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ABSTRACT 

The classical solutions of the equations of motion are studied in 

some Euclidean field theory models either conformal invariant or non- 

invariant. In the conformal invariant models a virial theorem for merons 

is derived which is of the same form as the known one for instantons. 

Some examples of singular solutions are discussed. An interesting relation 

seems to hold between the local symmetry properties of the singular solu- 

tions and the degree of divergence of the Euclidean action. 
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1. Introduction 

Classical solutions of equation of motion in quantum field models 

may help to understand the non-perturbative quantum properties. Although 

the emphasis was on regular and sourceless solutions with finite energy 

(solitons) or Euclidean action (instantons), also solutions with loga- 

rithmic divergent action (merons) were considered interesting in the ap- 

proximate evaluation of the Feynman path integral and solutions of the 

gauge fields in presence of sources in studying the dynamics of heavy 

quarks. Then it seems desirable to understand the properties of the 

general classical solution in the Euclidean space.1 

In Section II we derive virial type theorems2 for meron-like solutions. 

As in the case of the instantons the theorem is useful in excluding solu- . 

tions for some models in certain space-time dimensions or in finding exact 

or approximate solutions when there are. Virial theorems which may have a 

similar use are also easily derived for higher moments of the energy momen- 

tum tensor. We discuss the properties of meron solutions in two models: 

a scalar selfinteracting multiplet and the CP N-l model. In Section III we 

indicate that some of the meron properties are lost by the singular solu- 

tions of non-conformal models. This is illustrated by two examples in IR3: 

a scalar selfinteracting massless multiplet and a similar multiplet inter- 

acting with a Yang-Mills field. 

Finally let us remark that there seems to be a connection between the 

symmetry properties of classical solution and the degree of divergence of 

its Euclidean action. It is well known 9,lO that in the conformal $4 model 

in the Euclidean lR4 , the only solution invariant under O(5), the instanton, 

has a finite action, while the meron solution, invariant under O(4) x O(2) 

only, has a logarithmically divergent action. 
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Moreover the general solution with O(4) symmetry only 11 which is com- 

puted in terms of Jacobi elliptic functions has an action at least loga- 

rithmically divergent. Similar features are observed in the pure Yang-Mills 

theory by using the ansatz 12 that maps solutions of the conformal $4 model 

into solutions of the Yang-Mills theory. Very few solutions are known 13 

which have less than O(4) invariance and they have an action divergent as 

a power of the cut off. 

It may be useful to stress that the symmetry property of the classical 

solutions, we are discussing, is a local symmetry property of the solution 

in a region where the physical densities are substantially different from 

zero and we do not refer to the global symmetry property which may be less 

significant. For instance, by use of the conformal symmetry a meron-meron 

pair solution that has one center at origin and the other at infinity 

(and therefore O(4) x O(2) global symmetry) may be converted into a solu- 

tion with both centers at finite points thus reducing the global symmetry 

property of the solution, but not its local properties around the centers. 

II. Meron Solutions in Conformal Models 

Let us recall the Laue 596 theorem in its simplest form useful for 

regular time-independent solutions (static solitons and instantons). 

Let &??[$,x] denote the Lagrangian of a set of fields Q in the Euclidean 

IE? space and T yv [4,x] the energy momentum tensor (it may be the canonical, 

Belinfante or the "improved" one). The energy momentum conservation: 

a T ~ TV [$;xl = 0 

implies 

aa ‘x,, T,,) = T,,\, 

(2.1) 

(2.2) 
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If (2.2) is integrated over all the Euclidean lRn space and if the regularity 

and asympototic properties of the fields allow neglecting the surface contri- 

bution of the current Jo'v z x'Tov, one obtains: 

J dnx T I.lv [$,x1 = 0 (p,v = 1, . . . . n) . (2.3) 

The usual form of the virial theorem2 follows by taking the trace of Eq. 

(2.3) 

/ dnx T ~~ [0,x1 = 0 (2.4) 

and the more detailed theorems obtained by non-isotropic scale transfor- 

mations 4 correspond to linear combinations of the Eq. (2.3). 

Of course one may easily obtain infinitely many other relations of 

the virial type by partial integration: 

J dnx T a f (x,, w Pa 
. . . . xn) = 0 (2.5) 

provided that fc(xl, . . . . xn) is a set of smooth functions and the integrals 

converge. Equation (2.5) contains both the local property (2.1) and the 

asymptotic properties of the energy-momentum density tensor. 

If the set f is chosen to be a complete set of orthonormal functions 
a 

in II?, ‘the Eqs. (2.5) are well defined and fully equivalent to Eq. (2.1). 

Sometimes the first few equations are helpful in the search for approximate 

solutions which do not have simple symmetry properties. 14 

We shall now extend this theorem to the singular solutions often 

called merons. Such solutions have only been studied in some conformal 

2 8 4 
models: nonlinear o-models in IR , massless 0 in lR4,10 pure Yang-Mills 

in TR4 10,15 
, Yang-Mills coupled with scalar multiplet in IR 4 16 , massless 

4 17 
scalars interacting with massless fermions in IR . Multimeron solutions 

in these models have also been studied. 
18 
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Most of the single meron pair solutions here mentioned have the 

following properties: 

i> the Lagrangian density is regular and has a finite integral 

over any region of the Euclidean space-time excluding the neighbourhoods 

of two points which we call centers of the meron pair. These two regions 

give logarithmically divergent contributions; 

ii) in non-Abelian gauge models the gauge field is proportional to 

a pure gauge; in some models the topological charge density is concentrated 

at the centers of the meron pair; 

iii) the meron solutions have a large group of symmetry. For instance, 

in models in Euclidean lR4space invariant under the conformal group O(5,l) 

(generated by M P 
w' iJ' 

Kp and D) while the instanton solutions are invariant 

under the subgroup O(5) generated by Mtiv and RV = Pu + KU, the meron 

solutions are invariant under the subgroup generated by M and D. 
l-iv 

Yet no single such property holds for all the above mentioned solutions 

(in fact no general characterization of meron solutions seems to exist). 

Property ii) is probably the less appropriate not only because one 

may be interested in classical solutions (regular or otherwise) in models 

that have no topological number but mainly because it was shown 'that for 

a singular solution the topological number may be changed (by a singular 

gaugetransformation)without affecting the type of singular behaviour of 

the solution l5 (th' 1s does not happen for regular solutions). One may also 

notice that property iii) and i) seem to be closely related. We then adopt 

a definition based on the property i) and furthermore we require a specific 

local behaviour of any symmetric traceless energy-momentum tensor T"', in 

the regions where the solution is singular. Such local behaviour is 
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suggested by properties i) and iii) and indeed it holds for all known 

solutions where i) and (or) iii) hold. However it is more convenient than 

the above properties in looking for exact or approximate solutions in less 

simple cases (for instance multi-merons). Specifically we shall here con- 

sider the sourceless solutions of conformal field theories in the Euclidean 

Rnspace everywhere regular except for two points, the centers of the 

meron pair. In the neighbourhoods of each center, say x N a we assume 
Fc u' 

that the energy-mmentum tensor is: 

(x - 
TFivbLX] = 6 1-I all) <xv - av> cn (x - aa) 

2 1 f ((xa -aa)‘) . 
a 

The conservation of the energy-momentum tensor implies that 

C 

f ( (xc-ac)2) = a 

I 
(x, -ao)2 

I 
n'2 

(2.6) 

(2.7) 

ca being a constant. 

One might check for example that the solutions of the conformally invariant 

44 in lR4which have O(4) symmetry " (but not a higher one) do not allow 

the local representation [(2.6) and (2.7)] even in the cases where the 

action is minimally (i.e. logarithmically) divergent. 

By using the conformal symmetry one of the centers of the action 

density can be shifted to the origin and the second to infinity. Then it 

is plausible that the assumed local behaviour (2.6) holds globally: 

t 

xx 
T I-iv [9,x1 = dFiv -&!2 c 

1 r2 rn ' 
(2.8) 

Indeed, Eq. (2.8) holds for every known meron solution but it will not be 

needed in the derivation of the virial theorem. 
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We shall now easily prove the virial theorem for merons. Let us 

call aP and b 
lJ 

the centers of the meron pair and o a' ob two small spheres 

with centers in a and b 
It Fc' By integrating Eq. (2.2) over all IRnspace 

and using the divergence theorem we have 

/ 
dnx T pv = dooJ + 

al.lv J 
ducJ + 

al.lv / dua Jcipv - (2.9) 

sm u a ob 

The integral over the surface at infinity S, vanishes because of the meron 

property that the action density is integrable over any domain that excludes 

the centers of the meron pair. By using (2.6) and (2.7) we obtain 

/ 
dnx TUv = (l-n) ca 

/ 
d,n, 

Y, (Y,- aJ 

Y2 

+ (l-n) cb / dQn ‘3 -bQ Y, 

Y2 
(2.10) 

= (1-n) n g 
n n I.~V (Ca*cb) 

where y 
1-I 

is the coordinate with respect to one of the centers of the meron 

pair and fin is the total solid angle in JR". Now by taking the trace of 

Eq. (2.iO), conformal symmetry implies ca = -cb, therefore: 

/ 
dnx T lJ.v [@,x1 = 0 (~.l,v = 1, . . . . n) (2.11) 

The virial theorem for merons then has the same form as for instantons. Of 

course it will not be useful here to consider the trace relation, as in 

Eq. (2.4), because by conformal symmetry this is trivial identity. 

As an example of use of this theorem, let us consider a set of mass- 

less scalar fields @a (a = 1, . . . . 4), which transforms as a vector under 

the internal symmetry group O(4) in the Euclidean lR4space with the 

Lagrangian 
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The proper energy-momentum tensor here is the improved one 19 

T 
UV = yba av+a - 6$z+ + (6pvo - auav) (+a9a) 

(2.12) 

(2.13) 

because we need T 
lJv 

=0, but the improvement gives no contribution after 

integration. Then Eq. (2.11) yields 

s d4x (axQ2 = / d4x (ay”a)2 = J d4x (az+a) 2 
(2.14) 

= / d4x (ateal = - $ / d4x ($a$a) 2 

and 

/ 
d4x ap+a av$a = 0 (l-l f v> l (2.15) 

Hence meron solutions may only exist for negative h. If we look for a 

meron solution with a center in the origin and the other at infinity, the 

global assumption (2.8) yields 

6 
(2.16) 

W 

Analogous equations may be obtained for Yang-Mills systems and they are 

of first order. 

Two simple (sourceless) solutions are obtained from (2.12) and (2.16) 

6 
-,$a = -.GL 

Lp- 
(a = 1, . . . . 4) (2.17) 

which is well known 10 , and 

(a = 1, . . . . 4) (2.18) 

The topological charge of a Higgs multiplet 4, is usually calculated from 

the Kronecker index of the normalized vectorial field 6, = 
+a 

((I obF2 * b 
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This however requires regularity properties for the modulus (+,$ a l/2 ) 

which do not hold in the solution (2.18). Every regularization of (2.18) 

would produce a unit topological charge. 

The meron solution (2.17) is invariant under a O(4) X O(2) group, 

where O(4) is generated by the four-dimensional rotation operators and 

O(2) is generated by D = x a + 1. 
!J?J 

In the case of meron solution (2.18), 

since space and ,internal indices are mixed, the space-time rotations have 

to be supplemented by similar transformations in the internal space, so 

that (2.18) is still invariant under a O(4) X O(2) group where now O(4) 

corresponds to the "complete" (i.e. space plus internal) four-dimensional 

rotations and O(2) is generated by D = x a + 1. ?JM 
As another example of 

meron solution in conformal models, we consider the two-dimensional 

Euclidean CP N-l non-linear o-models 
20 with Lagrangian density 

where z"(x) (a = 1, . . . . N) is a complex N-component field satisfying the 

constraint Yczo = 1. 

A meron solution which is a simple generalization of that of the O(3) 

8 o-model is 

0 8 

z,(x) = -j$ 
-i- 

2 i- 
e Ua+e a 2V (2.20) 

where0 = arg(xl + ix2) and U, u 
cx = v, v 

01 
= 1, Gc va = 0. It has a topo- 

logical charge density 

q(x)d- - 
2Ti an(zcEUv av2) = 3 62(x] ; 

the canonical energy-momentum tensor is 

T = 
( 
6 

W ?JV 
_ 2q+ 

X 4x 

(2.21) 

(2.22) 



- 10 - 

and the Lagrangian density is 

9(x)=1 . 
2x2 

(2.23) 

III. Singular Solutions in Non-Conformal Models 

It is clear that the singular solutions of equations of motion of non- 

conformal models lack most of the properties of meron solutions in con- 

formal models. However, non-conformal models also are interesting and 

the singular solutions that we describe in this section are of obvious 

relevance in the study of the general solution of the classical equations 

of motion. 

First we consider a scalar massless multiplet @,( a = 1, . . . . n) 

which transform as a vector under the internal symmetry group O(n) in the 

Euclidean lEnspace described by the Lagrangian density 

X 
With a radial ansatz Cp, = $ f(r), r = (xUxV> 

l/2 , one has the equation of 

motion 

By a change of variables g = rf, r = ez one obtains the autonomous 
- 

equation 

2 
dg a+ (n-4) z- 2(n-2)g - Ag3 = 0 

dz2 

(3.2) 

(3.3) 

The associated autonomous system of first order differential equations 
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(3.4) 
4Y 
dz 

= (4-n) y+ 2(n -2) g+ Xg3 

has three singular points (dz dz iLiY= 0): 

g=o, g=*J2(2Xn) 

which yield the singular solution 

(3.5) 

(3.6) 

For n = 4 the model is conformal invariant and the singular solution is 

the meron already mentioned in the last section. For n = 3 Eq. (3.3) is 

essentially the equation discussed by Wu and Yang 
21 that describes static 

solutions of pure Yang-Mills system in R3. We note some obvious properties 

of the solution (3.6) in lR3: 

a) it is invariant under the group O(3) x O(2) generated by the 

usual "complete" operator M and 5 (where 5 = x a + 1 while the canonical 
PV ?JlJ 

dimension of 9, in IR3is l/2); 

b) the density of the canonical energy-momentum tensor vanishes; 

c> The Euclidean Lagrangian density is regular everywhere in X3 

except at the origin; it diverges linearly when integrated in a domain 
- 

that includes the origin; 

d) the same comment made on the topological charge of the solution 

(2.18) holds here. 

As a second example of singular solution for a non-conformal theory, 

we consider the SU(2) Yang-Mills field coupled with an SU(2) Higgs field 
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in the Euclidean lR 3 space. For convenience, as in the previous example, 

the scalar multiplet is taken massless. With the usual radial ansatz: 

A; = c (1 -K(r)) 
aij "j er2 

the Euclidean action is 

(KY)2 + (K2 -1>2 

2r2 

+ H2K2 + (rH' -H)2 + AH4 

r2 2r2 4e2r2 1 (3.8) 

and the field equations are 

2 r K!! = K (K2 -1) + K H2 

(3.9) 
2 r H!' = 2 H K2 + -!- H3 

e2 

After the change of variable r = ez we have the autonomous system 

dK Y -= 
dz 

- = K (K2 dY 
dz 

-1) +KH2 

dH w -= 
dz 

T=2HK2+XH3 . 
e2 

There are two sets of singular points 
dK dY dH dW 
-d-z = -d-z = z = x = 0 

H = 0, K=O, +l (3.11) 

H2 = 2e2 , 
2e2 - X 

K2 = -' 
2e2-X 

(3.12) 

(3.10) 
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The first set implies the vanishing of the Higgs fields and then yield the 

singular points of the self coupled Yang-Mills system discussed by Wu and 

Yang 21 (we just recall that K2 = 1 implies Fa ij = 0, while K = 0 provides 

the singular solution 

Ha&c 
xx a aR 

R -- 1. 2 ija Fij = er4 (3.13) 

The second set provides, for negative A, singular solutions that have 

interesting properties: 

a> the non-Abelian gauge field is proportional to a pure gauge: 

A?"a 1 K AiEeT=T U-l a U, i where U = i [JKxk ; 
r 

b) the solution is invariant under the group O(3) X O(2) generated 

by the "complete" rotation operators and by E = xK aK + 1; 

c> the density of the symmetric (Belinfante) energy-momentum tensor 

vanishes; 

d) the Euclidean Lagrangian density is everywhere regular except 

at the origin; it diverges linearly if it is integrated in a domain that 

includes the origin; 

4 the same comment made on the topological charge of the solution 

(2.18) holds here; 

f) this solution, like the solution of the previous example,is 

closely related to the Wu-Yang solutions 
21 of static Yang-Mills fields 

and has the same source problem: it is easily seen that the radial 

equations have a source proportional to S3(r) and therefore the solution 

(3.12) actually solves the equation of motion of the field AT fin presence 
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x. 
of a source proportional to JT = E -? a3(r) which is obviously ill- aij r 

22 defined . 

One may remark that by taking K = 1, H f 0 the gauge fields AT vanish 

so the previous example is recovered. 

As a last example we consider the same system allowing for massive 

Higgs fields, restricting to the simpler configuration with K = 0. Then 

the only equation is 

2 r H" =AH 3 - n2Hr2 (3.14) L 
e 

where 1-1 is the Higgs mass. 

The power-like solution H(r) = & el.l JT; r yields 4,(x) with spherical 

and scale symmetry (although with the non-canonical scale dimension). Now 

the Euclidean action is divergent both at the origin and at infinity. 
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