
I 
SLAC-PUB-2286 
March 1979 
(A) 

SINGLE FEEDBACK SYSTKMS FOR SIMULTANEOUS DAMPING 

A. W. Chao, P. L. 

Introduction 

In a storage ring, the center of charge of a part- 
icle bunch may oscillate In the transverse-betatron, or 
the longitudinal-synchrotron degrees of freedom. In 
case of a coherent instability, the amplitude of these 
oscillations may grow Indefinitely in time, leading to 
the loss of the particle bunch. In many machines, feed- 
back systems have been successfully used to damp un- 
stable coherent bunch oscillations. The basic princi- 
ple is quite simple: one first measures the deviation 
of the bunch's position in some coordinate from its 
ideal trajectory and then tries to perturb the bunch in 
such a way that the deviation becomes smaller after the 
perturbati0n.l In practice, however, the situation may 
be slightly more complicated. The complication comes 
mainly from the fact that the position deviations mea- 
sured or the pertubation applied to the bunch are often 
not pure coordinates of the degree of freedom which one 
wants to damp. For example, an easily measurable quan- 
tity is the horizontal displacement x of the bunch, but 
the value of x contains both horizontal-betatron and 
synchrotron contributions. Similarly, an easily appli- 
cable perturbation is to kick the bunch horizontally by 
an angle Ax', but this kick in general excites both 
horizontal-betatron and synchrotron motions. It is 
clear that the horizontal-betatron and the synchrotron 
motions are intrinsically coupled and a consistent ana- 
lysis of a feedback system for these degrees of freedom 
must take both dimensions simultaneously into consider- 
ation. The same difficulty does not appear in feed- 
back damping of vertical-betatron oscillation in most 
rings because the vertical dimension is coupled to the 
other two degrees of freedom only by electromagnetic 
field errors existing in the machine. 

To describe the horizontal motion of the bunch, we 
need four coordinates, which can be written as avector 
(x,x',z,61. Where x and z are the horizontal and long- 
itudinal displacements of the bunch center relative to 
the ideal trajectory; x' is the angle between the 
bunch's direction of motion and the ideal trajectory; 
and 6=AE/E is relative energy error of the bunch. Among 
the four variables, x and z are easy to measure by 
position monitors, while x' and 6 are easy to change by 
electromagnetic devices. In combination, this suggests 
four possible types of feedback systems: 

Type (x,6) : measuring x and changing 6 
Type (x,x'): measuring x and changing x' 
Type (z,6) : measuring r and changing 6 
Type (z,x') : measuring z and changing x' 

In the following, we will present a complete analysis 
of the Type (x,6) feedback system, using a matrix 
method. The analyses of other types are similar to 
that of Type (x,6) and only the results are included. 
We then include some comparisoils of these types of feed- 
back schemes in terms of power consumptions and the 
effectiveness in damping the horizontal-betatron and 
synchrotron oscillations. We will also discuss some 
effects of position measuring errors on the performance 
of the feedback systems. 

Matrix Method 

Consider a Type (x,6) feedback system, which con- 
sists of a beam position monitor and an rf cavity 
driven by a generator which is phase modulated by the 
position signal. The horizontal displacement of the 
beam is measured at the monitor and the measurement is 
sent to the rf cavity. The phase of the rf cavity is 
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then adjusted so that an electron changes its energy 
by the additional amount A6=&r,onitor. We assume that 
there is only one active rf cavity in the storage ring 
which supplies the longitudinal restoring force as well 
as the feedback action; and that the measurement signal 
from the monitor reaches the cavity before the beam 
completes one turn. 

The transfer matrix of the vector {x,x',z,&) for 
one complete revolution starting from the rf cavity is 
given by 

T tot = Tcav To' (1) 

where T,,, is the transfer matrix across the cavity and 
To is the transfer matrix for the rest of the storage 
ring. 

The energy kick the electron receives at the cavity 
iS 

2:7v ‘ 
A6 = e z + 5x monitor' (2) 

where vs is the unperturbed synchrotron tune, CI is the 
momentum compaction factor and ~ITR Is the circumference 
of the machine. The first term in Eq. (2) is the usual 
rf focusing term and the second term is the feedback 
contribution. The transfer matrix Tcav can therefore 
be written as 

where TCM the transfer matrix from the monitor to the 
cavity. 

The definitions of the elements for the matricles 
T TfM and Ttot are given In Ref. 3. To find the Type 
(0x16) feedback damping rates, we need to find the 
eigenvalues of the matrix Ttot. The eigenvalues are 
given by the solution of the secular equation 

det (Ttot -X) * 0, (4) 

Solving Eq. (4) for X = exp I-akC2lr(Vk+AVk)) with 
k=(x or s), yields an exact solution for the damping 
constants ok and the coherent tune shifts Avk. The 
4 eigenvalues obey the property Xl h2 )\3 X4 - det 
(Ttot), which for Type (x,6) becomes 

-2ax -2as 
e =l+C n,,,+Q, 

[ I 
(5) 

with 

Q =J8,8, n7,' sin A$- 
6 

'rn B nc(cos A$-ac sin A+), 
C 

and AJro27~x-&++c the betatron phase advance from the 
monitor to the feedback cavity. For weak damping, 
Iox,sl <cl, we have the following sum rule 

4(+as=- +('7m + 9)s (6) 
If the cavity and the monitor are located at the same 
location (A$=O,nc=nr,,,&=$) we find ox + as - 0, which 
means that damping for one mode necessarily causes anti 
damping for the other mode. 

It turns out that more practical approximate ex- 
pressions for the damping rates can be obtained from 
Eq. (4) provided that 

(I) 2rVs <Cl. 
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(ii) the synchrotron and betatron tunes are very 
different so that the synchrotron-betatron 
coupling effect can be ignored (See Ref. 4). 

(iii) the feedback system is reasonably weak so 
that that damping rates lax,sl <xl. 

The results of this approximation are, for Type 
(x.6) feedback system, Type (x,6) (A& = 5x&: 

Cl.p-Sj 

in (7) 
a Z=- m 

a 2 

These results are consistent with the sum rule, Eq.(6). 
The matrix method used above to analyze the Type 

(x,6) feedback system can be applied to other types as 
well. We make the same approximations as before to 
obtain the damping rates for the other three types of 
feedback systems (See Ref. 3 for detail results). In 
general the feedback systems damp or anti-damp both 
the horizontal-betatron and the synchrotron oscill- 
ations. As a result, installation of such feedback 
systems requires careful arrangements. Putting feed- 
back components at favorable positions damps both 
modes, while unfavorable arrangements may damp one mode 
but anti-damp the other mode. 

Comparison of Feedback Schemes 

In this section, we will compare the four types of 
feedback schemes in terms of their effectiveness in 
damping the horizontal-betatron and the synchrotron 
modes and their required power consumption. 

We demand that the system damps a mode oscillation 
with a "one-sigma" amplitude by a factor of e in Nd 
turns. We will make order-of-magnitude estimates, 
letting b-functions Z RfVx, n-functions zR/Vx2, 
momentum compaction factor azl/vx2 and A@ arbitrary. 
We will also assume that vx >> 1 and vs c<l. Under 
these conditions, the maximum deviations in x,x', z and 
6 for a one-sigma horizontal-betatron oscillation are 
ox,oxVx/R,ox/vx and ox/fV, where ux is the rms betatron 
beam size and f=R/vx2vs is the ratio of the rms bunch 
length to the rms energy spread, aA. Similar values for 
the s,-nchrotron mode are Ra6/vx2,06/vx, fog and ~6. 

The order of magnitude expressions of the damping 
rates for the horizontal-betatron mode are shown in 
Table 1. In order to have a damping rate of ox=l/Nd, 
the required feedback strengths Ax',, for Types (x,x') 
and (2,x') and A&,, for Types (x,6) and (z,6) are also 
shown in Table 1. To damp a n-sigma oscillation in Nd 
turns, the required'feedback strengths must be increas- 
ed by a factor of n. Similar results for the synchro- 
tron mode are shown in Table 2, where ocm is the part- 
ial momentum compaction from the monitor to the cavity. 

The power consumption of a feedback system is. 
directly proportional to the electromagnetic field 
energy, U, stored in the system. In order to feed back 
on a turn-by-turn basis, this energy U is dissipated 
before the next particle bunch arrives. The required 
feedlrnck power is therefore given by P=U Nb/T,, where 
~b is the number of particle bunches and To is the 
revolution period. For a feedback system which uses a 
kicker magnet {Types (x,x') and (z,x')), the maximum 
stored field energy is given by, in the Cgs units, 

1 2 
U max = 3e'mag Bmax 

where V,, 
.t 

is the effective volume in the kicker magnet 
filled wi h a magnetic field of strength 

B E L----&c' 
max eL max 

mg 
with Lmag the length of the magnet kicker, E the beam 
energy and e the unit charge. For a feedback system 
which uses a cavity {Types (x,6) (z,&)), we find 

U 1 E---v 2 
lMX 87T cav Emax (9) 

where Vcav is the cavity volume filled with an electric 
field of strength 

E E -- A6 max eL max cav 
with L,,, the length of the cavity. For a rough esti- 
mate, let us assume V,,, =V,,, =V, and Lma =L,,, =L,. 
Theratio of the.power required in a magne system to I! 
the power required in a cavity system is 

(+$2= (*j (10) 

In Tables 1 and 2. the estimates of the power con- 
sumption of the various types of feedback systems are 
given for the horizontal-betatron mode and synchrotron 
mode respectively, where the quantity C is given by 

2 
Cf Nb '0 E 

27~ T e2L 2N 2 
(11) 

0 o d 
The betatron frequency v, is usually much larger that 
unity so that for damping the horizontal-betatron 
oscillations the Type (x,x') and (2,x') feedback 
systems, in which the variable x' is changed, will re- 
quire the least power. The aynchrotron frequency vs is 
generally much leas than one so that for damping the 
synchrotron oscillation the Type (x,6) feedback system, 
in which x is measured and 6 changed, will require the 
least power. 

Effects Caused By Errors 
So far we have assumed that the beam position meas- 

urements by the monitors do not contain errors. In 
reality, the noise in the position measuring signal 
sent to the feedback device causes a diffusion in the 
bunch motion. In equilibrium, this diffusion effect is 
balanced by the feedback damping effect, giving rise to 
a gausaian distribution in the synchrotron and betatron 
amplitudes of the bunch motion. 

As an example, consider a Type (x,6) feedback 
system. Let R be the position measuring noise, corres- 
ponding to a contribution of 5% to the energy gain at 
the feedback cavity. The synchrotron energy spread 
then has a diffusion rate per turn given by 

The damping rate per turn, on the other hand, due to 
the feedback is 

-& a2> = -2us (62) 

where as is the damping constant given by Eq. (7). In 
equilibrium, the sum of the above two expressions van- 
ishes, yielding 

<g> = c2 <x2> 
4a a 

(12) 

The position measuring noises also give rise to a 
spread in the betatron amplitude of the bunch. The 
diffusion rate is 

where nc is the dispersion function at the cavity and 
the damping rate is 

$ <xg2> = -2a x <xg2> 

- 2 - 



where a x is given by Eq. '(7). In equilibrium, we find 

2 2 -2 

<xg2? = 
% c <x > 

4 Ox 
' (13) 

These results, Eqs. (12) and (13), together with the 
results for the other types of feedback systems, are 
summarized in Table 3. The feedback damping constants 
for different feedback types are given by Eq. (7) and 
Ref. 3, except that, for Type (x, x') as is dominated 
by the radiation damping since the feedback damping is 
not effective. In practice, these noises in bunch 
motion usually are small compared with the natural 
incoherent spread within the beam and should not impose 
serious problems. 

Table I. Hor .zontal-Betatron Mode 

Feedback 
Type 

Type 6% 6) 

A6C = mm 

Type (x, x') 

Axlk = mm 

Type (2, 6) 

A6C 
= gz m 

Type (2, x') 

Axlk = Cz m 
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Table II. Synchrotron Mode 

Damping I I Required 
Rate Feedback 

Strength 

Damping 
Rate 

-5-L ( 1 2 vx2 

CR 
( ) yy-T vx 

X 

gR 
( 1 2 "x2 

Required 
Feedback 
Strength 

A6 = 
C,TEiX 

A6 * c,max 

A%.,max= 

Required 
Feedback 

Power 

2 

2 

2 

2 
2 ux 

c vx -ic ( i 

Type (x,6) 

A6c = SXm 

Type (x,x’) 
Az$ = 

,m= 

%rn O OD = LX 

Type (z,6) 

Type (2,x’) '%,max = 

A% = "rn (3) (t"6)k 

Table III 

Required 
Feedback 

Power 

2 1 
' o6 2 

Type (x,6) 

Synchrotron 
Mode 

Betatron 
Mode 

A6c = mm 
<&2> = $.$ 

Q2C2<X2> 
<xi> = c 4a 

S X 

Type (x,x') r12 c2 G2> 

Ax;, = mm 
<z2> = k 4a <.q> I Q5 

9 X 

Type (z,6) 

A6C 
= czm 

Type (2,x’) n2 52 G2> 

A$ = czm 
<z2> = k 4a 

S 

<x;2) = A$2 
x 
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