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1. INTRODUCTION 

During the past year, new results from neutrino experimentsly 

have been compared with QCD predictions for scaling violations in 

deep-inelastic structure functions.1'4 Good agreement between theory 

and experiment has been found. In what sense do these comparisons test 
-- 

QCD? To answer this question we must examine the various theoretical 

uncertainties involved in making the QCD predictions. The basic QCD 

calculations for deep-inelastic scattering,5 which are discussed in 

Section II, treat only the lowest-twist operators in the operator 

product expansion and only leading-order terms in the QCD coupling 

parameter es. As a result, there are corrections of order 1/Q2, 

l/Q4, etc., coming from target mass effects and from higher-twist 

operators, and corrections which are higher order in cx 
S’ 

Target mass 

effects can be taken into account,6-8 but the effects of higher-twist 

operators remain as a source of uncertainty for predictions at low QL. 

These issues are discussed in Section III. The corrections of second 

order in cx s to the leading-order QCD results have now been computed.' 

Their phenomenological implications are discussed in Section IV. 

The work described here was done in collaboration with Michael Barnett. 

II. _. HIGH-Q* RESULTS 

Two effects which are higher order in 1/Q2, elastic scattering 

contributions and target mass effects, can be directly measured. 

Using BEBC- Gargamelle data,l we find that for analyses of the 

Q2- evolution of xF3, or' of moments of xF3 for N 2 6 both of these 
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effects are smaller than the experimental errors for Q* >3GeV2. We 

therefore think it reasonable to assume that other effects of higher- 

twist operators are also small for Q2 > 3 GeV2. 

In order to compare QCD with neutrino data, I will use the QCD 

equations for the Q2- evolution of deep-inelastic structure functions. 5310 

For the non-singlet smture function xF3 the evolution equation is 

particularly simple. Defining 

xF3 (x,Q2) = F (x,Q2> (2.1) 

we have 

Q2 
a F (x,Q*) as (Q2) = 

a Q2 37r i( 
3 -I- 4 Rn (l-x) F (x,9*) ) 

1 

-I- 
s 

X 

dz --& [(l+ z2) F(+3 Q2) - 2F b,Q2ij2/ 2) 

. 

where 

as (Q2) = 
12 IT 

(33- 2nf) Rn Q2/A2 
(2.3) 

for nf quark flavors. In order to proceed, alongdth Eq. (2.2) one 

must specify a boundary condition for F (x,9*> at some reference 

2 point Q2 = Q,. This boundary condition is not completely specified by 

QCD calculations. We take the standard parameterization 

F x,Q; ( ) 
= Axa (l-~)~ (2.4a) 
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and, following the CDHS group,2 we use the values 

2 
QO 

= 20 GeV2 

A = 3.3 
(2.4b) 

a = .5 

.- b = 3 

Then, integrating Eq. (2.2) we obtain the solid curves in Figs. I- 4. 

The data points shown are a weighted average of BEBC- Gargamellel and 

CDHS2 results. Fig. 1 shows the initial fit of Eq. (2.4) to the 

combined data at Q2 = 20 GeV2. This initial fit is also shown for 

reference in Figs. 2- 4 by the dashed curve. The curves predicted by 

QCD on the basis of the initial fit are shown in Figs. 2 and 3 for 

Q2 = 64 GeV2 and for Q2 = 100 GeV2. The agreement between theory and 

experiment is quite striking. Fig. 4, showing the QCD fit at 

Q2 = 3.9 GeV2, is less dramatic but still in reasonable agreement. 

In Figs. l- 4, we have combined BEBC- Gargamellel and CDHS2 data. 

It should be pointed out that at high Q* there is some disagreement 

between the two data sets, where they overlap, in the range .52x< .7. 

The effects of this discrepancy are minor in the plots I have shown. 

However, if one takes moments for the two data sets one weights the - 

range of x where the discrepancy occurs heavily and the disagreement 

for the moments becomes quite large. Another important point is that 

the Q2- evolution of F(x,Q2) at some particular x = x0 depends on 

F(x,Q2) only for x2x0. Thus, although F (x,Q2) is not wall determined 

by the data for small x, this uncertainty does not feed through the 

equations to larger x values. 
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111. EFFECTS OF HIGHER ORDER IN l/Q2 

For Q2 < 3 GeV*, terms of higher order in l/Q2 are important. 

This can be seen by the presence of a large elastic-scattering contribution 

and of sizeable target mass corrections as will be shown below. Terms of 

higher order in l/Q2mmse from both kinematics and dynamics. Kinematic 

effects come from the finite target mass, p 2 2 =m where p is the target 

momentum; and from finite hadronic masses in the final state, W2.> m2 

where W is the final-state hadronic mass. Dynamical effects include 

elastic scattering, resonance formation, diquark scattering, constituent 

pion scattering, transverse momentum effects and many others. Of these, 

only the target mass effects can be correctly incorporated into the QCD 

predictions. 

Target mass corrections are made by using the c-scaling variable7'8 

or equivalently by taking Nachtmann moments.6 First, I will discuss the 

5 variable within the context of the parton model,8 and then I will discuss 

mass corrections in the operator product expansion7 and Nachtmann moments.6 

The two discussions are equivalent and reflect two ways of looking at the 

same problem, but it is instructive to state both of them. 

Consider the target nucleon momentum parameterized in the 

convenient forrnll- 

P = 
nucleon ( 2 2 

P+m 
4P' 

;;, p-m 
4P ) 

(3.1) 

This form guarantees that p~ucleon = m2. 
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Then, let the initial momentum of the struck quark be 

'quark = 
kL , iz, XP- - 
4xP 

This quark is taken to be massless. Note that 

(PO + P,) 
x = quark 

(q-j + p3> 
nucleon 

(3.2) 

(3.3) 

The final momentum of the struck quark is (p quark +41. If it too is 

massless, we have the condition 

(P quark -w2 = 0 (3.4) 

Solving this equation ignoring kL gives the 5 scaling variable 

where 

mv= q-p nucleon 

- 
To take target-mass effects into account for xF3 one would leave 

Eqs. (2.2 - 2.4) unchanged; but Eq. (2.1) would be replaced by 

(3.5) 

(3.6) 

2 
xF3(x,Q2) = ?!-- 

1 4m2 

c2 
F(~,Q~) f - 

Q2 
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A second derivation of <- scaling starts with the operator product 

expansion of two currents (suppressing vector indices of the currents J) 

J(x)J(O) = (3.8) 

where the 0 1,J 
Ul .a- PJ 

arelocal operators of spin J. If we ignore the 

target mass (p2 = 0) and write the nucleon matrix elements of the operator 

0 
i,J as 
q ..'lJJ 

<p ) ?.I IP) = A; p,, . . . p 
J 1 VJ I 

(3.9) 

then the tensors Cp . . . 
Pl 

p 
l-IJ 

1 are symmetric and traceless forming 

irreducible tensors of O(4). However, if we take the target mass into 

account (p2 = m2> these tensors are reducible due to their non-vanishing 

traces. Since the operator 0 i,J has definite spin we must write 
I- 

Pl a** 1-15 ~ 
. 

<p 1 o=yJ 
iQ -a' DJ 1 

..a P~,~-~ gU1p2p,,3 . . . P~J 
4 

- all other traces 
I 

(3.10) 

This modification leads to the 5 scaling variable' and to Nachtmann 

moments 6 

2 

I 
N+l 

r;iN= dx 
5 xF3 (x,Q2) 

3 
I 

X 

0 

I. -i- (N+ 1) 
li Q 

1+ 4m2x2 - 2 

(N f 2) 
(3.11) 
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to replace the simple moments 

/ 

1 

MN= dx xN- 2 xF3(x,Q2) 

0 

(3.12) 

Although the S-scaling scheme correctly accounts for target mass 

effects, it does not correctly describe the final-state kinematics in 

deep-inelastic scattering.12 Kinematics requires that xF3 vanishes 

at x = 1 and quark counting rulesI suggest a form like (l-~)~ near 

x = 1. When the 5 scaling variable is used, (l-~)~ gets replaced by 

Cl- o3 and at Q2 = 1 GeV2, for example, x = 1 corresponds to 5 = .64. 

As a result, xF3 does not vanish at x = 1 in the E-scaling scheme. 

In the above parton model derivation, we have taken p2 = m2 for the 

initial nucleon momentum but have ignored the final-state kinematic 

condition W2 2 m2. For example, if we included non-zero final-state 

hadronic masses we could not have taken the initial quark on mass 

shell as in Eq. (3.2). Thus, the C- scaling scheme assumes that the 

dominant l/Q2 effects can be removed by correcting the initial-state 

kinematics only and ignoring final-state kinematics and dynamical 

effects. This is somewhat supported by the fact that the C- scaling 

variable acts much like the scaling variable of Bloom and Gilman.14 

In overshooting the data near x = 1, one can argueI that C- scaling 

accounts for the elastic scattering contribution (and resonance 

contributions) in the sense that the excess area under the 5- scaling 

curve equals the area under the elastic peak at x = 1. 

The key issue is then: once target mass corrections have been 

made, how large are the remaining higher-twist effects. This is an 
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extremely difficult question to answer. We have fit the BEBC-Gargamelle 

data1 for moments of xF3 to the form 

Q = My 1 +F [ 1 (3.13) 

-_ 

where MN is a Nachtmanfimoment and QCD 
MN is the QCD prediction. The 

factor of N in the l/Q2 term is suggested by quark counting rules. 13 

Fixing the A parameter of QCD from the high Q2 data we find a 2 .2. GeV'. 

However, if the A parameter is not held fixed we find that the data 

do not distinguish between l/Q2 and l/anQ2 effects, and in fact this 

question cannot be resolved. The inclusion of other terms like 1/Q4, 

1/Q6, 1/Q8, etc., does not change the situation. 

Figure 5 shows the effects of elastic scattering and of the target 

mass at Q2 = 1.7 GeV2. The dashed curve is the x- scaling prediction 

of QCD obtained by integrating the QCD evolution equation for xF 3' 

Eq. (2.2), down from the initial fit of Eq. (2.4) at Q2 = 20 GeV2, and 

using Eq. (2.1) to define xF3. The solid curve is the corresponding 

5- scaling prediction obtained from Eq. (3.7). The elastic data which 

is actually a sharp spike at x = 1 is displayed by adding on extra bin 

from x = 1 to x = 1.1. The area under the da%a point in this bin is 

equal to the area-under the elastic peak in the original data. Note 

that the elastic contribution is quite large and that the difference 

between the x- scaling and S-scaling curves is substantial. This shows 

the presence of significant corrections of higher order in 1/Q2. The 

x- scaling (dashed) curve fits quite well in the large x region except 

for the elastics. This suggests that the simple moments of Eq. (3.12) 
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excluding elastics would agree well with QCD which is in fact true. 

The 5- scaling curve overshoots the data at large x but the area between 

the 5- scaling curve and the x- scaling curve is approximately equal 

to the area under the elastic peak. This suggests that the Nachtmann 

moments of Eq. (3.11) including elastics would also agree well with QCD. 
-_ 

Again this is true. 7X-considering which curve in Fig. 5 fits better, 

it is not at all clear what one means by a good fit a low Q2. At present 

the data is not precise enough to distinguish between l/Q2 and l/!?nQ2 

effects. Thus, low Q2 data cannot be used to test QCD until more is 

known about higher-twist effects. On the other hand, it does contain 

information which may be helpful in resolving these issues in the future. 

IV. EFFECTS OF HIGHER ORDER IN as 

Figure 6 shows a comparison of the BEN- Gargamelle data1 for 

the N= 3 Nachtmann moment with the leading order QCD prediction 

(4.1) 

where the dN are known parameters and the constants CN and A are 
- 

determined by fitting to the data. We have already seen that the QCD 

prediction for Q2 < 3 GeV2 is subject to uncertainties due to effects 

of higher order in 1/Q2. There are also uncertainties coming from 

terms of higher order in c1 . 
S 

The corrections of second -order in as 
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change Eq. (4.1) tog 

C 
+ N 1+ 

AN + BNRn Rn Q2/A2 

I 
(4.2) 

fin Q 
Rn Q2/A2 

-- 

The constants AN and BN have now been computed.g We can then fit 

Eq. (4.2) to the data of Fig. 6 again varying CN and A to obtain 

the best fit. We find that although the correction terms are large, 

the curve obtained using Eq. (4.2) is virtually identical to the curve 

we found by fitting with Eq. (4.1). This is because the effect of the 

second-order corrections can almost entirely be absorbed into a renor- 
3 

malization of the parameter A . The large second-order corrections 

change the value of A dramatically but have a very small effect on 

the curve of Fig. 6. This is true for moments over a small range of 

N (say 2 5 N I 6) but is no longer valid if we try to fit over a large 

range of N. Recently, Ross16 has shown that the large second-order 

corrections to the QCD curves of xF3 (Figs. 1-4) occur at large and 

small x. At large x since xF3 vanishes this is not too critical 

and at small x the fit to xF 3 is poorly known anyway. Thus, the 

second-order corrections and hopefully all correci5ons of higher-order 

in a s do not introduce too much uncertainty into qualitative QCD 

predictions such as those of Figs. l- 6. 

However, the second-order corrections in as _ do present a problem 

when we go beyond curve fitting and try to give numerical predictions 

from QCD. For example, the BEBC- Gargamelle group1 has obtained a 
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parameter r by requiring 

0 (4.3) 

Using the lowest-order form of Eq. (4.1) we see that QCD predicts that 

Eq. (4.3) can be satisfied at all Q2 with ~_ 

dM 
r = 

dN 
(4.4) 

4 
To include the second-order corrections in as, we must substitute 

Eq. (4.2) into Eq. (4.3). We find that Eq. (4.3) can no longer be 

satisfied at all Q2 but that it can be satisfied at one Q2 value and 

then is very nearly satisfied at all other Q2values in the experimental 

range. However, the QCD prediction for r is now quite different from 

the leading-order prediction of Eq. (4.4). For example, if we choose 

to satisfy Eq (4.3) at Q2 = 5 GeV2 (the values given are not very sensitive 

to this choice) and take I\= .5 GeV, we obtain the following results 

TABLE I 

QCD Prediction 

M/N r(Leading-Order) r(Second-Order) 

513 1.46 1T-Q 

614 1.29 1.46 

713 1.76 2.28 
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Thus, the parameter r is subject to quite large corrections due to 

effects of higher order in a 4 
S' 

The calculations of the second-order corrections to the moments also 

serve to point out ambiguities in the definitions of as and A.3,17218 

First, as can only be defined by specifying a renormalization scheme. 

Two as parameters def&d in two different schemes disagree at second- 

order and are related by 

a’ = 
S 

as -t a", + . . . .(4.5) 

However, even if the renormalization scheme is fixed, there-is still 

an arbitrariness in the definition of A which results in an ambiguity 

exactly like Eq. (4.5). Consider some function expanded in powers of 

l/Rn Q2 

F z 
A -I- B -- 

Rn Q2/A2 !2n2Q2/A2 
-t * I . 

Now define 

*a = Ae +a 

Then, 

1 1 a = 
Rn Q2/A2 Rn Q2/A2 a an2Q2/Ai 

+ . . . 

- 
and we can write - 

F A B-a = 
Rn Q2/A2 

+ 

a 
Rn2Q2,A2 + -** 

a 

Thus, we have the possibility of expanding using different A's and 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

getting different values of the constant in the second-order term. 
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If we use the definition of Aa in Eq. (4.7) for the moments of Eq. (4.2), 

we find3 

izN = cN *N- adN +BN RnRn Q2/A2 
1+ - a 

(!Ln Q2/AifN Rn Q2/A2 -1 (4.10) 

a 

Xote therefore, that= cannot define A without specifying the 

constant term in the second-order correction nor can one say how large the 

second-order term is without defining what definition of A is being used. 

In fitting the second-order QCD prediction for the moments to data, 

one must decide what A to use and hence what value of the constant term 

in the second-order correction to fit with. There are several possible 

approaches. The calculations of the AN and BN were done in the minimal 

subtraction scheme using dimensional regularization. The AN contain 

factors of Rn (4n) - yE coming from expanding around n= 4 in the 

dimensional regularization method. Since these factors are artifacts 

of the regularization scheme, one can choose3 

a = an(4ir) -yEZ 2 (4.11) 

in order to remove such factors from the AN. Another approach is to 

choose a value of a so that the second-order term is as small as 

possible over the-Q2 range and for the moments of interest. 3'4 This 

also leads to an a close to two. Finally, we have fit Eq. (4.10) 

using C A N' a' and a all as free parameters. We find a= 2.3 k .6 

but this determination can only be made using low Q2 data where effects 

of higher order in l/Q 2 
introduce uncertainties, It is interesting 

that all three methods lead to roughly the same value of a. 
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The best definitions of as and A to use are clearly those which 

minimize the effects of higher-order corrections. The results of the 

last paragraph suggest that at moderate Q2 values, for moments 21N16 

the best choice might be ag 2 in Eq. (4.10). The second-order 

corrections to the total e'e- cross section are now being computed. 

It will be interestinsnee whether the definitions of as and A 

which seem to be best in deep-inelastic scattering also minimize the 

effects of second-order corrections to electron-positron annihilation. 

Finally, I would like to point out that in comparing values of 

A ora one must be sure that the same 
S 

from different processes, 

definitions of these parameters are being used. This can only be done 

if the second-order corrections are known. In particular, there is no 

meaning to comparisons of A's obtained from different processes using 

the lowest-order results of QCD.17 
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FIGURE CAPTIONS 

Fig. 1. A fit of the form xF3 =Axa(l- x)~ to the combined 

BEBC- Gargamelle and CDHS data at Q2 = 20 GeV2. 

Fig. 2. The solid curve is the QCD prediction for xF3 based on 

the fit of -7which is reproduced here as the dashed 

curve. The data is combined BEBC- Gargamelle and CDHS 

results at Q2= 64 GeV2. 

Fig. 3. Same as Fig. 2 but at Q2= 100 GeV2. 

Fig. 4. Same as Fig. 2 but at Q2= 3.9 GeV2. 

Fig. 5. The dashed curve is the x- scaling prediction of QCD 

based on the initial fit at Q2= 20 GeV2 of Fig. 1. 

The solid curve is the corresponding 5 -scaling 

prediction. Data is from BEBC- Gargamelle and 

elastics are shown in a bin from x= 1 to x= 1.1 

where the area under the data point in this bin is 

equal to the a'rea under the elastic peak at x= 1 

in the original data. 

Fig. 6. A comparison of the QCD prediction with the N= 3 

Nachtmannmoment from the BEBC- Gargamelle data. 
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