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ABSTRACT 

The full average radiation intensity of 

electrons and positrons channeled between crystal 

planes is calculated. Comparison of the results 

of these calculations with calculations using the 

parabolic approximation for the potential well of 

a channel is presented. The difference can in 

extreme cases reach two orders of magnitude. 

Estimates for the positions of the maxima of the 

frequency spectra are given. The number of quanta 

averaged over the angular distribution of the 

particles in a beam are found. 
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1. INTRODUCTION 

Spontaneous electromagnetic radiation of ultra-relativistic 

electrons and positrons brought about by passage through properly 

oriented crystals has aroused a great deal of interest. There are 

a variety of theoretical papers concerning this phenomenon.1-8 

Recently, two experiments were performed with the aim of detecting 

the channeling radiation and measuring its characteristics. g' lo 

All the calculations of the radiation intensity performed until 

now were done in the parabolic well approximation. However, such an 

approximation is good enough only for positrons and then only for 

small amplitudes of their oscillations around the crystal plane. 

The potential of a channel for electrons nowhere resembles the para- 

bolic well. Hence for electrons, the correct results can not be 

obtained in the parabolic approximation. Also, as we show further, 

the main part of the channeling radiation for positrons is produced 

by those positrons with large oscillation amplitudes. Therefore, 

even for positrons, it is important to calculate the radiation 

intensity using the real channel potential, rather than approximating 

it with a parabolic well. 

The aim of this work is to find the full average intensity of 

channeling radiation, which can be done for any given potential. 

Our approach does not give the spectrum of emitted radiation (which can 

be found only for the equivalent harmonic oscillator), but it allows 

one to find the position of the spectral maximum. The shape of the 

emitted line can be found in the work by Pantell and Alguard, l1 where 
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such a shape was calculated for Si in the parabolic approximation for 

potential corrected for anharmonicity. Since all the characteristics 

of the radiation are of interest, the two approaches supplement each 

other and shed more light on the phenomena. 

For an ultra-relativistic particle, the classical treatment is 

a very good approximation since the corresponding quantum numbers are 

very large.12 

Sections 2 and 3 are devoted to potentials of channels for electrons 

and positrons respectively. Comparison of these potentials with a 

parabolic well is also presented. In Section 4 we calculate the radia- 

tion intensity for the full potential averaged over time for both 

electrons and positrons. The expected positions of the spectral maxima 

are estimated in Section 5. In Sections 6 and 7 we discuss numerical 

examples of the experimental situation for electrons and positrons 

respectively. In Section 8 we estimate the number of channeling 

quanta for a beam of particles, assuming their angular distribution 

to be Gaussian. Some conclusions are drawn in Section 9. 

2. THE CONTINUUM POTENTIAL FOR ELECTRONS 

The interaction of an electron with the fields of the crystal's 

atoms can be described by an average continuum potential. For the 
- 

case of an electron moving in the vicinity of a crystal plane, the 

following form was suggested by J. Lindhard13: 

U(y) = (2.1) 
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Here, A= -27rZ e2Ndp, N is the number of atoms with atomic number Z 

per unit volume, d 
P 

is the distance between crystal planes, y is the 

distance of the particle from the plane, C= 6, and a is the screening 

length of the electron-atom interaction for the Thomas-Fermi atom model. 

The negative sign of the constant A makes the potential U(y) attrac- 

tive for electrons. 

The continuum potential (2.1) is a fairly good approximation only 

for distances y bigger than the characteristic length Ca even though 

the energy E is very large : 

y/Ca 2 1 . (2.2) 

For smaller y the deflection angle in the collision with separate 

atoms could be bigger than the deflection angle due to the collective 

potential (2.1) . Strictly speaking, for y <Ca, either potential 

(2.1) or the Thomas-Fermi potential for an isolated atom should be 

used in the equation of motion depending on where the trajectory of 

the electron happens to go. However, due to the finite value of U(y) 

for y +O and the relatively slow variation of U(y) with y, we may 

assume .that the small impact parameters play a relatively small role 

in the overall radiation intensity. We shall apply the continuum 

potential (2.1) for all y. 

On the other-hand, y should not be too large compared to the 

distance dp between planes, since for y dp > 1 or z> dp Ca 
If I I 

(z = y/Ca), the electron moves through many different planes rather 

than being channeled in the vicinity of only one plane. For such a 

motion, instead of the simple form for the potential (2.1), one 

should consider the periodicity of the crystal planes with y. 
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The condition for the electron to be channeled between two planes 

can be formulated in the following way: 

[( 
tz 

jr/c = a < a = 
P 

2U(zp) - E E 
C 11 1 , (2.3) 

where E =2U (0) is the barrier energy for the potential (2.1), 
C 

e is the energy of the particle, and z =d 
P P I 

Ca. 

Figure 1 represents the potential -U/ACa as a function of z 

and also shows one possible energy level in the well. 

3. THE CONTINUUM POTENTIAL FOR POSITRONS 

To find the potential for positrons we use Lindhard's potential 

(2.1) for electrons and the fact that it is decreasing quite rapidly 

with increasing distance from a plane of ions. Therefore, the average 

potential for positrons in the vicinity of the middle plane is simply 

the sum of the potentials produced by the two nearest ion planes. 

U(y) =A!- -/m t/m -/RI. (3.1) 

Here y is the distance from the middle plane: -dp/2< y< dp/2. All 

other parameters are the same as in (2.1) except that A is now positive 

to provide the repulsive force on the positron. 

Let us now introduce a new variable 

x = 2y d 
/ P 

, 1x1 < 1 (3.2) 

and a parameter b = 2Ca/dp < 1. 

The continuum potential, and consequently all other functions for 

electrons, depends on only one parameter, a, while the continuum 
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potential for positrons depends on two unrelated parameters, a and d . 

' The potential (3.1) can now be rewritten U(y) = Ad ( p/2) u,(x>, 

where 

U,(x) = Jw+ J(l-x)" + b2 - 2 . (3.3) 

Figure 2 represents an example of U,(x) for b2= 0.0552 (solid curve). 

For small x (x<<l) Ub(x) can be expanded into the series: 

u b (x)= 2 l+b 47 - 2 + jb2x:/3,2 = U,(x) 

Ii-b 

For comparison, the function U,(x) for the same value of b2 is also 

plotted in Fig. 2, (dashed curve). The value 1 - cUo(l) / Ub(l)l might 

serve as a measure of anharmonicity. For b2=0.0552 this value 

equals 37%. 

4. INTENSITY OF RADIATION 

The expression for the instantaneous radiation intensity of an 

ultra-relativistic particle in a transverse electric Field E isI : 

2 e4E2y2 
Iin = - 

3 m2c3 
(4.1) 

where y = e/mc2. The field E should be taken on the (classical) 

trajectory of the particle and hence, in general, we need the solution 
- 

of the equation of motion in the y direction 

dP 
J$ = eE(y) 

(4.2) 

P,=AjT, eE (y> = au(y) /ay 
2 
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However, we are interested in the intensity averaged over the 

period T of the particle oscillations 

I i 
=- Iin dt 

0 

First, for electrons we use potential (2.1) in equation (4.2). 

Let us now change integration over time to integration over y. 

Then we get: 

(4.3) 

2 

dy - . (4.4) 
Y 

We shall further neglect the energy change due to the transverse 

electric field. Then 

;= J g [U(Y) - U<Ym)] 

T=4 I 
dy 

(4.5) 

(4.6) 

0” g 
J I E u (Y> - u (Y,) 

I 

The value ym in the above expressions is the maximum excursion of the 

particle from the equilibrium point. Its magnitude depends upon the 

initial value of y. and yb of the particle. Combining Eqs. (4.4) 

and (4.6), we geti 

2 
I 3 

e2 A2 Y2 =- 
m2 c3 

F(zm) 9 (4.7) 

where z, = YmlCa 3 



-8- 

and 

F(zm) = 

%” [l $i$j2~% - JF - x + zm]- ‘dx (4 8) 

l 
ojm~i-j~-x+zm]-b dx . 

For zm < 1 F(z,) * 1 - 4z, / 3 

For z, > 1 F(z,) = 0.3/ z, 3/2 

As was pointed out above,the region z, c 1 has little physical impact 

and all considerations should start from the value z, = 1. 

The period T can also be expressed in the form of: 

T (z,) = 4f-=$--[,/~ -,/z - x+ zmj %x . (4.9) 

Expression (4.7) depends on zm in quite a different way than the 

corresponding expression for the parabolic well. The reason for this 

can be clearly seen from Fig. 1. The shape of the potential well 

nowhere resembles the parabolic well. Figs. 3 and 4 present functions 

F(z) and T(z), respectively. 

To calculate the radiation intensity of positrons, we use 

potential (3.1).-. For the average intensity, we now get: 

I = IoFbb,J , (4.10) 

where I 0 = 2 e2y2A2 / 3 m2c2 , 
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and X 

l-l-x 1 -X 2 

(l+x)2+b2 d(l-~)~+b~ 1 Pb(xs xm )dX 

Fb (xr,l) = %l 
J Pb(x,xm)dx 

0 

(4.11) 

Here xm is the maximum excursion of the trapped positron from the 

middle plane in units of the half distance between planes dp/2, (3.2). 

The function Pb (x,xm) is defined by: 

(4.12) 

For small xm we get: 

p,,(x’G) = 
(l+b2)3'4 

b,/m 
(4.13) 

The denominator in formula (4.11) is proportional to the period T of 

the positron oscillations: 

J 
mYd 

T(%) = 2 + Tb(xm) (4.14) 

X 

/ 

m 
where Tb(xm) = pb(x,+‘) dx l For small xm, T is independent of xm: 

(1 + b2)3'4 

b 
(4.15) 

The functions Fb(xm) and Tb(xm) are presented in Figs. 5 and 6, 

respectively, for different values of the parameter b2. 
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For small xm, Fb (x,) equals: 

254x2 
F;(xm) = 

m 
X 

(l+b2)3 ' m 
<<l . (4.16) 

This value gives the estimate for the case of the parabolic well 

approximation. 

5. DISCUSSION OF THE SPECTRAL CHARACTERISTICS OF THE RADIATION 

Since radiation is emitted in a narrow cone with vertex half-angle 

A8- y-l along the instantaneous particle velocity, the frequency range 

Aw in which the maximum number of quanta is emitted depends, of course, 

on the ratio of the angle Q, between the trajectory and the crystal 

plane, to A8. This ratio can be found from (4.5). Since e=Gmax /c, 

we get 

alAi3 'v [(2 v/mc2) (U(Y,) - u(0) I]" (5.1) 

4 Let us consider first the case where 

a/A0 >> 1 . (5.2) 

Then the radiation in the given direction comes from a very small 

part of the trajectory parallel to this direction. We may assume that 

the field on this-part of the trajectory is almost constant and apply 

all the expressions for synchrotron radiation. In particular, the main 

part of the radiation will be emitted at the frequency 

A Iau/ aYlmax 
Wl = mc Y2 (5.3) 

For the case of electrons au/ay as a function of y for small values of y, 
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is a rather slowly varying function so it is of little importance at 

which point the derivative is evaluated. If we assume that (Way) 

should be taken at y y Ca, then G1 =+ 0.3 IAl y2 /mc. 

For positrons we can use for the value lau/ayl,, one taken at 

y-d 
P I 

2. Now& * Ay2 

b) For the opposite limit 

a/A0 << 1 (5.4) 

the radiation is gathered from the entire trajectory of the particle. 

In this case, the spectral maximum occurs at the frequency: 

A 
w2 - Q2 / T(z,) , (5.5) 

For electrons this expression diverges for zm+O. (See Fig. 4). 

The physical reason for this divergence is connected with the limited 

validity of potential (2.1) for very small y. It is quite reasonable 

to assume that the maximum frequency should be taken at z = 1. 

h 
Qmax 

= 2y2/T(1) = (5.6) 

where 

K = 
/ o l ,JK-.";i+,]i = 3.7 

For small values of y/Ca as was discussed above, particle deflections 

will occur not in the continuum lattice field but rather on separate 

atoms. In this case, the considered radiation will go smoothly over 

into the bremsstrahlung type of radiation.15 
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Expression (5.5) for positrons has quite a different feature. As 

can be seen from Fig. 6, the function Tb(xm) has a rather slow 

on x m, at least for not very small values of parameter b2. So 

for T(0) from (4.15), which is the value for the corresponding 

oscillator, is a good approximation: 

dependence 

the value 

harmonic 

A 
J 

A 4b Y312 
wo = - md p (l+b2)3'4 * 

(5.7) 

For very small b2 and for large xm, the values of Tb(xm) should be 

taken from Fig. 6. 

6. DISCUSSION OF THE EXPERIMENTAL SITUATION 

AND A NUMERICAL EXAMPLE FOR ELECTRONS 

Let us consider more closely the meaning of our derived expressions 

from the point of view of the experimental possibility of detecting the 

channeling radiation. First of all, this type of radiation will occur 

with a background of bremsstrahlung. The conditions of the experiment 

should allow for resolving one from the other by using, say, the 

difference of their spectra, for example. This means that the value for 

zm for the electron should not be smaller than 1 or, in other words, an 

angle CY. of the trajectory should not be too small. 

The situation will be.much clearer if we consider a numerical 

example. For our example let us take the diamond crystal as the 

device for producing the plane channeling radiation. 
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Let us assume the following numbers: Z=6 , N=l l~lo~~crn-~ . , 

d 
P 

= 3.57 x 10B8cm, Ca= fia, x 0.885Z'1'3 = 0.42~1O'*cm and, 

consequently [AI = 2.13~ lo4 MeV/cm. The barrier energy ec equals 

1.8~ low4 MeV. 

Let us look first at the maximum large a consistent with (2.3); 

then z, will be equal to 8.5 independent of y. The value F(zm) from 

(4.8) is then 1.2~10~~. Table I represents the characteristic 

quantities for different values of y for this case. The intensity of 

radiation can be increased significantly by keeping a smaller. 

Table I also gives values for the case in which a is chosen in such 

a way that for all y, zmE1 (F= 0.24). 

As we see, the wide beam has the disadvantage of producing 

relatively small amounts of radiation. Besides that, the maximum of 

the photon spectrum is shifted toward very high frequencies. This 

will make it difficult to resolve the channeling radiation from the 

bremsstrahlung type of radiation, especially for very high values 

of y. If we try to reduce a more, for example to make it equal to 

Y--l, then zm becomes very small. For y =10m4, zm=0.33; for 

y= 4x 1'0-4, zm= 0.075. It would be very difficult to get convincing 

results in such a case. 

7. DISCIJSSION AND NUMERICAL EXAMPLE FOR POSITRONS 

The dependence of Fb on xm suggests an interesting conclusion: 

the intensity of the channeling radiation for positrons grows very 

rapidly with xm; this means that the main part of the radiation is 

produced by positrons with large angles in the plane of the channel. 

One must remember, of course, that this angle should not exceed the 
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limit at which the energy of oscillations will be greater than the 

barrier energy of the potential; or, in other words, the maximum 

excursion x m of the particle from the middle plane should be less 

than 1. This conclusion is the exact opposite of the one for elec- 

trons where the main part of the radiation comes from electrons 

with small amplitudes. 

Such features of the radiation once again stress the fact that 

the calculations of the intensity of radiation in the parabolic 

approximations are too rough and can underestimate the effect. 

Let us again take the example of a crystal with parameters: 

A= 2.13x lo4 MeV/cm, dp= 3.57x 10'8cm, Ca= 0.42x 10D8cm; then 

b= 0.235 and IO= 1.5x 1013 y2 MeV/sec. 

For any given y and the trajectory angle a with the crystal axis 

in the plane of oscillation, one can find first the value of xm from 

the equation: 
, 

J AdP a= - 
‘b cxm> - ub(“)) l 

mc2y 
(7.1) 

Then it is easy to find the corresponding values of Fb(xm) and 

Tb km) . Table II gives the function xm = fl(y,a) for different values 

of y and a and for b2 =0.0552. Table III contains values of Fb for 
- 

the same values of y and a. Dashes for big values of y and a mean that 

for these parameters there is no channeling. 

Table IV presents the comparison of radiation intensities and the 

spectral maximum for different y and ca calculated by means of Eqs. (4.11) 

and (4.14) ("exact"), and (4.16) and (4.15) ("harmonic oscillator"), 

respectively. 
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One can clearly see that the bigger xm is, the bigger is the 

difference between the results which one gets from the exact solution 

and the parabolic well approximation. This is especially true for 

the whole intensity of radiation where the discrepancy can be two 

orders of magnitude. On the other hand, the spectral maximum 

frequency, if corrected for anharmonicity; is determined by the 

approximate solution quite well. 

8. ESTIMATE OF THE RADIATION INTENSITY AND 

NTJMBER OF QUANTA FOR THE PARTICLE BEAM 

Until now we have considered the intensity of radiation produced 

by a single particle. We can now calculate the radiation intensity of 

the particle beam. To do that we need, of course, to know the distri- 

bution of the particles in the angles a in the plane perpendicular to 

the crystal planes. As an example, we assume the normal distribution 

with the dispersion o and beam axis parallel to the crystal plane. Let 

the normalized probability for the particle to have an angle a be: 

P(a)da = 
1 

(2lT)% 

e-a2/20zda 
(8.1) 

Now the intensity of radiation of the beam is the sum of the intensities 

I of individual particles with angles a weighted by the probabilities 

of having these angles: 

1b = p ~(x~k.d) P(a)da (8.2) 

0 

Here am is the maximum angle for which a particle is still channeled 
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between the crystal planes. We carry out our calculation further 

for the case of positrons; the case of electrons can be treated in 

the same manner. It is more convenient to change the integration 

variable from CL to x m’ Then, using (8.1), one gets: 

(8.3) 

The upperlimit of integration X should be taken equal to l-b, 

since the expression for the effective potential is valid only for 

%< x. 

Let us now introduce a new dimensionless parameter, which is 

proportional to the ratio of the square of the characteristic 

trajectory angle to u2 : 

AdP 
c= 

2mc2 yo2 

Now, using the functions Fb(xm) and Pb(x, xm), we get: 

Ib = IO 

where 
- 

l-b 

/ 

5 

$b (6) = 
-CPb(O, 

dxmFb(xm)e 
Xm) I2 pb (0, Xm> 

0 

(8.4) 

(8.5) 

1 - xm 

J(l-xm)2+b2 
I 

(8.6) 
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Figure 7 shows the dependence of $,(5) on 5 for several values of b2. 

As a function of b, 4, has a maximum around the value b2 Z 0.18. It 

falls rather rapidly both toward bigger and smaller values of b2. 

Let us at last estimate the number dNf of quanta emitted from the 

length dR of the crystal. For simplicity, we assume that the spectrum 

of channeled radiation averaged over the incident particle angles does 

not depend on the frequency of the emitted photon w in the interval 

0 c Wf < wmax Then . 

dNf = Ibeamda/c urnax dwf / wf ' 

Using expression (5.7) for urnax, we get 

dNf = 
6$,(C) Y'A~'~~~~ (l+b2)3/4 dof 

137*3*46 (mc2) 312 b wf 

(8.7) 

(8.8) 

where we used e2/ c=1/137, the fine structure constant. Since 

5-v-l (cf. 8.4) the number of quanta is practically independent of 

the primary positron energy. 

For the numerical example discussed above, and for the value 

5= 31.3 x10D4/y (0=0.5x 10-4),formula (8.8) gives dNf/d!?,= 2.5(yc)'+b(c)* 

[dwf/wf].or = 0.2 quanta/cm in the 10% frequency band near w max' 
The photon yield can be increased if the axis of the beam makes a small 

angle with the crystal plane. 

- 

9. CONCLUSION 

Our analysis allows us to find the average intensity of channeling 

radiation as well as the total number of quanta for any given potential 
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of a channel. We did this for Lindhard's potential. However, essen- 

tially the same results could be obtained for other descriptions of 

the force acting on a channeled particle. 

The significance of this analysis is that it gives results for the 

intensity more accurately than all the previous papers do. Maybe more 

importantly, it helps in finding the optimal conditions for an experi- 

ment since the yield and characteristics of the radiation strongly de- 

pend on the parameters of both the crystal and particle beam available 

for the experiment. 

The choice between electrons and positrons from the point of view 

of producing and detecting the channeling radiation depends on the 

particular conditions of the experiment; however, some general remarks 

can be made. 

The advantage of using electrons is that available electron beams 

have much smaller transverse phase space than that of positrons. In 

addition, the intensity of radiation of electrons is somewhat larger than 

that of positrons; this is simply due to the fact that an electron is 

captured by an attractive ion potential of the channel and, therefore, 

moves in a relatively stronger electric field; a positron, on the other 

hand, is captured by a repulsive potential formed by the two next ion 

planes and, therefore, moves in a rather weaker field oscillating 

around the middle -plane. At the same time, the remoteness from ions 

increases the ratio of the channeling radiation intensity to the 

bremsstrahlung one, making the experiment with positrons easier to 

interpret. 
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TABLE II 

zm for Different y and a (b2 = 0.5552) 

I 
a 

1f-i'3 0.3x 10' 25x 1O-4 3 -., - _ - 10'4 0. 
Y 

1 112 -79 -33 .lO .O 
L” .-< _- 

103 - .77 .33 .lO 

104 - .79 .28 

2x 104 - - .93 .38 

4x104 - - .51 
‘ 

TABLE III 

Fb for Different y and a (b2 = 0.0552) 

lo2 0.028 

o.3x1o-3 1o-4 0.25x 1O-4 

0.7x 10-3 0.5 x10-4 0.0 

0.027 0.7x10-3 0.5 x 1o-4 

- 0.028 0.5 x 10-3 

_ 1 0.11 / 0.10 

- 1 - 1 0.25 
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FIGURE CAPTIONS 

1. The potential -TJ/ACa as a function of z and one possible 

energy level in the well. 

2. The potential U(x) for a channeled positron (solid curve). 

The dashed curve represents the corresponding parabolic well. 

3. F(z) (See text.) 

4. T(z) (See text.) 

5. The intensity of the radiation of a channeled positron in 

units of 2e2y2A2 /3m 2 c 3 for different values of the 

parameter b= 2Ca/dp. 

6. The period of oscillations of a channeled positron in units 

2jmydp/A for different values of the parameter b= 2Ca/dp. 

7. @b(c) for several values of b 2 (as a function of b, $b has a 

maximum around the value b2 g 0.18). 
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