COMPUTER CALCULATIONS OF TRAVELING-WAVE PERIODIC STRUCTURE PROPERTIES*

G.A. Loew, R.H. Miller, R.A. Early
and K.L. Bane

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Introduction

The versatility and accuracy of programs such as LALA and specially SUPERFISH ${ }^{2}$ to calculate the rf properties of standing-wave cavities for linacs and storage rings is by now well established. Such rf properties include the resonant frequency, the phase shift per periodic length, the $E-$ and $H-f i e l d$ configurations, the shunt impedance per unit length and Q. While other programs such as TWAP ${ }^{3}$ have existed for some time for travel-ing-wave structures, the wide availability of SUPERFISH makes it desirable to extend the use of this program to traveling-wave structures as well. That is the purpose of this paper. In the process of showing how the conversion from standing waves to traveling waves can be accomplished and how the group velocity can be calculated, the paper also attempts to clear up some of the common ambiguities between the properties of these two types of waves. Good agreement is found between calculated results and experimental values obtained earlier.

Space Harmonics, Standing and Traveling Waves

To illustrate our problem, let us review the case of the classical cylindrically symmetric disk-loaded waveguide for which LALA and SUPERFISH can yield exact field solutions. It is well known that in the lowest pass-band (accelerating TM_{01}-type mode), the travelingwave E_{z} field can be expressed as

$$
\begin{equation*}
E_{z, T W}=\sum_{n=-\infty}^{n=+\infty} a_{n} J_{0}\left(k_{r n} r\right) e^{j\left(\omega t-\beta_{n} z\right)} \tag{1}
\end{equation*}
$$

where a_{n} is the amplitude of the space harmonic of index $n, B_{n} z=B_{0} z+2 \pi n z / d, k_{r n}^{2}=k^{2}-B_{n}^{2}, k=\omega / c$ and d is the periodic length. Let a be the radius of the iris and b the radius of the cylinder. On axis $r=0$, $J_{0}(0)=1$ and the amplitudes all reduce to the a_{n} 's. Furthermore, the fundamental $(n=0)$ field amplitude at any r, for a structure where $\beta_{0}=k=\omega / c$ is equal to $a_{0} J_{0}(0)$, which indicates that a synchronous electron undergoes the same average accelecation independently of radial position. If one chooses the orfgin at a point of symmetry of the structure (in the middle of a cavity or a disk) the a_{n} 's are all real. Notice that for $r=0$, expression (1) assumes a special form when $z=0$ and when $z=d / 2$:
$z=0 \quad E_{z}=e^{j \omega t} \sum_{0}+a_{-1}+a_{+1}+a_{+2}+a_{-2}+\ldots$
$z=\frac{d}{2} \quad E_{z}=e^{\left(\omega t-B_{0} \frac{d}{2}\right)} z_{2} a_{0}-a_{-1}-a_{+1}+a_{+2}+a_{-2}+\ldots$
1.e., the axial traveling-wave E-field goes through an extremum where all the space harmonics are colinear. This is also how at $r=a$ the space harmonics "conspire" to make the tangential E-field at the disk edge equal to zero, i.e., how they fulfill the function for which they were invented in the first place, namely to match periodic boundary conditions. Notice also that if the phase shift per cell is an exact sub-multiple of 2π, 1.e., $B_{0} d=2 \pi / m$, then $B_{n}=B_{0}(1+m n)$. In what follows, we will focus on the so-called $2 \pi / 3$ mode ($m=3$) which is easy to represent schematically and for which there is a large amount of experimental data from the SLAC inac and many others. The results, however, are quite general and apply to any $\beta_{0} d$ except π. Fig. la illustrates the behavior of E_{z}, E_{r} and H_{ϕ} : two traveling-
*Work supported by the Department of Energy under contract number EY-76-C-03-0515.
wave snspshots of E are shown for two instants of time, $\omega t=0$ and $\omega t=\pi / 2$. Notice that E_{z} is plotted on axis ($r=0$) but E_{r} and H_{ϕ} are zero on axis and thus are plotted for $0<r<a$. The units are arbitrary. The field patterns that are shōw have for many years been known approximately from bead measurements, paraxial approximations of Maxwell's equations and general symmetry arguments. However, some of the subtleties in Fig. la can only be gotten from a complete computer solution, as shown later in this paper. Notice also that since the fields are sketched at an instant of time, they are not at their maxima, except for selected symmetry planes. H_{ϕ} travels in phase with E_{T} to preserve a net power flow (ExH) $z^{=} E_{r} H_{\phi}$. Fig. Ib shows $E_{z, T W} \max$ at $r=0$ vs z and the corresponding phase variation, as governed by Eq. (1).

The standing waves are shown in Fig. 1c. The snapshots of E are given for two different boundary conditions: Neuman ($E_{T}=0$) on the left, and Dirichlet ($H_{T}=0$) on the right. E_{z} and E_{r} which are shown at their maximum values in time are in time-phase, H_{ϕ} leads them in time quadrature and there is no power propagation: the energy simply switches back and forth between the electric and magnetic fields. On the axis ($\mathrm{r}=0$), the axial electric fields can be expressed as:

$$
\begin{align*}
& E_{z, S W}=e^{j \omega t} \sum_{n=-\infty}^{n \omega+\infty} 2 a_{n} \cos \beta_{n} z \quad \text { (Neuman) } \tag{3}\\
& E_{z, S W}=e^{j \omega t} \sum_{n=-\infty}^{n=+\infty} 2 a_{n} \sin \beta_{n} z \quad \text { (Dirich1et) } \tag{4}
\end{align*}
$$

where the factor of 2 comes from the summation of two traveling waves of amplitude a_{n}. These and the corresponding E_{r} and H_{ϕ} are the components calculated by LALA and SUPERFISH. Notice that the snapshots of $E_{Z} T W$ and $E_{2}, S W$ at the instants chosen are indistinguishable but H_{ϕ}, is different.

Group Velocity

The group velocity for a traveling wave can be obtained from the dispersion diagram ($v_{g}=\mathrm{d} \omega / \mathrm{dB}$) or from the energy velocity ($v_{g}=P / W_{T W}$) where ${ }^{8} P$ is the power flow and $W_{T W}$ is the energy stored per unit length. In order to calculate v_{g} with some accuracy from the first expression, which is generally done for the standingwave case, one needs to compute several frequencies on the w - $\beta_{0} d$ diagram, typically for $\beta_{o} d=0, \pi / 3, \pi / 2,2 \pi / 3$ and π, and then fit the data to some smooth curve. If however we want to obtain v_{g} by calculating the fields at only one frequency, namely the operating frequency, then the second expression is to be used. For a given z, we have:

$$
\begin{equation*}
-v_{g}=\frac{P}{W_{T W}}=\frac{\frac{1}{2} \int E_{r} H_{\phi} d S}{\int_{\substack{\text { unit } \\ \text { length }}} \frac{\epsilon E^{2}}{2} d V+\int_{\substack{\text { unit } \\ \text { length }}} \frac{\mu H^{2}}{d V}} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \vec{B}=e^{j \omega t+\infty} \sum_{-\infty}^{+\infty} 2 a_{n} \cos \beta_{n}(z+d) \\
& \vec{A}=e^{j \omega t+\infty} \sum_{-\infty} 2 a_{n} \cos \beta_{n} z \tag{6}
\end{align*}
$$

both of which are made up of one TW going left and one going right. The "trick" is to add them with the proper phases to have the TW's going left cancel and those going right add. This can be achieved by multiplying

$$
A e^{j\left(\beta_{0} d-\frac{\pi}{2}\right)}+B e^{j \frac{\pi}{2}}=2 \sin \beta_{o} \sum_{T W}^{+\infty} \underbrace{}_{T} a_{n} e^{j\left(\omega t-\beta_{n} z\right)}
$$

and it follows that the ampititude and phase of the TW are:

$$
\begin{align*}
& |T W|^{2}=\frac{A^{2}+B^{2}-2 A B \cos B_{0} d}{4 \sin ^{2} \beta_{0} d} \tag{7}\\
& \tan \theta(z)=\frac{B-A \cos \beta_{o} d}{A \sin \beta_{0} d} \tag{8}
\end{align*}
$$

where A and B are functions of 2 . Eqs. (7), (8) are general and apply to any field component, E_{r}, E_{z} or H_{ϕ}, at any 2. Hence, given exact SW field values, e.g., as shown in Fig. 2a and 2b, one can now obtain exact TW plots as in Fig. 1b. Eq. (7) gives the maximum TW amplitude at any z and thus yields the E_{r} and H_{ϕ} 's needed for Eq. (5). Notice furthermore that Eqs. (7) and (8) can be obtained from \bar{A} and $\overline{3}$ plots in either the Neuman or Dirichlet configurations. In what follows, we shall narrow down the discussion to planes of symmetry halfway through a cavity or a disk where Eqs. (7) and (8) are simplified.

Neuman case: With the Neuman boundaries of Fig. lc, we see that $\mathrm{E}_{\mathrm{r}}, \mathrm{SW}^{2}=0$ at $2=0$ and $3 \mathrm{~d} / 2$ but has finite values at $\mathrm{z}=\mathrm{d} / 2$ and d . At $\mathrm{z}=\mathrm{d} / 2, \mathrm{~B}=0$ and $\mathrm{E}_{\mathrm{r}, \mathrm{TW}}=$ $\mathrm{E}_{\mathrm{r}}, \mathrm{SW}(\mathrm{d} / 2) / \sqrt{3} . \quad$ At $\mathrm{z}=3 \mathrm{~d} / 2, \mathrm{~B}=-\mathrm{A}$ and $\mathrm{E}_{\mathrm{r}}, \mathrm{TW}=\mathrm{E}_{\mathrm{r}}, \mathrm{SW}(3 \mathrm{~d} / 2) / \sqrt{3}$. Similar observations can be made for H_{ϕ}. For example, at $z=0, B=A \cos \beta_{0} d$ and $H_{\phi}, T W=H_{\phi}, S W(0) / 2$ and at $z=d$, $B=A$ and $H_{\phi}, T W=H_{\phi}, S W(d)$. The results are summarized In Table I. Since the tabulated values are the maxima of the fields, the results must be self-consistent and independent of which mid-cavity or disk one considers. For the power calculation, we can take the power flow at $z=d / 2$, 1.e., $E_{r}, T W H_{\phi}, T W=E_{r}, S W(d / 2) H_{\phi}, S W(d / 2) / \sqrt{3}$ or at $z=d$, i.e., $E_{r}, T W H_{\phi}, T W=E_{r}, S W(d) H_{\phi}, S W(d) / \sqrt{3}$.

Dirichlet case: Table II shows very similar results for the Dirichlet case shown in Fig, ic.

Results

Table III shows the results that have been obtained by computing the properties of four SLAC-type cavities and by comparing them with results obtained experimentally ${ }^{5}$ in the early $1960^{\prime} \mathrm{s}$. The four cavities whose 2 b and $2 a$ dimensions are shown are equally spaced along a constant-gradient $3,05 \mathrm{~m}$ section. The computed values of $r / Q, Q$ and r are obtained from the standing-wave SUPERFISH calculations. The values of r / Q for the TW case are simply twice those for the SW case. All values of r / Q and r have been corrected for the a_{0} (velocity of light) space harmonic amplitude. The values of Q are the same for the SW and the TW cases. The assumed conductivity of copper is 5.8×10^{7} mhos $/ \mathrm{m}$. We see that in general, agreement between computed and experimental results is excellent. For reasons not understood, the resonant frequency is almost systematically high by 1 MHz . Most other differences including those for the group

Table II

Maximum Values of $\mathrm{E}_{\boldsymbol{r}}$ and $\mathrm{H}_{\boldsymbol{\prime}}$ for Dirichlet Boundaries				
Location	$\begin{aligned} & \text { Mid- } \\ & \text { Cavity } \end{aligned}$	Disk	$\begin{aligned} & \text { Mid- } \\ & \text { Cavity } \end{aligned}$	Disk
ε	0	$\frac{\mathrm{d}}{2}$	d	$\frac{3 d}{2}$
$\mathbf{E}_{\boldsymbol{r}, \mathbf{8 W}}$	Pinite	Pinite	Pinite	Finite
$\mathbf{E}_{\mathbf{r}, \mathrm{TW}}$		$E_{r, S W}\left(\frac{d}{2}\right)$	$E_{\mathbf{r}, \mathrm{SW}}(\mathrm{d})$	$\frac{E_{I, S W}\left(\frac{3 d}{2}\right)}{2}$
$\mathbf{H}_{\boldsymbol{\phi}, \mathbf{S W}}$	θ	Fimite	Finite	0
$\mathrm{H}_{\boldsymbol{\phi}, \mathrm{TW}}$		$\frac{\mathrm{H}_{\underline{S W}}\left(\frac{\mathrm{~d}}{2}\right)}{\sqrt{3}}$	$\frac{\mathrm{H}_{\text {, }_{2} \mathrm{SW}}(\mathrm{d})}{\sqrt{3}}$	

Table III
Comparison of Computed and Experimental Results for Four SLAC Cavities

Neuman Bou Cavity No.	$\begin{gathered} \text { indaries } \\ 2 \mathrm{~b} \\ (\mathrm{~cm}) \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{a} \\ (\mathrm{~cm}) \end{gathered}$	$f_{\exp }$ MHz	$\mathrm{f}_{\text {comp }}$ MHz	$\begin{gathered} (r / Q)_{\exp } \\ \Omega / \mathrm{cm} \\ \hline \end{gathered}$	$\begin{gathered} (r / Q)_{\operatorname{comp}} \\ \Omega / \mathrm{cm} \\ \hline \end{gathered}$	$Q_{\text {exp }}$	$Q_{\text {comp }}$	$\begin{aligned} & r_{\mathrm{exp}} \\ & \mathrm{~m} / \mathrm{m} \end{aligned}$	$r_{\text {comp }}$ $\mathfrak{m i n} 7_{\mathrm{m}}^{\mathrm{m}}$	${ }^{\left(v_{8} / c\right)_{\text {exp }}}$	$\underline{(v g}^{(c)}{ }_{\text {comp }}$
1	-8.3442	2.6201	2856	2857.04	38.13	38.99	14160	13780	54	53.7	0.0202	0.0204
28	8.2960	2.4506	2856	2857.74	40.40	40.70	13860	13760	56	56	0.0157	0.0161
57	8.2393	2.2185	2856	2857.40	42.77	43.08	13560	13736	58	59.2	0.0111	0.0113
84	8.1773	1.0171	2856	2857.15	45.45	46.07	13200	13710	60	63.2	0.0067	0.0073
Dirichlet Boundaries												
1	8.3442	2.6201	2856	2857.01	38.13	38.70	14160	13780	54	53.4	0.0202	0.0204
28	8.2960	2.4506	2856	2857.28	40.40	40.40	13860	13759	56	55.6	0.0157	0.0162
57	8.2393	2.2185	2856	2856.83	42.77	42.76	13560	13734	58	58.8	0.0111	0.0114
84	8.1773	1.9171	2856	2856.56	45.45	45.79	13200	13708	60	62.80	0.0067	0.0066

velocity, are within 1 or 2%. It should also be remembered that the experimental results were certainly not accurate to more than 2%. Slight discrepancies between the Neuman and Dirichlet resalts can be used as final checks to verify the ultimate rellability of the field calculations. Figs. $2 a$ and b give actual computer plots of the maximum amplitude standing-wave snapshots shown in Fig. 1c. Both examples were computed for the dimensions of the first cavity in Table III. The periodic length d is 3.5 cm and the disk thickness 0.584 cm . All field amplitudes are in arbitrary units, E_{z} being on axis, E_{r} and H_{ϕ} off axis.

References

1. H.C. Hoyt, "Designing Resonant Cavities With the LALA Computer Program," Proc. of the 1966 Linear Accēerator Conf., Los Alamos Scientific Laboratory, New Mexico, Oct. 3-7, 1966, pp. 119-124.
2. K. Halbach, et al, "Properties of the Cylindrical" RF Cavity Evaluation Code SUPERFISH," Proc. of the 1976 Proton Linear Accelerator Conf., Chalk River

Nuclear Laboratories, Chalk River, Ontario, Sept. 14-17, 1976, Pp, 122-128.
3. R.H. Helm, "Computation of the Properties of Travel-ing-Wave Linac Structures," Proc. of the 1970 Proton Linear Accel. Conf., National Accelerator Laboratory, Batavia, Illinois, Sept 28 - Oct. 2, 1970, Vol. I, PP. 279-291.
4. For earlier discussions on the subject treated in this paragraph, see P.M. Lapostolle and A.L. Septier "Linear Accelerators," North-Holland Pub. Co., Amsterdam (1970), pp. 40-47 and 88-107.
5. R.b, Neal, D. W. Dupen, H.A. Hogg, G.A. Loew, "The Stanford Two-Mile Accelerator," W.A. Benjamin, Inc., New York-Amsterdam (1968), p, 130, Fig. 6-22.

Fig. 2. Standing-wave amplitudes of E_{z}, E_{r} and H_{ϕ} in cavity (1) (see Table III) as calculated by SUPERFISH.
E_{z} is on-axis, E_{r} and H are off-axis. E_{z} is on-axis, E_{r} and H_{ϕ} ar

