC commute with y5 , with 

the consequence that (46) may be simplified to 

i(ag + ai)y,S+gAy(x) Xiy,,S - gAy(y)YPSh. = 0 3 
1 

where now ordinary matrix multiplication is implied for all indices. 

Note that in arriving at (47), we have assumed Xi to be Hermitean. 

Equation (47) can now be used to derive expressions for the 

divergence of various currents. We will present the derivation for 

the divergence of the axial SU(N) current, and state the result for 

the remaining cases. To start, we rewrite the analog of the defin- 

ition (32) for the axial current using the property [valid for the 

two-dimensional massless case; cf. Eq. (17)] that 

lim S(x,y) = So(x,y) . 
X-tY 

(47) 

(48) 

The result is 

(j;(t,~ = $ A@) - ig lim tr[y5ynS (< + s/2, 5 - s/2)] . (32') 
E-a 
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Next, we multiply Eq. (47) by ky5 and take a double trace over spin 

and color indices while subjecting the coordinates to the conditions 

x = 5 + s/2, y = 5 - s/2, and E -+ 0. The equation thus obtained is 

lim ia: tr [xky5yF! S(S + E/2, 5 - E/2)l 
E-+0 

-I- gAJ(<)lim tr ['k,~i]Y5Y~S (6 + s12' 5 - E/2) 
E-+0 

(49) 

('khi + 'i~k)y5y~ S (s ‘E/2,5 - E/2)} =O . 

As a consequence of Eq. (48), this equation reduces to 

(()I(-ig) limtr[Agy5yPS(6+c/2,<-s/2)l 
E+o 

(50) 

which, upon using (32'), reproduces Eq. (40). Equation (39) is obtained 

in an entirely analogous manner, and the corresponding divergences for 

the U(1) currents (in the limit e=O) are given by the free-field 

expressions 

av (j'j= 0 , au (Jp) = 0 , (51) 

in confirmation of Eqs. (37) and (38). 

IV. The Absence of Massive Color-Singlet Bound States 

In this section we shall establish the non-existence of massive color- 

singlet bound states. To study these, we shall use the bound-state formalism 

referred to in the previous section. In particular, we rewrite the fermion- 

antifermion equation [Eq. (7) of Ref. 11 or 121 for the quark-antiquark 
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system of the present theory. Using the definitions given in Eqs. (45), 

(46) and the explanatory remarks following them, we can write the equation 

as 

[pr (l)~+(l) 

X 
+ p1(2)g-w y 1 X(X,Y> = gdlql)ly(x) 

_ p,*w (2) i Fi (Y) I S(X,Y)C , 

where 

F;(x) = 6J ‘~~1 K(J) , 
ill 

(52) 

(53) 

and 

K(J) = (OUTIqq,IN )/(OUTIIN) . (54) 

Here jqq,IN) stands for the bound state in question as an incoming state 

in the presence of the external source J!, and X is the associated "wave l. 

function" defined by 

X(X,Y) = (OUTIT[q(&=(y>l QlsT,IN) /hJT[IN) , (55) 

and 

Q = l- ]IN)( OUT] /(OUTIIN) , (56) 

where qc is the charge-conjugate of q. 

A useful identity 11 relates x and the color-singlet current: 

lim tr [y'X(x+e/2, x-E/~)c] = - (OUTlju(x) Iq5,IN)/(OUTIIN) - (57) 
e-0 

The fact that, according to Eq. (38), j' is essentially a massless field 

implies that either the color-singlet states are massless, or that the left- 

hand side ?f (57) vanishes. It is therefore sufficient to pursue the 

latter possibility. 

From the definition (55) and the construction of S in Section II, we 

can assemble x in the form 
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- (1) X(x,y) = iKS(x,y)C + [Y+(x)A+ + ry(x)h 1 

(58) 

x [giY)n+ + g* (YM1 X()(X’Y) , 

where X 0 satisfies the interaction-free equation 

[pp) + pp (2) 
X y 1 Xo(X,Y) = 0 ; (59) 

and can therefore depend only on x-y. 

The simplicity of the Y-matrix algebra and the fact of masslessness 

again cause a decomposition of the space of wave functions (looked upon as 

matrices in spin indices) into two subspaces, one spanned by Y lJ and the other 

by YuYv (u,v = 0,l). The corresponding components of X, to be designated by 

odd 
X and x even respectively, are 

X Odd(x,y) = [q(l)(x)~*(~)(y)A+ + &~)$*(~)(y)A-l Xoodd (x-y), (60) 

X even(X,Y) = iKS(x,y)C + [F+ ('I (~)q*(~)(y)A+ 

(61) 

+~~)(~)$;(~)(y)A-l Xyen(x-y) , 

where now ordinary matrix multiplication over spin indices is to be under- 

stood. 

Let us consider x odd first. It is easy to see that it actually 

represents a mutually non-interacting pair by observing that F+(x) involves 

only A+&-) , and that one of the latter may be taken to be zero as a choice 

of gauge. As for Xeven, we proceed by taking the trace of Eq. (61) over 

color indices in order to extract the color-singlet component of X. In so 

doing, we utilize the fact that X 0 must be proportional to the unit matrix 

in color indices. Hence 
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even 
X singlet(xsY) = iK tr[S(x,y>lC + trlL?$(x)g:(y)]~+ 

(62) 

+ trI~b)rf(y> IA- xo~n~let(x-y) 9 
> 

where "+'I denotes the adjoint matrix. 

The mass of the state represented by (62) may be determined by examining 

the dependence of the wave function upon x+y. This dependence can be gauge- 

invariantly determined by considering the x = y limit, 13 were it not for the 

possibility that X0 may be singular there. However, Eq. (57) and the remarks 

subsequent thereto assure us that in fact X0 vanishes in that limit since the 

factors 

lim tr[q(x)S++(y) 1 = tr[~+(x+)~++(X+) 1 , 
*Y 

(63) 

lim tr[g-(x)T+(y)l = tr[~_(x-)~-+(x->l , 
x?y - - 

(64) 

are positive-definite, and moreover, 

lim tr[S(x,y)] = 0 . 
*Y 

(65) 

Note that in deducing (63) and (64), we have used the property that Tt -1 =T . 

Finally since 

a2 tr[r+(x+)r++ (x+1 1 = a2 tr[-c-(x-IT-+(x-> 1 = 0 , (66) 

we are assured of the masslessness of the color-singlet bound states. 

V. Bosonization and the Existence of Massive Colored States 

The results of Section III suggest that the non-trivial part of the 
+ 

spectrum is to be found in the color sector. Moreover, with the induced 

quark color current given by (34), one can conveniently describe this 

sector in a bosonized form. To do this, we fix the gauge by adopting the 
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the light-cone condition B 
i- = 0. The corresponding relations for the 

functional quantities are 

zi- = 0, Ai- = 0, A+ = Ei+ - 

Furthermore, the field equations reduce to the constraint equation 

$afBi+ = ji-+ Ji- , 

or, in functional terms, 

+a2Ai+ = (j,-) + Ji- 

2i6/6Ji- . 

. 

Equation (34), on the other hand, implies the following pair: 

(ji+) = 6 Ai+ , 

(j,-) = + tr[x 
aup 

i ax 
+ 

ql(x)l . 

Combining Eqs. (69) and (70), we arrive at 

w+ (xl 
trlXi ax ,9-- 

+ 
+ ‘(x)I + Ji- , 

which, in view of the relation 

Bi+(x) = -2i 8J 6cx) In (( OUTIIN)) 9 
. IL- 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

is equivalent to the following functional differential equation for the 

generating functional: 

2 6 
a- aJiM 

+ f tr[Ai 
az W 

af, 
+ 

3-l (d 1 - iJim (OUTIIN) = 0 3 (74) 

where Ai+ [which enters the definition ofq(x) in Eq. (24) 1 is to be 

replaced by - 2i6/6Ji-(x) within the square brackets. Equation (74) is 

thus an equivalent boson formulation of the theory in that the vacuum 
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expectation value of all the time-ordered products of the gauge potential 

may be obtained from the generating functional in the usual way. 

It is actually possible to reduce the theory further to an equation 

similar to (74) but in terms of gauge-invariant quantities. This is most 

conveniently accomplished in terms of the field strength Ei, the pseudo- 

scalar dual to B iv' which is (except for a global choice of gauge) gauge 

invariant and (in the light-cone gauge) simply related to the gauge potential 

by [cf. Eq. (33)1 

Eij=$ a-Xi+ . (75) 

To realize a corresponding reformulation of (74), we introduce a new source 

function Ik defined by 

J,(x) = - a-lk(X> , (76) 

in terms of which we will have 

(z,(x) > = - ia- 6J 6cx) ln ((OUTIIN)) = -isIi(x) ln (( 0~~11~)) (77) 
k- 

Finally, Eq. (74) takes the form 

6 
a- 61k(X) + I tr[Xk 

acT+(x) 
'ax 

+ 
Tml(x)] + ia-Ik(x) (OUT/IN) = 0 . (78) 

For completeness, we record here the corresponding expression for T+, in 

terms of which $+ is defined in Eqs. (24) and (27): 

T+ b> = T exp [gAk d2x'O(x - 1 x > E <x+ - $1 (79) 

where the ordering is with respect to x'. Once the generating functional 

(OUTIIN) is obtained from (78) in terms of I, the various gauge-invariant 

Green's functions of the field strength 2 may be calculated by means of 

functional differentiation according to (77). 
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Although an extensive simplification has been achieved in reducing the 

theory to the bosonized form (78), its exact solution is prohibited by the 

fact that the order of functional derivatives extends to infinity by virtue 

of the exponential terms. However, by considering the limiting values 

the coupling constant g, we can infer the existence of massive colored 

states. To that end, it is convenient to consider the quark current 

of 

divergence relations in the light-cone gauge. These may be obtained from 

Eqs. (39) and (40), or alternatively from (70) and (71); they lead to 

2 
cgika+ + gfijkAj+) (j,-) = - & a&+ . (80) 

This equation, combined with the constraint equation (69), in turn leads 

to 
3 

(6ika+ -I- gfijkAj+) ( +&$+--Jk-) = -&a-A, l (81) 

Since g is the only dimensional parameter in this (finite) theory, we can 

deduce the infrared and ultraviolet behavior of the theory by considering 

its strong- and weak-coupling (i.e., g+m, 0) limits respectively. Thus in 

the latter limit, the free-field result 

task+- - Jk = 0 (g+ 0, ultraviolet limit) , (82) 

is obtained, which implies a bare.propagator and asymptotic freedom. The 

infrared limit, on the other hand, is obtained by neglecting the linear 

term in g relative to the quadratic one; this gives 

= a+J+ k-+~, infrared limit) . 

This equation may be transcribed as one expressing the gauge-invariant 

Green's function for the field strength ?? according to (75) and (77): 
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-i(O]TIEi(x)Ej(y)lIO) = 'ij a2A(x-Y) ,(&Yl +m> , (84) 

where A is the propagator for a boson of mass g/a. Equation (84) implies 

the existence of a (n2-1)-fold degenerate family of massive, colored2, 

pseudoscalar particles. Note that only the lightest of such states would 

be revealed in Eq. (84). Therefore if quarks were liberated with a mass 

less than half of the mass appearing above, the threshold of the diquark 

continuum would be revealed in Eq. (84). Massive quarks, on the other 

hand, would not in general be compatible with a free color-singlet current. 

Thus quark liberation at any mass is ruled out and quarks are confined. 

VI. Concluding Remarks 

The analysis of two-dimensional massless QCD with an arbitrary number 

of colors in this paper has characterized the theory as one whose essential 

properties are determined by a Schwinger-like mechanism. Whereas these 

properties are understandable in terms of the quark current operators and 

particularly in terms of the axial-vector anomaly as the source of symmetry 

breaking and mass generation, the essentially Abelian character of the 

underlying (broken) structure presents something of a puzzle. However, the 

observation that the large-scale properties of the theory, as seen in Eq. (81) 

for example, are determined by the anomaly term with the non-Abelian (i.e., 

involving fijk ) contribution being relatively unimportant confirms the nature 

of the underlying structure. The small-scale properties of the theory, on 

the other hand, are determined by non-interacting quarks, thus making the 

non-Abelian nature of the coupling inconsequential for both small- and 

large-scale properties of the theory; hence the relevance of the Abelian 

analogy. 
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If one considers the above picture as the strong-coupling limit of 

massive SH(N) Yang-Mills theory in two dimensions, then indeed the 't Hooft 

model must be representative of a different phase, while the ususal weak- 

coupling limit (i.e., as given by a perturbation expansion in g/m with N 

considered finite and arbitrary) presumably corresponds to a third regime. 

The relevant lesson gained here is that the various limiting cases produced 

by the extreme values of the dimensionless parameters g/m and N do not 

commute. 

Are there other states in the color sector higher in mass than the 

massive "gluons" of the preceding section? One would certainly expect there 

to be a (probably infinite) family of such states since, unlike the Abelian 

analog, these are interacting gluons. The latter fact is evidenced by the 

presence of a characteristically non-Abelian interaction term in the bosonized 

versions of Section V. The interesting feature encountered here (in contrast 

to the massive Schwinger model, for example) is that both the mass and the 

interaction terms are driven by the (original) coupling constant of the 

theory (e.g., see Eq. (81)). 
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