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Introduction 
_ ._ 

The-versatility and accuracy of programs such as 
LALA’and specially SlJPERFISH2to calculate the rf prop- 
‘erties of.standing-wave cavities for linace and storage 
rings is by now well established. Such rf properties 
include the resonant frequency, the phase shift per pe- 
riodic length, the E- and H-field configurations, the 
shunt ImRedence per unit length and Q. While other pro- 
grams such as TWAP3have existed for some time fortravel- 
lng-wave structures, the wide availability of SUPERFISH 
makes it desirable to extend the use of this program to 
traveling-wave structures as well. That is the purpose 
of this paper. In the process of shoving how the con- 
version from standing waves to traveling waves canbeac- 
complished and how the group velocity can be calculated, 
the paper also attempts to clear up some of the common 
ambiguities between the properties of these two typeeof 
waves. Good agreement is found between calculated re- 
sults and experimental values obtained earlier. 

Space Harmonics, Standing and Traveling Waves ’ 

To illustrate our problem, let us review the case 
of the classical cylindrically symmetric disk-loaded 
vaveguide f%r which T.&A and SUPERFISH can yield exact 
field solutions. It is well known4 that in the lowest 
pass-band (accelerating TblOl-type mode), the traveling- 
wave E_ field can be expressed as * 

_ E z , TIJ anJo(krnr)eJ (wt - Sn’) 

where an is the amplitude of the s ace harmonic of in- 
dex n,Snz-0,z+2nnz/d,k?,=k2-B,,k=w/c and d is s 
the periodic length. Let a be the radius of the iris 
and b the radius of the cylinder. On axis r-o, 
J,(O)=1 and the amplitudes all reduce to the an’s. 
Furthermore, the fundamental (n-0) field amplitude at 

. . _ any r, for a structure where 8,-k-w/c is equal to 
a,J,(O), which indicates that a synchronous electron 
undergoes the same average acceleration independently 
of radial position. If one chooses the ori-gin at a 

k point of symmetry of the structure (in the middle of a 
cavity- 06 a disk) the a ‘8 are all real. 
for r - 0, expression (lp 

Notice that 
assumes a special form when 

z-0 and when z=d/2: 
- . . .-z-o Es =e ‘Wt~ao+a-l+a+1+a+2+a-2+;.. 

d (2) 
2’- 2 Er = e bt - “O& a0 - am1 - a+1 + a+2 + aD2 + . . . 

i.e., the axial traveling-wave E-field goes through an 
extremum where all the space harmonics are colinear. 
This Is also how at r-a the space harmonics “conspire” 
to make the tangential E-field at the disk edge equal 
to zero, i.e., how they fulfill the function for which 
they were invented in the first place, namely to match 
periodic boundary conditions. Notice also that if the 
phase shift per cell is an exact sub-multiple of 2s. 
i.e.. Sod-2n/m, then Bn=6,(1+mn). In what follows. 
we will fsus on the so-called 2n/3 mode b-3) which 
is easy to represent schematically and for which there 
is a large amount of experimental data from the SLAC 
linac and many others. The results, however, are quit+ 
general and apply to any Bad except n. Fig. la illus- 
trates the behavior of Es, Er and H 

0 
: tve traveling- 
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vavesnspshotsof E are shown for two instants of time, 
wt-0 and wt-n/2. Notice that Es Is plotted on axis 
(r -0) but E, and are zero on axis and thus are plot- 
ted for O<r<a. 2 T e units are arbitrary. The field 
patterns that aie shEvn hav”e for many years been known = 
approximately from bead measurements, paraxial npproxi- 
mations of Maxwell’s equations and general symmetry 
arguments. However, some of the subtleties in Fig. la 
can only be gotten from a complete computer solution, 
as shown later in this paper. Notice also that since 
the fields are sketched at an instant of time, they are 
not at their maxima, except for selected symmetry planes. 

2 
travels in phase with E, to preserve a net power flow 

( xH), -E&. Fig. lb shows E, TW max at r - 0 vs r and 
the corresponding phase varlatioA, as governed by Eq. (1). 

The standing waves are shown in Fig. lc. The snap- 
shots of E are given for two different boundary condi- 

--t ions : Neuman (ET - 0) on the left, and Dirichlet (HT = 0) 
on the right. Es and E, which are shovn at their maxi- 
mum values In time are in time-phase, 4 leads them in 
time quadrature and there is no power propagation: the 
energy simply svitches back and forth between the elec- 
tric and magnetic fields. Qn the axis (r-0). the axial 
electric fields can be expressed as: 

E z,sw - e’Wrn~* 2ancos Bn 2 (Neuman) (3) 
n--m 

E z,sw 
* e’q= 2anelnBnz (Dirichlet) (4) 

n*- * 

where the factor of 2 comes from the summation of two 
traveling waves of amplitude an. These and the corre- 
sponding Er and H+ are the components calculated byLALA 
and SIJPERFISH. Notice that the snapshots of Es and 
E,,SW at the instants chosen are lndistlnguishab e but P 
H,+ is different, 

Group Velocity 

The group velocity for a traveling wave can be ob- _ 
tained from the dispersion diagram (vg-dw/d%) or from 
the energy velocity (vg-P/WTR) where P Is the power 
flow and W is the energy stored per unit length. In 
order to ca Y culate vg with some accuracy from the first 
expression, which is generally done for the standing- 
wave case, one needs to compute several frequencies on 
the w-Bad diagram, typically for Sod=0,n/3,n/2. 2n/3 
and n, and then fit the data to some smooth curve. If 
however we want to obtain v 

f 
by calculating the fields 

at only one frequency, name y the operating frequency. 
then the second expression is to be used. For a given 
z, we have: 

p 
.v --I 

$/ErH+dS 

B 
wTW ._ -. &f dV+l-$ dV 

length length 

(5) 
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Figure 1 
- . . ‘-It turns.out that LALA and SUPERFISH alrBady give We, 

the energy stored for the SW case. The denominator 
WTW is simply wsw/2: this can be shovn rigorously or 
seen by superposition since over a wavelength, the 
energy stored from a TW coming from the left added to 
that rrom a TW coming from the right results in twice 
the energy stored. The expression in the numerator 
can fn principle be calculated at any cross-sectional 
plane (S) since, by continuity, energy cannot accumu- 
late and the net power flow over a period must be in- 
dependent of the plane of integration. What we need 
to know are the simultaneous values of E,,TW and Hg,TW 
at their time maxima in one plane. These quantities 
can be extracted from the SW plots. To do so, a”trick” 
is needed, If two traveling waves of the proper phase 
add up to a standing wave (Eqs. (3), (4)), there must 
conversely be two standing waves which add up to a 
traveling wave. Referring to Fig. Id, we see that if 
for example we shift the diagram of Fig.+lc to theleft 
by z  a-d, we have a secon$ SW solution (B) which looks 
just like the first one (A): 

Table III shows the results that have been obtained 
by computing the properties of four X&Z-type cavities 
and b 
tally s  

comparing them with results obtained experimen- 
in the early 1960’s. The four cavities whose 2b 

and 2a dimensions are shown are equally spaced along a 
constant-gradient 3,OSmsection. The computed values of 
r/Q, Q  and r are obtained from the standing-wave SUPER- 
FISH calculations. The values of r/Q for the TW case 
are simply twice those for the SW case. All values of 
r/Q and r have been corrected for the a, (velocity of 
light) space harmonic amplitude. The values of Q  are 
the same for the SW and the TW cases. The assumed con- 

-ductlvity of copper is 5.8 x 10’ mhos/m. We see that in 
general,.-agreement between computed and experimentalre- 
sults is excellent. For reasons not understood, the 
resonant frequency is almost systematically high by1MHz. 
Most other differences including those for the group 

- 2 - 

Ii - ejwti12ancos 8n (a +d) 

“A 9 ejwt&12anc0S Bn 2 (6) 

both of which are made up of one TW going left and one 
going right. The “trick” is to add them with the proper 
phases to have the TW’s going left cancel and those go- 
ing right add. This can be achieved by multiplying 

1 by e’(80d - n’2) and 3 by e’s’2. Then: 

A e’ (6,d - ii)+ Be’? 
+- 

- 2 sin 8,dC ane j bt - l&z) 

-9 
v / 

Tw 

and it follows that the ampiitude and phase of the TW 
are: 

2 A2 + B2 

IT”1 - 
- 2AB COB 6,d 

4 sin2 8,d 
(7) 

tan8 (2) - 
B - A cos Bad 

A sin 6,d (8) 

where A and B are functions of a. Eqs. (7).(8) are gen- 
eral and apply to any field component, E,, E, or 4, at 
any 2. Hence, given exact SW field values, e.g., as 

--shown in Fig. 2a and 2b, one can now obtain exact TW 
plots as in Fig. lb. Eq. (7)gives the maximum TW am- 
plitude at any z  and thus yields the E, and 4’s needed 
for Eq. (5). Notice urthermore that Eqs.’ (7) and (8) 
can be obtained from i and 3 plots in either the Neuman 
or Dirlchlet configurations. In what follows, we shall 
narrow down the discussion to planes of syrmnetry half- 
way through a cavity or a disk where Eqs. (7) and (8) are 
simplified. 

Neuman case: With the Neuman boundaries of Fig. lc, 
we see that E,,SW-0 at z-0 and 3d/2 but has finite 
values at z-d/2 and d. At z-d/2, B-0 and E,,TW * 
E, SW(d/2)/)r5: At z-3d/2, B --A and Er,TW=Er,SW(3d/2)f& 
S&ilar observations can be made for 

2. 
For example, 

at z-0, B=AcosB,d and H$,TW’H$,SW( j/2 and at z-d, 
B-A and %,m-H+,sw(d). The results are summarized 
in Table I. Since the tabulated values are the maxima 
of the fields, the results must be self-consistent and 
independent of which mid-cavity or disk one considers. 
For the power calculation. we can take the power flow 
at z=d/2, i.e., 7 
or at z  = d, i.e., 

Dirichlet case: Table II shows very similar re- 
sults for the Dirichlet case shown in Fig. lc. 

Results 



Table I 

Maximum Valuesof p and PI+ for Neuman Beudarior 

Mid- Mid- 
,ocatlon Cavity Diak cavity Dick 

2 0 a 3d 
2 

d T 

E r,SW 0 Finite Finite 0 

E 
E 

r sw+ Er sW(d) 

r,W 6 Jj- 

4,sw 
Finite Finite Finite Finite 

%;Tw 
*SW(O) 4 

2 H+ ,sw(d) H$,SW(d) H"s;(') 

*bum Valucm of Er and H, for Dirichht Bomdarico 

Xid- Mid- 
Location Cavity Dirk cavity Disk 

I 0 f d a 
2 

E r,SW Pinitc Finite Finite Finite 

t 
E rsSW(o) 

r,TW 2 
Er sw($) Er,sW(d) Eras;4) 

. 

0 8 - Finite Finite 

Table III 

Comparison of Computed and Experimental Results for Four SLAC Cavities 

leuman Boundaries 

Zavity No. 2b 2a fexp fi0mp 
(cm) (cm) I-m 

(r/Q),, (r/acmp Q,, Q,.,,,,, re 
.~n/cmn/cm~~- MHZ 

- 1 8.3442 2.6201 2856 2857.04 38.13 38.99 14160 13780 54 53.7 0.0202 0.0204 

28 8.2960 2.4506 2856 2857.74 40.40 40.70 13860 13760 56 56 0.0157 0.0161 

57 8.2393 2.2185 2856 2857.40 42.77 43.08 13560 13736 58 59.2 0.0111 0.0113 

84 8.1773 1.9171 2856 2857.15 45.45 46.07 13200 13710 6.0 63.2 0.0067 0.0073 

Dirichlet Boundaries 

1 8.3442 2.6201 2856 2857.01 38.13 38.70 14160 13780 54 53.4 0.0202 0.0204 

28 8.2960 2.4506 2856 2857.28 40.40 40.40 13860 13759 56 55.6 0.0157 0.0162 

57 8.2393 2.2185 2856 2856.83 42.77 42.76 13560 13734 58 58.8 0.0111 0.0114 

84 8.1773 1.9171 2856_ 2856.56s 45.45 45.79 13200 13708 60 62.80 0.0067 0.0066 

- _ 
velocity, are within 1 or 2%. It should also be remem- 
bered that the experimental results were certainly not 
accurate.to more than 2%. Slight discrepancies between 

. . '- the Neur@an and Dirichlet results can be-used as final 
checks to verify the ultimate reliability of the field 
calculations. Figs. 2a and b give actual computer plots 
of the maximum amplitude standing-wave snapshots shown 
in Fig. lc. Both examples were computed for the di- 
mensions of the first cavity in Table III. Theperiodic 
length d is 3.5 cm and the disk thickness 0.584 cm. All 
field amplitudes are in arbitrary units, EZ being on 
axis, Er and HO off axis. 
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Fig. 2. Standing-wave amplitudes of E,, Er and H+ in cavity (1) (see Table III) as calculated by SUPERFISH. 
E, is on-axis, E, and HO are off-axis. 
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