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1. Introduction 

Although the structure of large momentum transfer inclusive 
reactions is now well understood in perturbative quantum chromo- 
dynamics, exclusive processes involving large transfer of momentum 
have received relatively little attention since they involve detailed, 
explicit features of hadronic wavefunctions. On the other hand, the 
dimensional counting132 ansatz, which is based on the premise that 
the high momentum tail of wavefunctions can be computed from the 
first iteration of a scale-invariant Bethe-Saipeter kernel, leads to 
a number of successful predictions for form factors, hadron scatter- 
ing and photoproduction at large angles, as well as the x+1 
dependence of the structure functions. 

In brief, the dimensional counting rules are: 

(a) (Spin-averaged) form factors at It\ >> M2 (Fig. la) 

FH(t) N +i 
t 

where n = number of constituent fields in H. 
(b) Large angle scattering at s >> M2, t/s fixed (Fig. lb) 

$ (AB -+ CD) N L f(t/s) sn-2 

(1.1) 

where n =.total number of constituent fields in A,B,C and D. 
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e e A C du/dt 

F(t) 
s--cO,t/s fixed Fig. 1. Hadronic form factors 

ttt --co 
B D 

and fixed angle exclusive 
P p+q scattering. 

1- 1. (a) (b) 11,z.t 

(c) Structure functions at Q2 >> M , &ti2 = '2 F Q2 fixed: 

2 
F2H(X.Q ) - (l-x) 

2ns- 1 

where ns = number of spectator fields in H. 3 

In each case the minimum number of fields dominates the asymptotic 
behavior. The rules follow simply from tree graphs in any renormal- 
izable field theory if the four-momentum of each hadron is partitioned 
among its constituents. 1 

A comparison of the counting rule prediction tnWIFH(t) + COnSt. 
for F,, GM p' GMn' and FD is shown in Figs. 2 and 3. 
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Fig. 2. Hadronic form factors Fig. 3. The proton form factor 
multiplied by (q2)n-1. (From C, multiplied by (Q2)2. (From 
Ref. 5.) Ref. 6.) 

In the case of the dueteron, the neutron and proton components 
evidentally each receive a momentum transfer -q/2. It is thus con- 
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venient to define the "reduced" form factor495 

fD(Q2) = 
FD (Q2) 

F; (Q2/4) 
(1.4) 

The prediction Q2fD(Q2) -r const. is compared with the data7 in Fig. 4. 
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Fig. 4. The reduced deuteron form factor 
fD(q2) multiplied by (l-q2/m$ with rn$ = 
0.5 GeV2. (From Ref. 5.) 

In the case of 
photoproduction at large 
angles, one predicts 
do/dt(yp+r+n) -s-7f(9cm), 
since the photon is an 
elementary field. The 
best fit to the 90° da a8 
(Fig, 5a) is s-7*3". . i 

The expectation that 
da/dt(yp+yp)/do/dt(yp+ 
nop) increases with 
energy at fixed angle is 
borne out by the data9 
shown in Fig. 5b. Me- 
son-baryon scattering 
data10 at 90° is not 
inconsistent with the 
sa8f(ecm) prediction. 
In the case of proton- 
proton scattering, the 
prediction do/dt- 

s-10f(8cm) appears to be consistent with data over a lar e range of 
(see Fig. 6). The overall best fit'? is 

A recent measurement l2 of da dt(p 
9 =90° gives best fits s- * 8 i + 0 6s’ “) and * and 

This apparent agreement with prediction 
is flawed however by the factor of two oscillations l3 in the 
data shown in Fig. 7. (We shall discuss in Section 7 a possible 
explanation for this effect as well as for the large spin correla- 
tions recently measured in pp-scattering at Argonne.l4) 

The dimensional counting rules neatly summarize a wide range of 
large momentum transfer phenomena, and it is thus of considerable 
interest to see whether these rules are actual predictions of per- 
turbative quantum chromodynamics. The general outlines of such a 
proof was given in Ref. 1, where it was noted that infrared effects 
which normally lead to Sudakov suppressions of the quark form factor 
are absent for hadron (color singlet) matrix elements. It was also 
conjectured that QCD would lead to logarithmic corrections to the 
scaling predictions, but the nature of these corrections was not 
understood. 

In this talk we will present an outline of a new analysis of 
exclusive processes in QCD. (A detailed report will appearelse- 
where. 15316) The main elements of this work involve a consistent 
Fock space decomposition of the hadronic wavefunction, plus evolution 
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Fig. 7. Proton-proton scattering cross 
section at 90° multiplied by slO. (From 
Ref. 13.) 

equations for wave- 
functions which allow 
an exact evaluation of 
hadronic matrix ele- 
ments in the asymptotic 
short distance limit. 

We are also collabo- 
rating with Y. Frishman 
and C. Sachrajda on an 
operator product analy- 
sis of these results.l6 
Our analysis shows that 
the dimensional 
counting rules (1.1-3) 
are in fact predictions 
of quantum chromodynam- 
its modulo calculable 
powers of the running 
coupling constant 
as(Q2), i.e.: log-'Q2/A2. 
A central result is 
the prediction for the 
asymptotic form of the 
pion form factor: 

2 as(Q2/4) 
F,(Q2) = 16~ fn 

- Q2 

+ O(m2/Q2) 1 (1.5) 

where f, = 94 MeV is the pion decay constant normalized by the 
n+-+p+v decay amplitude, and we have used (b=ll-2/3 nf) 

log Q2/A2 

log X2/A2 
(1.6) 

The powers Y2 g 0.62, ~4 2 0.90, etc., are the usual non-singlet 
anomalous dimensions in QCD, which in this case appear as eigenvalues 
for the evolution equation for the q< meson Fock state. 

Q2 
We have recently learned that the prediction Fn(Q2) +cfzas(Q2)/ 

was in fact already derived by Farrar and Jacksonl' using the 
Feynman gauge ladder approximation to the Bethe-Salpeter equation for 
the pion in QCD. However, the Bethe-Salpeter kernel requires an 
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infinity of crossed ladder diagrams in covariant gauge even when 
working in the leading log approximation. This result also appears 
in a recent report by Efremov and Radyushkinl8 who assume the validity 
of a particular short distance operator product expansion of the 
hadronic form factor. The possibility of utilizing products of local 
fields as hadronic interpolating fields to derive the dimensional 
counting rules has also been discussed by Polyakov.lg A conformal 
group analysis has been given by Menotti.2C 

The graphical analysis utilized here builds on earlier work by 
Appelquist and Poggio*l for $3 in six dimensions. Other early work 
includes analyses of Yukawa theories by Goldberger, Guth and Soper 
and QCD in 2 dimensions by Brower, Einhorn, Ellis, Weis and others. 

2. Exclusive Processes in QCD 

A convenient framework for the analysis of hadronic matrix ele- 
ments in QCD is time-ordered perturbation theory in the infinite 
momentum frame; i.e.: quantization on the light-cone. The meson 
Fock state can be represented as a column vector Y with an infinite 
number of components corresponding to <q;ilY>, <qqglY>, etc. The 
bound state equation24 

I = SKY (2.1) 

is thus an infinite set of coupled equations where the matrix K is 
the irreducible kernel (see Fig. 8a). The meson form factor receives 
contributions from each Fock state component as 

Fig. 8. (a) The meson bound state equation 
in time-ordered perturbation theory. 
(b) The meson form factor in TOPTh. 

indicated in Fig. 8b. 
The two particle qq 
Fock state component 
of the pion corres- 
ponds to the usual 
Bethe-Salpeter am- 
plitude evaluated at 
equal relative 
"time" x+=x0+x3. 
As we shall see, 
this amplitude is 
normalized by the 
local decay amplitude 
lT++w++!J+v. The 
existence of com- 
ponents corresponding 
to a finite number 
of constituents is 
only possible for a 
color singlet 
state.25 



The n-particle propagator in momentum space is 

$) = M*- 

+ where xi = xi = 
(ko + k3) i 
(Po+P3) is 

n iF1 +m2 

c 
' + ie 

X. 
i 1 

(2.2) 

the fractional momentum variable: 

n 

c 
x. = 1 

1 
i=l 

We can separate hard and soft components in the wave function by 
defining the propagator 

if M2- c 

Cz+m2 2 
0 > x 

X 
SA = (2.3) 

S 

Thus Sx vanishes for virtual states far-off the energy shell; in 
particular Sx= 0 if any constituent has large transverse momentum 
k, > JI relative to the direction of the bound state. We then can write 

Y = SXKY + (S-S$KY 

= YX+ASKY 

= Yx + ASKYA + ASKASKYX + . . . (2.4) 

, i.e.: the "hard" component of the wavefunction can be obtained by 
perturbation theory from the wavefunction derived in the soft regime 
(see Fig. 9). This expansion is convergent since only far off shell 
propagation occurs in intermediate states: Yh = SIKY contains all 
non-perturbative effects; AS= S-Sx vanishes in the non-perturbative 

region. (Note that with- 
out the cutoff X2 the 

n=m + m + m+... series in AS diverges 
because of bound state 

s = z + 1_ + jJ+... 
poles in the Green's 
functions.) An analogous 

I technique for separating 
>.a, k,>X ,,,../ hard and soft regimes has 

been used in Ref. 26 to 

Fig. 9. The qq Fock state wave- 
systematically treat high 

function of the meson using Eq. (2.4). 
order radiative correc- 

The two particle reducible amplitudes 
tions to the positronium 
spectrum. The renormali- 

in the kernel only contribute for k,> A. zation program can be 

.,. .; . . 
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implemented as discussed in Refs. 26 and 27. 

The pion form factor can now be represented as a sum of matrix 
elements between YA states (see Fig. 10). Notice that all connected 

diagrams (reducible and ir- 
reducible) contribute to the 
hard scattering amplitude. 
As we shall show, there are 
no singularities from the 
phase-space factors at Xi~O. 
By definition the transverse 
momenta in the amplitudes 

. 
1.,o kl>X kl>X 

are regulated by X All non- 
111.. 0 perturbative effects in the 

form factor amplitude are 
Fig. 10. The meson form factor contained in Yyx. 
in QCD using the S division. 
All Fock states contribute. 

It is easy to check by 
dimensional analysis/power 
counting that Fock components 

which contain more than the minimum number of quarks in YA give con- 
tributions to the form factor which are power law suppressed: the 
nominal power is (see Fig. 11) 

n- 1 
9 

(2.5) 

An analogous statement also holds for 
extra gluons in the Fock state, but 
the interpretation depends on the 
gauge choice. First we note that 
diagrams where a gluon connects the 
initial and final-state soft con- (a) 
stituents are suppressed by a power 
of Q2 because the hadron is a singlet 
and true infrared divergences cancel. I 
(In the case of colored states such 7 
contributions lead to the analogue (b) 
of the Sudakov form factor.) 

3-79 ,151.ll 

Diagrams where a soft gluon from Fock state con- 
Ix interacts with a hard quark as 

Fig. 11. 

in Fig. llb are also suppressed by 
tributions to the meson 

a power of q* .unless the gluon has 
form factor. The lw%> 

polarization e+. In fact, contri- 
amplitude (a) obeys Eq. 

butions from any number of such 
(2.5). The lqzg> ampli- 

gluons can be resummed (via the 
tude (b) gives an anoma- 

Ward identity) into an effective 
lous contribution O(Q-*) 

two particle wavefunction. Alter- 
if E=E+; in light cone 

natively, one can simply choose the 
gauge its contribution is 

light-cone gauge n *A = 0 for which 
O(Q-4) . 

E+= 0, and the anomalous contribu- 
tions are suppressed by higher power of Q2. 
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The calculation of the form factor have been performed in 
general covariant gauges as well as in the light-cone gauge, although 
for simplicitywe will only present the light-cone gauge calculation 
here. All of the final results are gauge invariant. Note that Eq. 
(2.5) refers to Fock state constituents that are forced to change 
directions. Higher Fock state components in which the constituents 
annihilate before the exchange of the hard momentum Q only modify 
the form of the soft wavefunction YA. 

Thus contributions to the leading l/Q2 power dependence of the 
meson form factor only arise (in the light-cone gauge) from the 
quark-antiquark Fock state component of the meson wavefunction (see 
Fig. 12). It is convenient to choose a Lorentz frame where q, is 

transverse to the direction 
of the incident meson (-q2= 
Q2=4+ It is then straight- 

Q-24* forward to identify the 

I-x& 
leading logarithmic correc- 
tions to the l/Q* power law 

L / in each order of perturbation 
Itx,-kl theory. In fact, by using 3-19 

Fig. 12. Two-particle Fock state 
contribution to the meson form 
factor; the kinematics are chosen 
so that x,z,~~ and xl vanish in 

the light-cone gauge only the 
ladder-diagrams are required. 
The neglected terms will be 
of relative order a,(Q*) and 
m2/Q2. 

To this order, the pion 
factor in QCD takes the 
(see Fig. 13) (q2=-Q*) 

the zero binding limit. Here 
Q2 = (23. form 

form 

1 1 

Fn(Q2) = 
/ J 

dx dz ++(z,Q2/4) T,(z,x,Q*) +(x,Q2/4) (2.6) 

-1 -1 

where (CF = 4/3) 

TB = 
16ms(Q2/4)CF 

Q2 

(2.7) 

is the result expected tram 
the simplest impulse approx- 

(L;)‘<< (t32-Q2/4 T, builds up a[(G2) 
,,>I.8 I 

&nation. 

As we shall see, the 
Fig. 13. Leading logarithm contribu- 

wavefunction $(x,4*) in 
tions to the meson form factor. The 

Eq. (2.61, satisfies an 
dominant momentum flow is through Tb. 

evolution equation in QCD, 
The ladder and self-energy insertions 

and leads to non-trivial 
yield the evolution Eq. (2.14) and the 

logarithmic modification 
anomalous dimensions in Eq. (2.15). 
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of dimensional counting. To leading order in as(Q2), it is suffi- 
cient to compute the two-body wavefunction integrated over transverse 
momentum %: < Q2 

9 

;(x,Q2> = (2.8) 

since the dominant momentum flow occurs through TB. The leading 
contribution to order as(Q2) can now be computed simply from the 
ladder graph structure with strong ordering of the loop momentum 
and the inclusion of all vertex and self-energy insertions as indi- 
cated in Fig. 13. 

The wavefunction $ appearing in Eq. (2.6) is given by 

-c,/8 

(D(x,Q2) = &,Q2) (2.9) 

where the last factor with CF = 4/3 and B = ll-2/3 nf is due to 
vertex and fermion self-energy corrections in TB. By the Ward 
identity, such factors are process independent. 

Because of the strong ordering of the 2: integrations, the 
integrated wavefunction obeys the inhomogeneous equation, 

- Q2 dc2 C 
1 

h,Q2) = ;(x,X2> + 
J 

$2 as(Z) 

A2 kL 
/ 

dy V(x,y> ;(y,cf, 0.10) 

-1 

where the kernel V is 

l-x 
V(X,Y> = l-y 

( 
1 + (x-2y) 

) 
e(x ' Y> 

+ 

+ 1+x 1 
( 

2 
1+y - (x-y)+ ) 

e(y ' d (2.11) 

(This is the kernel for the quark and antiquark with opposite 
helicities, as required for pseudoscalar and X=0 vector meson 
states. In the case of parallel helicities, only the 2/(x-y)+ terms 
contribute.) The distributions in V are defined for integrals over 
x as 

1 
l-x 2 
--- e(x>y) = l-x 2 1-z 2 
1-Y (X-Y), 

- - e (x-y) l-y x-y - 6(x-y) 
s 

dz l-yz-y 

Y 
(2.12) 
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Thus there are no actual singularities as x=y. This infrared 
cancellation is due to the self-energy corrections to the q and ;I 
legs in Fig. 13; it would not occur if the constituents formed a non- 
singlet. 

If we define 

5 
I3 as(h2) 

=Gi 1% 
as (Q2) 

, (2.13) 

then (p satisfies an evolution equation: 

1 

/ 
dy V(X,Y) 4(y,5) 

cF 
- y(- 4J(x,S) (2.14) 

-1 

These results are analogous to the evolution equations 28 derived for 
the S-dependence of non-singlet structure functions. In each case, 
infrared divergences cancel and procedures are available to evaluate 
the higher order corrections in a,(Q*). An essential difference is 
that the short-distance operator TB is an integral over x rather 
than a delta-function. 

The physics of the evolution equation for $(x,5) is contained 
in the eigenvalues and eigenfunctions of V(x,y>. The general solu- 
tion is ,. 

0(x,5) = (1 -x2) l c an 'n 
3Dcxl lo 2/A2 "n 

CgQ ) log h2/A2 
(2.15) 

n= 0,2,4 

Only terms even under x+ -x occur in the pion wave function when 
SU(2) symmetry is assumed. 

Here Cij2(x) is a Gegenbauer polynomial, e.g., 

1 n=O 

$2 n (4 = -3/2(1-5x2) n= 2 

15/8( 1 - 14x2 + 21x4) n=4 

The weights an are determined from the initial wavefunction 

1 
2n+3 a n = 2(2+n) (l+Tl) / 

dx $(x,X2) C;'2 

-1 

(2.16) 

(2.17) 
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and the y, are the standard non-singlet anomalous dimensions (taking 
8= 9) 

0 n= 0 

cF 
Y, = B .62 n=2 (2.18) 

.90 n= 4 

(The only assumption needed here is that the initial wavefunction 
+(x,X*) falls as (l-x2)e with E > 0 at x=?l, which is in fact re- 
quired by self-adjointness of the kinetic energy for the bound state 
wavefunction. This boundary condition can in fact be regarded as 
the condition of compositeness of the meson; if there were an ele- 
mentary field with the quantum numbers of the meson then $(x,X2) 
would be constant as x2+1 due to the possible $y5$ coupling. Of 
course in this case F,(Q2) + const. In fact this type of analysis 
is required in the case of the photon structure function and trans- 
tion form factors in QCD.) 

In the asymptotic limit Q2+=, we have from Eq. (2.15) 

$(x,Q2) + + kx(l- x2) (2.19) 

Notice that the singularity of TB at x=-l or z=-1 is damped by 
the wavefunction. This should be contrasted with the situation for 
theories such as QCD in two-dimensions or $3 field theory where 
TB N (l+~)-~(l+z)-2 and power-law modifications to the forF3factor 
can and do occur from this infrared, long distance region. 

We thus see from Eqs. (2.6) and (2.7) that in the asymptotic 
limit 

F,$Q2) + 
16sas(Q2/4) CF 

Q2V 
Q2 

(2.21) 

In fact, we can determine the normalization from the weak decay 
amplitude for ~+uv: 

f --J"ck - 94 MeV IT A (2.22) 

i.e. : 
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F,(Q*> + 
36aas (Q2/4) f ff CF 

Q2+m Q 
2 n 

C 

(-2.23) 

where n, is the number of colors. 

Although Eq. (2.23) g ives the asymptotic form factor, the 
anomalous dimension terms result in sizeable corrections until very 
large momentum transfer, and in fact tend to compensate for the fall- 
off due to as(Q2) over a wide range of Q*. If we assume that (0(x,X2) 
is peaked at x-0 (equal momentum partition) as is characteristic of 
non-relativistic bound states, then the evolution equation causes 
$(x,Q2) to broaden asymptotically out to the (1-x2) envelope where 
TB is maximum (see Fig. 14). Thus one obtains Eq. (1.5) where c2= 

-a2/aO and cb=aq/aO are positive, and are 
computed from Gegenbauer moments of the 
soft wavefunction. The form factor is of 
course independent of the choice of X2. 
Figure 15 shows the prediction for 
Q2F,(Q2) assuming that @(x,;\~) is either 
strongly peaked at x= 0 or has a smooth 

-I 0 I 
2--79 

(1-x2) dependence. 
3557414 

Fig. 14. Schematic 
representation of 
wavefunction evolu- 
tion. 
Ob,Q2) 

As Q* + a, - 
+ (1-x2> l 

It is of course signifi- 
cant that the same anomalous 
dimensions enter in the pion 
form factor and the moments 
of the non-singlet structure 
function. This can be attri- 
buted to the fact that the 
leading local operators which 
couple to the pion wavefunc- 
tion at short distances xv+ 
0 are the usual twist 2 
$v,y5(D,)"$ operators for O(n). 
The absence of an anomaly iz 
the axial vector operator 
implies that the asymptotic 
form factor is of the form 
of Eq. (2.23). 

In the case of vector 
mesons with total helicity 
+l, Tb vanishes as a power 

0.5 

0.4 

0.3 

2 
N 
0 

0.2 

0. I 

0 I I I I I 

2 4 8 16 32 64 

Q2 1137.10 

Fig. 15. QCD prediction for the 
meson form factor for two extreme 
cases: (a) $(x,X2),6(x), or (b) 
$(x,h2)~(1-x2). In the latter 
case the wavefunction is unchanged 
under evolution. The asymptotic 
predictionsare absolutely normal- 
ized using Eq. (2.23). The bands 
car 

5 
espond to ta,/n with A*=O.25 

GeV a 



of Q2 faster than (2.7), and the potential only contains the l/(x-y)+ 
term. Thus we obtain asymptotic forms 

1 
Fn (Q2) x p=O 

F,(q2) = 

I 
as(Q2) Ca cQ2) ,2CF/B m2(Q2) 

(2.24) 

Q2 Q2 ' 
xp= *l 

where m(Q2> is the "running mass" in QCD. Another contribution of 
order l/Q4 can also evidently be obtained from the n= 3lqqg> Fock 
state component of the vector meson wavefunction. 

The transition form factor of the photon, e.g., y(Q2) +y(k2wO) 
-t no can be analyzed in a similar fashion. We find 

( 
2 2 

Fny(Q2) = 
eU+e ,j2$ ’ 

Q2 J 
dx+ . (2.25) 

-1 

(The y*yr" vertex is defined as ie2 F (Q2) E pv qneO.) This 
can be absolutely normalized in terms?f the EY8: f&m factor 

F (Q2) = [et+ ei ) 2% [ Q2 Fn (4Q2) 1’ 
-? 9 . (2.26) 

nY QL 1 4n CF as (Q'> 1 

The corrections are of order Ocas(Q2) 1. 

(a) 

3-79 (b) 

The form factor of 
nucleons may be analyzed in 
a similar manner. The 

3557Al6 

leading power law terms 
arise from the minimal 3 
quark Fock component and 
gives TBw Cas(Q2)/Q212 (see 
Fig. 16). A three body 
kernel and evolution 
equation can then be 
obtained in parallel with 
the meson case. The 
asymptotic result is 

Fig. 16. Schematic representa- 
tion of the nucleon form factor 
for the three quark Fock state. 
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-Y. (NJ 2 
Fl(Q2> N (log Q2/A2) ' 

F2 (Q2) w M.m(Q2>_ F,(Q2) 

Q2 

(2.27) 

(2.28) 

The calculation of the nucieon anomalous dimensions Yj(N) is in 
progress. 15 These results agree with the dimensional counting pre- 
dictions and verify that the empirical CM-GE-l/Q4 scaling 12aws are 
consistent with quantum chromodynamics, modulo over-all 1ogQ 
corrections. 

3. The Inclusive-Exclusive Connection 

The above predictions for the form of the asymptotic form factor 
may seem somewhat paradoxical since QCD asymptotic freedom correc- 
tions to Bjorken scaling of hadronic structure functions appear to 
be relatively much stronger. In particular, as shown in Ref. 29, 
QCD predicts structure functions at large x of the form 

(3.1) 

where (1-x)' is the effective power-behavior at Q2wO(k2), and 

cF 
z(Q2,k2) = q- - O(log log Q2) . (3.2) 

and P(t) is a normalization factor. 2g If one uses this form for 
l-x 2 fixed&X2 = ---x- Q ; then one obtains transition form factors 

F2(Q2) N 

2V+l+?(Q2,k2) 

i ) 

d/N 

Q2 
P(F) (3.3) 

which fall faster than any power! 30 

In fact, this "derivation" is incorrect in the fixedUM2, high 
Q2 domain because it ignores the fact that the struck hadronic con- 
stituent is far off-shell. In general the constituent mass that sets 
the lower limit in the c integration is given by 

(3.4) 
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-2 where m is the square of the invariant mass of the remaining spec- 
tators and gL and z are the struck constituent's light-cone coordi- 
nates in the hadronic wavefunction. Since z>x, and x is near 1, 

-2 kz+ m -2 

AC2 N 1 x N 
k:+ m 

&iv2 
Q2 

. i.e. : k2-O(Q2) at fixed ,4L2. Thus 

; = 4cF 
ll-2/3nf log 

as (k2> 

as (Q2) 

(3.5) 

(3.6) 

=> cF 
7 as(Q2) 1% at fixedJL2, Q2+". 

i.e.: z actually vanishes as l/logQ2 in the fixed &12 domain. 

The behavior of structure functions in the large x region can 
be computed in leading order in a, from the infinite set of diagrams 
indicated in Fig. 17. The infinite set of horizontal gluon ladder 

graphs above the quark leg 
labeled k2 in the figure 
builds up the standard QCD 
corrections to Bjorken scaling 
and q2 dependence of the 
structure function moments. 
The main power law dependence 
at x-l is given by the mini- 
mal number of (vertical) 

gives 

[dk;;fN 
gluon exchanges required to 
stop the hadronic spectators. 
For the case of the nucleon 
the leading Fock state com- 

,111.11 ponent is the Iqqq> state, 
and two gluon exchanges with 

Fig. 17. Analysis of deep in- 
elastic scattering (virtual Comp- 
ton amplitude) to leading loga- 
rithmic order in perturbation 
theory. See Eq. (3.7). 

off-shell masses of order 
k$mO(($f+G2)/(l-x)) are 
required. These minimal hard 
gluon exchange diagrams give 
the analogue of TB in the 
form factor calculation. 

In addition, the remaining infinite set of vertical gluon ex- 
change diagrams (ordered, as usual, in momenta) leads to the evolu- 
tion of the hadro 

9 
ic wavefunction from the soft region X 2 to the 

off-shell value k,. As in the form factor calculation, this leads 
y.(N) 

to a series of anomalous logarithms [as( J determined by the 
eigenvalues of the kernel for the Fock state. Combining factors, 
the leading behavior is given by 
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F&,Q2) N c(tj(1-x)3+^i(Q23& cr4(k2) 
s x 

(3.7) 

(N) where the Yj are the leading anomalous dimension for the 3-quark 
nucleon wavefunction. Correction terms of higher power in (l-x) 
a_d crs(Q2) or as(<) are neglected. Notice that at fixed dU2, 
5 +O and we obtain a perfect exclusive-inclusive connection with 
the corresponding form factor claculation Eq. (2.7),-i-n agreement 
with the Drell-Yan-West relation. 

Equation (3.7) is consistent with the standard evolution 
equations for QCD structure functions and moments and other resuits 
derived from the operator product expansion.31p32 In the large x 
domain, however, the "initial" or "starting" structure function is 
no longer unknown but is directly determined from QCD perturbation 
theory and the wavefunction evolution equations at short distances. 
In a sense the most critical prediction from QCD is the nominal power 
law (l-~)~ since the integer 3 reflects the existence of a 3 quark 
Fock state as well as nearly scale-invariant QCD quark-quark inter- 
actions within the nucleon. 
z(Q2,g> and a,(g) in Eq. 

The logarithmic dependence from 
(3.7) yield the radiative corrections to 

the main dynamical dependence of the structure function. The pre- 
dicted form for the~'structure function may prove useful for fits to 
data, at least for x> 0.5. 

Q2 
In practice, the expected values of y are not large (e.g., for 

=lOO GeV2, k$= 1 GeV2, and A2=1/3 GeV2, 721) so the observed 
(l-x) power should be typically less than one unit larger than the 
valence power. The direct measurement of the leading power behavior 
of the valence state structure function requires the determination 
of the structure function at fixed JL2 over a large range of Q2. 

It should be noted that the form of Eq. (3.7) complicates the 
\ empirical analysis of moments at large N. In general 

l- AM2/Q2 

utLN(Q2) = 
J 

dx xN-' F,fx,Q*) 

0 

yN 
= (3.8) 

(The elastic contribution gives a power-law correction to Bjorken 
scaling.) At large N, only large x is important and 
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(3.9) 

Thus &lN(Q2) tends to scale in the large N limit, again because of 
the strong off-shell behavior of the struck constituent. The 
standard QCD prediction ~~~N(Q2)~Cas(Q2)lYN only holds for Q2 
sufficiently large such that AM2/Q2 << N-1. 

4. Quark Sea Phenomenology 

The decomposition of the nucleon wavefunction in terms of its 
Fock state components \qqq>, (qqqg>, Iqqqq<>, etc. leads to a new 
perspective on the origin of the phenomenological sea quark distri- 
butions (see Fig. 18). The "intrinsic" sea from the (qqqq{> com- 
ponent has a nominal power dependence at large x 

n=3 Intrinsic Valence n:4 Intrinsic Glue evolve in QL due to lowest 
order pair production from 
the intrinsic gluons in the 
Iqqqg) components lead to a 
contribution of the form 

,-.* n= 5 Intrmsic Sea 

Fig. 18. Intrinsic versus evolved 
contributions to the nucleon sea 
quark distribution: 
(a) quark sea evolved from the 

[qqq) valence state; 
(b) quark sea evolved from the 

intrinsic gluon distribution; 
(c) intrinsic sea contribution. 

F!j (1: F(~-x)~+? (4.2) 

Similarly, the sea quarks 
evolved from the (qqq> valence 
component via gluon brems- 
strahlung and subsequent pair 
production lead to a contri- 
bution 

F; a: ~2(1-x)5+~ (4.3) 

In general, the measured distribution should be a Q2-dependent sum 
of such contributions. 

At fixed tii12, r=y(Q2,k$)+ 0, and thus despite the extra 
power of (l-x) the intrinsic sea components could be particularly 
important in this domain. Further, as has been shown in Ref. 33, 
there are strong cancellations between various contributions to the 
gluon distribution in hadrons at low momentum due to the singlet 
nature of the source. 
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The intrinsic sea quark component may in fact be numerically 
dominant uztil very large Q2. In that case we expect the nominal 

power of Fz(x,Q2) at large x to decrease from (l-~>~ to (l-~)~ as 
the evolved component become relatively stronger. 

5. Pion Structure Functions 

Q2 
The structure functions of mesons can also be analyzed at large 

and small (l-x) in a manner similar to the analysis of nucleon 
structure functions. In this case, as first noted by Ezawa,35 there 
is a kinematic suppression of the transverse cross section oT(Q2) by 
a power of (l-x) which can be attributed to the mismatch between the 
spin of the quark and spin of the meson. In our analysis this shows 
up in the corresponding suppression of the tree diagrams for TD at 
x near 1. Since the meson wavefunction has a leading zero anomalous 
dimension, 

$tx,Q2) - (1-x) 2+? -2 1 
1% z L > 

Q2 -b OD , (l-x) small (5.1) 

In addition, it is important to note that the longitudinal structure 
function has an anomalous (non-scaling) component which is nearly 
flat at large x:36,37 

(5.2) 

where Fwr(Q2 k2) ' x ' If we analyze this in the fixed A* domain, 
then t+O and 

F;tx,Q2) + F~(x,Q2) - (1-x) log-'(&) 

Q2- , A2 fixed (5.3) 

Thus, as in the nucleon case, there is a perfect exclusive/inclusive 
connection. The dominance of the longitudinal structure function in 
the fixed &2 limit for mesons is an essential prediction of pertur- 
bative QCD. It can be tested directly36 in the e+e--tTX angular 
distribution near the kinematic boundary (x+1). Perhaps the most 
dramatic consequence is in the Drell-Yan process IT~+v+v-X (Fig. 19). 
In this case one predicts38 that for fixed Q2 pairs, the angular 
distribution of the U+ (in the pair rest frame) will change ~from the 
conventional (l+cos28+) distribution to sin*8+ for pairs produced 
at large longitudinal momentum, xL(~+u-)-+l. This is due to the 
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q cl P- 
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2-79 3557A19 

Fig. 19. Representative 
contribution to Drell-Yan 
np+u+~-X cross section. 
The gluon exchange in the 
pion wavefunction is res- 
ponsible for the power 
law fall off at x+1 
[Eq. (5.1-3)l and the 
power law tail at large 
k? [Eq. (8.1)1. 

-0.6 

0 0.4 0.6 0.8 1.0 
X 19 

0 0.4 0.8 
XF ,526iI 

Fig. 20. (a) The pion structure 
function at large x. The solid 
line is the prediction F?$- (l-~>~ 
+ C/Q2. (b) Prediction for the u + 
angular distribution l+acos28+ 
where 8+ is measured relative to 
the incident pion in the ~+p- rest 
frame. (From Ref. 38.) 

2 
--b o- 
x 

0.6 

dominance of the meson's longitudinal structure function at large x 
and fixed Q2 (see Fig. 20b). Figure 20a also shows that the pre- 
dicted form of the structure function F?j(x,Q2) w (~-x)~+C/Q~ is not 
inconsistent with recent fits to the data. The dashed line is the 
experimental form (l-x)1*01 given in Ref. 39. 

6. Fixed Angle Scattering 

The techniques which we have discussed for obtaining asymptotic 
results for form factors can be extended to the computations of any 
exclusive process involving large momentum transfer between color 
singlets. Here we shall focus on fixed angle hadronic scattering 
da/dt(A+B+C+D) as s-t- at fixed t/s or 8,,. In general, each 
hadron is represented by its Fock state decomposition; the leading 
power law dependence as s+ 03 is obtained from the Fock state with 
the minimum number of interacting components. The analysis of fixed 
angle scattering is complicated by pinch singularities, so we must 
consider two different scattering mechanisms. 

A. Hard Subprocesses 

In this case the momentum transfer between constituents occurs 
through a single hard scatterin 

9 
amplitude TB with all internal legs 

off-shell and proportional to pT=tu/s. The fixed angle amplitude 
is then to leading order in as(ps) (see Fig. 21), 

v/fAB + CD = dxi O:(xc,PG) $i(xd,pG) (6.1) 
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TB=z li!zz 

0 
zero quark interchange 

> .* 1111.1, 
3-79 3x27*21 

Fig. 21. Fixed angle scat- 
tering in QCD for hard sub- 
processes (see Eq. (6.1)). 

Fig. 22. Examples of hard scattering 
processes for np elastic scattering. 

-(n-4) The amplitude TB yields the power-law fall-off pT where n is 
the total number of constituents, in agreement with the dimensional 
counting rule. l92 Examples of the leading contributions to lowest 
order in a,(p$) for meson-baryon scattering are shown in Fig. 22. 
Single gluon exchange between color singlet hadrons is of course 
zero. The constituent interchange graphs,40 Fig. 22c,d, are among 
the dominant contributions and lead to large flavor-exchanging 
amplitudes. 

As in the form factor calculation, the evolution of the wave- 
functions $(x,X2) to $(x,p$) yields a series of terms with anomalous 
powers of a,(~+). The asymptotic cross section at p;-+m has the form 

. n-2+Cy 

[as (pz) I 
I I 

2 (A+B +C+D) => 
[p;F 

f (ecm) (6.2) 

X 
2 FA(p;) FB(p;) FC(p;) FD(p;) f(ecm) (6.3) 

PT 

where yI is the leading anomalous dimension and FI(t) is the asymp- 
totic form factor of hadron I. (The non-leading anomalous dimensions 
are not expected to be given correctly by Eq. (2.3) because of the 
different weighting of the Xi integrations.) The anomalous loga- 
rithms from .each wavefunction is specific to each hadron, and thus 
gives a factorization theorem Eq. (2.1) for the logarithmic correc- 
tions to dimensional counting analogous to the factorization 
theorems for scale-violations to high pT inclusive reactions. 

B. Soft Subprocesses 

As first emphasized by Landshoff,O' amplitudes with "pinch" 
singularities, analogous to Glauber scattering amplitudes may provide 
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an alternative and possibly phenomenologically important source of 
hadrons at large PT. The classic example is pp scattering, which 
can proceed via three successive (nearly on-shell) qq+qq elastic 
collisions each at 8iw i3cm (see Fig. 23). The hadronic amplitude 
has the form (&-1/3s, t-lj3t) I 

dtt PP-+PP N /J I 1 
2 

[ 
dtt qq-tqq (.G) 3 1 (6.4) 

which gives nominally for spin 1 exchange 

g (PP+PP) ly 
1 - f(s/t) N 

x4t8 
1 for s>>t 
t8 

(6.5) 

3 -79 3557*23 

Fig. 23. Landshoff pinch 
singularity contribution to 
elastic pp scattering. The 
elastic qq-fqq amplitudes 
are nearly on-shell. 

The i/ J stuA2 factor in Eq. (6.4) 
represents the probability ampli- 
tude for the scattered quarks to 
overlap with the final state 
hadrons. As noted by Donnachie 
and Landshoff, data from the 
ISR and FNAL at s> 800 GeV2, 
4 < ItI -C 10 GeV2 is compatible 
with Eq. (6.5). (See Fig. 24.) 

The anomalous power law of 
the pinch singularities arises 
from exclusive qq+qq amplitudes 
where each intermediate state is 
nearly on-shell. Thus Fock state 
amplitudes \Yx in the soft domain 
are required. Since gluon radia- 
tion is excluded in this exclusive 
reaction, %q + 44 is suppressed 
by the Sudakov quark form factor: 

“%I -+ qq ly UUBorn l a,(i) F:(i) (6.6) 

The amplitude F,(t) can be computed from virtual gluon corrections, 43 

or more simply from the exslusivezinclusive connection with the 
Gq,,(x,q2) distribution P(c)(l-x)c-1 

(6.7) 



where 

10-g 

Fig. 24. Comparison,of ISR and 
FNAL data at s >> ItI with the 
prediction (6.5). (From Ref. 42.) 
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t 
cF 

; 

= ?&X2> = --y s 

2 

n 
F as(!L2) . 

- 
3 5 ’ IO 

It I (GeV*) 

(6.8) 

Thus the leading pinch singu- 
larity contribution to pp- 
scattering falls as 

g (PP'PP) 

a:(C) 
.-4- 

;8+6: 
P6(Z)f(s/t) 

(6.9) 

where t -O(log log I;\). 
Thus, asymptotically, the 
pinch contribution falls 
faster than any power and 
eventually becomes negligible 
compared to the hard scat- 
tering contributions. 
Nevertheless, it is possible 
that such multiple scattering 
processes do play an import- 
ant role in the s>> ItI 
domain of Fig. 24 especially 
considering the fact that 
^t-1/9t is of order -1 GeV2. 
However, it is not clear why 
the ISR and FNAL data do not 
indica_tg a faster fall-off 
than t considering the 
strong variation of a&t) 
and non-zero value of 5 in 
Eq. (6.9). 

7. The Phenomenology of pp Scattering at Large Angles 

The overall features of da/dt (pp-tpp) are sketched schemati- 
tally in Fig. 25. The data at central angles 30' 5 9,, 5 150' fall 
rather uniformly as s-lof(B,m) and merges with at tW8 energy-inde- 
pendent "envelope" in the small 8,, s >> ItI region. This s-independ- 
ent small ecm envelope is consistent with multiple gluon exchange 
mechanisms which produce fixed J=l Regge behavior. The overall 
behavior of the central angle data is consistent with the quark 
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interchange4* QCD diagrams; the 
observed shape of f(ec,) N 
(Sin8,,) -lo to -14 is compatible 
with this ansatz. Furthermore, the 
roughly symmetrical shane of 
da/dt (np+np) around 90° and the 
large pp/pij ratio at 90' are all 2-n 3557*x consistent with quark exchange or 

Fig. 25. Qualitative interchange hard scattering 
features of elastic pp mechanisms. 40 

scattering. However, these mechanisms 
fail to account for either: 

(a) the slow oscillation of the 90' cross section about the s -10 

prediction (see Fig. 7), nor 
(b) the striking, strongly varying spin correlation recently 

measured by A. Krisch and collaborators at Argonne.14 (See 
Fig. 26.) At s=24 GeV', Bcm=900, it is -4 times more likely 
for two protons to scatter with their spins aligned normal 
and parallel to the scattering plane than anti-parallel. In 
contrast, the quark interchange amplitude redicts this ratio 
should be close to 2 independent of angle. e 4,45 

The possibility that 
non-perturbative (instan- 
ton) effects could be 
interfering with the quark 
interchange amplitude to 
produce large spin corre- 
lations has been investi- 
gated by Farrar, Gol.z;lieb, 
Sivers, and Thomas. 
More recently Brodsky, 
Carlson, and Lipkin 
have considered another 
possibility: since the 
triple scattering pinch 
singularity contribution 
to pp scattering requires 
she qq+qq amplitude at 
s=1/9s and the relatively 
&ow momentum transfer 
t-1/9t--1.1 GeV2, it 
is not unlikely that the 
qq scattering is dominated 
here by simple meson ex- 
change or Reggeon dia- 
grams. In fact a low 
energy pinch contribution 
computed with triple"a"or 
'%" exchange, interfering 
with the quark inter- 
change amplitude can 

i-70 

r 

0 -1 2 3 4 5 6 

Fig. 26. Spin correlation for protons 
polarized normal to the scattering 
plane. (From Ref. 14.) 
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produce a spin-correlation with the observed magnitude and depend- 
ence on ecrn. This model leads to a number of testable predictions 
including s-dependence, np/pp ratios, and the spin correlation for 
longitudinally polarized nucleons. A large double-helicity flip 
amplitude is predicted due to scalar and the pseudoscalar meson 
exchange. 

8. Transverse Momentum Distributions and Inclusive Reactions 

It is straightforward to extend the methods discussed here to 
calculate the x+1 and large k1 behavior of each Fock component of 
hadronic wavef$nctions. In general, one starts with the soft wave- 
function Y,(x,k?) and then uses the evolution equations to obtain 
the leading power-law and as dependence in the far-off-shell domain. 
In the case of the q?j component of the (helicity zero) meson wave- 
function, the asymptotic fall-off in 2: is given by 

a 
4,x)/16r2 5 - 

ail2 

where k,= f,/< in the case of pions. Thus the fall-off in the 
intrinsic wavefunction is slightly stronger than an inverse power 
of $2 due to the internal hard gluon interactions, and much slower 
than the exponential or Gaussian forms usually assumed. The 
dependence on h2 cancels in physical cross sections. This independ- 
ence in the choice of X2 can be used to derive renormalization-group 
type equations. 

The fact that the "tail" of the hadronic wavefunction can be 
computed at short distances removes the central uncertainty in the 
calculation of effects due to intrinsic transverse momentum 
fluctuations for reactions such as massive lepton pair production 
or high pT hadronic processes - the hadronic wavefunction is no 
longer a "black box"! Since the wavefunction enters squared in the 
inclusive cross sections the spectator transverse momentum integra- 
tion: are always convergent at large 4. This is in contrast to the 
dk:/k? as@:) integrations from gluon bremsstrahlung which lead to 
the scale-violations in the input structure functions. 

The general analysis of large pT inclusive reactions in QCD is 
complicated, but the asymptotic scalin 

5 
behavior of the inclusive 

cross section to leading order in a,(p,) appears to be a tractable 
problem. Let us consider a given reaction A-t-B+C+X where C is 
detected at large M angles with transverse momentum pT and momentum 
fraction xR= ls(/pmax' Each hadron A,B, and C is represented by 
its Fock state components Yyx. 
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pp--Jet +Jet +X We then identify46 all 
hard scattering processes 

3-Ip (a) (b) ,5*7*21 

Fig. 27. Example of diagrams 
which contribute to high PT 
pp+jet+X reactions. 

qg+qg, gg+gg, etc., b;t for 
some kinematic regions we 
should also consider "high 
twist" subprocesses such as 
qq+M?, Mq+Mq, Bq+Bq, etc. 
As in exclusive scattering, 

off of TB in p: 
the nominal power-law fall 

reflects the number (nactive) of fundamental fields 
forced to change directions. By definition every intermediate state 
associated with TB and its radiative corrections is off shell by at 
least X2; otherwise its contribution is already included in '4'~. 

Furthermore, as xR+l, each constituent a,b,c (assuming c#C) 
requires the far-off-shell behavior of the Fock state wavefunctions 
for A,B,C. The leading power law behavior as (1-XR)+O is given by 
diagrams with the minimal number of gluons exchanged between the Fock 
state constituents which can transfer all of the hadronic momentum 
to the hard scattering subprocess. The evolution equations for the 
Fock state v avefunctions 
aiLas 

then gives anomalous logarithms 
i where kz. = -(%~~+~~)/(l-~~), as in the structure 

1 
function calculations. Combining these factors we obtain at large 
pT and xR'Y~ 

nactive -2 

(8.2) 

2n,-1 Zn,+r 
. ( l-xR) f Wcrn) 

where n, is the total number of spectators in A,B and C and p is 
the sum of the leading anomalous dimensions for the corresponding 
Fock states. (The spin complication noted in Section 5 will for 
simplicity be ignored here.) 

Now let us consider the effects of gluon bremsstrahlung for 
the external lines a,b, and c of TB, as in Fig. 27b. Taking into 
account the off-shell kinematics, the integration over gluon trans- 
verse momentum up to p$ gives the additional factors 

I_’ A,’ 
; _, t. 

.) 

‘I< 

.’ 
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I-l (1-xi) 
Si(P~ ,k~i) 

i=a,b,c 
P($) (f3.3) 

which can be incorporated into the structure functions GajA(xa, pg), 
etc. Here 

5 ci =- 
i T as(e2) 

x. 
1 

where Ci is the color SU(3) Casmir operator for a,b or c: 

0 color singlets 

ci = 4/3 3 or 3 

3 octet 

(8.5) 

It is a striking fact that the scale-breaking corrections due to 
gluon bremsstrahlung vanish in the case of color singlets. Thus in 
the case of higher twist subprocesses such as (q{)+q+M+q, the 
dominant contribution to the pT '+m asymptotic cross secti?n at large 
x is obtained when the (94) system is in a color singlet. In 
addition, if a,b,c or d is a color singlet composite system, then 
we also obtain anomalous logarithm factors from the evolution of the 
hadronic wavefunctions: 

(8.6) 

In particular, the leading anomalous dimension y. is zero for 
helicity zero mesons. 

Notice that in the exclusive limit, fixed ,&'= (l-xR)P$, 
we have log(k~/A2)/log(p~/A2)~l and ?+O; i.e.: because of 

kinematics the anomalous logarithmic corrections to TH 
do not appear in the exclusive limit. The asymptotic inclusive 
cross section in QCD thus takes the factorized form (s=xaxbs) etc.) 

1 1 

E 2% (AB+cX) = 
d3p =/ ab+cd dxa Ga/A (Xa,ca) 

/ 
dxb Gb,B(x&b) 

0 0 
1 

/ 
dXC 
-TG c,c(xc'sc) s (ab+cd) ii 7 s<;+;+;, (8.7) 

0 xC 
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where 

G a,A(Xa' 5,) - (l-x,) 
2ni- l+s,(P;.Ga) 

NE,) (8.8) 

is the structure function for finding constituent a in A with 
light-cone momentum fraction x,. Equation (8.7) holds for sub- 
process ab-rcd where a,b,c,d are each either quarks, gluons, or 
color singlets. The exclusive cross section ds/dt (ab-tcd) includes 
the anomalous logarithms from Eq. (8.6) in the case of composite 
color singlets. [We have not considered the contribution of multi- 
particle scattering (pinch singularities) to the inclusive cross 
sections.] The fact that 5, =0 for color singlets implies that 
structure functions obtained from higher Fock state components such 
as f$f/B(x,c) are actually Scale-invariant. It thus should be 
possible to obtain the normalization of these contributions from 
conventional Deck or Drell (meson-exchange) analyses of multiparticle 
exclusive processes. 

Equation (8.7) is consistent with the usual factorization 
theorems for inclusive reactions, but it includes the effects of 
higher twist processes, off-shell effects, and predicts the (l-xR)+O 

behavior of the cross section. Aside from the computable logarithm 
corrections, the inclusive cross section is well characterized by 
the power-law formula (8.2). Since c-+0 at p$+a and fixed (I-x)p$, 
there is again a smooth connection with exclusive processes, and 
the spectator power law3 (1-x~)'~s-l becomes precise in this limit. 

Equation (8.7) is evaluated to leading order in as(p$) and 
includes the effects,of the kT fluctuation due to both gluon radia- 
tion and the fall-off of the intrinsic wavefunction. Non-leading 
terms in m2/p$ and AZ/p4 are also obtained from the mass connection 
to TB and the soft-wavefunction. Note that the Feynman amplitude 
qq+qqg contributes to both the qq-tqq and qg-+qg subprocesses in 
TB, depending on whether the extra gluon's or quark's transverse 
momentum is integrated over. The region of phase space (as in Fig. 
27b) where all three particles emerge at large p is of higher 
order in a,(~$). The use of the correct off-she T 1 kinematics 
prevents anomalous or singular contributions from the integration 
over a gluon or quark pole.46 

9. High pT Phenomenology 

In general, the inclusive cross section Edo/d3p (A+B+C+X) is 
given by a sum of contributions of the form (8.7). The cross section 
will be dominated at very high PT by p recesses involving the mini- 
mum number (4) of active constituents, and it will be dominated at 
XR+ l, the edge of phase space, by processes involving the minimum 
number of Fock state spectators. In addition, for specific trigger 
particles or systems, specific channels or subprocesses may be 
anomalously suppressed. The most important effect, often referred 
to as "trigger bias '147 greatly suppresses the contribution of pro- 
cesses requiring quark or gluon jet fragmentation. 
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As an example, consider the inclusive single particle trigger 
process pp+pX. Hard scattering contributions such as qq-tqq yield 
cross sections with the asymptotic large PT, xR+l behavior 

Edo a2 (p2> 
(pp+px) - ' 4T 

12+6yN 

d3p 
(9.1) 

PT 

Although this contribution should eventually dominate at very high 
PT, it is suppressed in normalization by several orders of magnitude47 
because of the fact that only a finite fraction of the outgoing 
quarks momentum is transferred to the proton; the actual hard scat- 
tering subprocess thus occurs at a fractionally higher value of PT 
where the cross section is much smaller. It is this effect that leads 
to the prediction of sizeable jet/single ratios in simple QCD sub- 
processes.48 

P 

leading particle diagram 
(a)pp-PX 

Alternatively we can 
consider processes where 
the trigger hadron emerges 
directly from the hard 
scattering reaction. 49,50 
These are higher "twist" 
subprocesses in that more 

(b)pp-PX (c)pp---rrx in Section 8, the leading 
contributions at large x 

Fig. 28. High twist contributions occur when the composite 

to hi& PT PP +pX and pp++X in- 
systems are color singlets. 

elusive reactions. The simplest such sub- 
process is the "leading 
particle" diagram of Fig. 

28a where the hard scattering reaction is pq+pq, i.e.: elastic 
proton quark scattering. The nominal order is 

6+2yN 

E da - (PP-fPX) rv 
[as (p$ I 

d3p 
12 (l-~)~+' Cas(k~)14+2yN (9.2) 

PT 

Such a contribution is expected to dominate near the exclusive 
boundary, but is strongly peaked toward forward angles because all 
of the beam energy is utilized. If we consider a high Fock-state 
component of the incident nucleon, e.g., /qqqqq>, then this problem 
is avoided and one obtains contributions with the form 
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6+2yN 

E da - (PP-+PX) N 
[as (p:) 1 

d3p 
12 C~-X,)~+’ Ca (k2)18+r (9.3) s x 

PT 

from the B+q+p+q subprocess (see Fig. 28b). Similarly the M+q+nq 
subprocess (see Fig. 28~) leads to a contribution 

Cas(k~)llDtr (9.4) 

Independent of these phenomenological questions, the important 
point is that higher twist subprocesses, including the scale-breaking 

corrections from wave- 
functions and bremsstrahlung 

r-T processes (as in Fig. 29) 
can be systematically com- 

P x _, 
TB I 

l? 

puted in QCD. It should 
also be possible to calcu- 
late the normalization of 
these processes directly 
from form factor normali- 
zations, and relative 

P normalization of different 
Fock state components. 
For example the important 

Fig. 29. Example of diagrams which 
contribute to scale-breaking and 
anomalous logarithm corrections to 
the qM+qM higher twist subprocess 
contribution to pp+nX. 

Since these are the leading QCD contributions which produce hadrons 
at ecm =90° directly without the trigger bias suppression, these 
terms can dominate the inclusive cross5section until very large p 
where the nominal pT4 terms take over. Measurements at FNAL an 3 
ISR for pp+pX and pp 
powers, Eqs. (9.3) 

+nX are in fact consistent with the pr$icted 
and (9.4), respectively for 3~ pT< 8 GeV. 

There are also indications from ISR measurementss3 of pp+n"X, that 
the fixed xR power law fall-off changes from ps8 to wp~5 for 
85 pT5 12 GeV. 

(qq)+q+v+q subprocesses 
for pp+rX requires the 
normalization of the 
[qqqqq) Fock state com- 
ponent of the nucleon, 
which in turn can be com- 
puted from the intrinsic 
sea-quark distribution in 
the nucleon. 
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10. Summary 

As we have discussed in this paper, the testing ground of quan- 
tum chromodynamics can be extended to exclusive processes at large 
momentum transfer. The essential features which are required in the 
calculation of the cross sections are (a) the unambiguous separation 
of hard (far-off-shell) and soft regimes of each hadronic Fock com- 
ponent and (b) the derivation of evolution equations which determine 
the wavefunctions at short distances. The eigenvalues of the evolu- 
tion equations yield the anomalous scale-breaking logarithms which 
are specific to each hadron and systematically correct the leading 
power behavior of large momentum transfer amplitudes. The dimen- 
sional counting rules, modulo calculable logarithmic corrections, 
thus emerge as predictions of perturbative QCD. 

In particular we have obtained 

(a> exact results for hadronic form factors at large Q* and hadronic 
structure functions for x near 1, 

(b) the asymptotic behavior (including factorization theorems) for 
fixed angle amplitudes, 

(c) the asymptotic suppression of Landshoff (pinch-singularity) 
contributions for exclusive processes, 

(4 a smooth exclusive-inclusive connection in QCD. 

The last result depends critically on recognizing the off-shell 
nature of subprocesses within hadrons, and the fact that the para- 
meter 5 which controls scale-violations in QCD actually vanishes in 
the fixed &*, Q2+a limit. We have also shown that higher twist 
and constituent interchange model subprocesses can be systematically 
computed in QCD. 

The Fock space decomposition of the hadronic wavefunctions, 
together with the axial gauge provides an exact description of QCD 
which is the analogue of the parton model. In particular it allows 
us to make a clean distinction between intrinsic sea-quarks and 
those evolved from the Q* dependence of deep inelastic scattering. 
In general, the lowest particle number Fock states ]B>= (qqq> and 
M= (q{> dominate the power law behavior of large momentum transfer 
exclusive reactions and inclusive reactions at x+1. The existence 
of Fock states at P+m with a fixed number of constituents is a 
consequence of the fact that a hadron is a color singlet. 

It is worth emphasizing that QCD predicts specific integral 
powers for the asymptotic form factors of hadrons: 

as(t) 
F;l)(t) 

Ca (t) 12+yN 
F,(t) => - 

t1 ' 
=> s 

t-t-m t-P--m t* 

Similarly, the asymptotic form of the nucleon structure function is 
predicted 

F,,(x,Q*) => (l-x) 
3+:(Q*,+ 
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The integral powers in these expressions directly test both the 
scale-invariance of the internal interactions, and the SU(3) color 
prediction that the minimal Fock states which are color singlets are 
lqy> and Iqqq>. In this sense, exclusive processes at large momentum 
transfer and the x near 1 dependence of structure functions provide 
the most direct and critical prediction of QCD dynamics and color 
SU(3) symmetry. 

At this point, the study of exclusive reactions in QCD is just 
beginning, but there seems to be real hope that a microscopic des- 
cription of a large range of hadronic physics will emerge. The 
anomalous logarithms which emerge from the evolution equation can 
play a dominant role in phenomenology and may be experimentally 
accessible from detailed comparisons of different reactions, e.g., 
F,(t)/FK(t), meson photoproduction, Compton scattering, etc. The 
anomalous dimensions are fundamental parameters of each hadron and 
reflect the underlying symmetry properties of its wavefunction. In 
some cases the absolute normalization of amplitudes such as the meson 
form factors, v(q2> +v(k2) -+ITO can be computed in the asymptotic 
limit. It also should be possible to compute the normalization of 
large angle scattering processes and higher twist (CIM) subprocesses 
in terms of the normalization of the meson and baryon form factors 
as well as their angular distributions. We are also analyzing the 
spin structure of baryon wavefunctions in the short distance limit. 
In principle, it should be possible to make a direct connection 
between the soft Fock space wavefunctions Yx and the wavefunctions 
used in hadronic spectroscopy, bag models, etc. The higher Fock 
state components also evidentally play an important role in the sea 
quark distribution, low momentum hadron exchange reactions, and 
inclusive reactions in the fast (xh+l) forward regime.3 
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