
SLAC-PUB-2277 
March 1979 
(T/E) 

THE LOWEST LEVEL OF THE COMBINATORIAL HIERARCHY AS 

PARTICLE ANTIPARTICLE QUANTUM BOOTSTRAP* 

H. Pierre ,Noyes 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

Abstract 

It is shown that the lowest level of the combinatorial hierarchy 

can be given an explicit dynamical interpretation, using an on-shell 

version of the three body relativistic equations developed by Brayshaw, 

as representing the quantum number flow in which two particles and an 

antiparticle bind to form a single particle with the mass of one of 

the three. 
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The combinatorial hierarchy' contains four levels with 2 2-1=3, 

23-1=7, 27 - l= 127 and 2 l27- 1 w 1(-g* entities in the four communicating 

levels. The representation of the hierarchy by means of column vectors 

containing only the existence symbols 0 and 1 has been interpretedL as 

the quantum numbers of (boson) systems. The first level represents 

charge, the second baryon-antibaryon pairs with associated mesons, the 

third a baryon-antibaryon pair together with an (externally neutral) 

lepton-antilepton pair and the associated bosons. The lowest mass 

exemplars of the bosons are T, p, w, and the electromagnetic or weak - 

boson; the quantum numbers are baryon and antibaryon number, lepton and 

antilepton number, the z-component of spin and the z-component of 

isospin, and hence represent the absolutely conserved quantum numbers. 

Strangeness and other quark quantum numbers are expected to come in at 

the fourth (unstable) level, but here there are as yet only a few 

representatives of the 2 127 -1 available entities, and this interpreta- 

tion is at a very primitive stage. While, in the reference cited,2 

it was only possible to suggest possible dynamical interpretations, 

these allowed an heuristic interpretation of the calculation by Parker- 

Rhodes3 that m /m = 
P e 

137~/[$-(, +$+(f)‘)(G)] = 1836.1516. In this 

paper we take another step toward a rigorous dynamics by connecting 

the lowest levelof the hierarchy to arelativisticthree particle bound 

state calculation. 

The lowest level of the hierarchy consists of the basis vectors 

and the three discriminately closed subsets 

i(3 (3~ c:,\* By discrimination we mean the combination of two col- 

umns to form a third obtained by adding (modulo 2) the elements row by 
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row. Expl icitly, if we represent a column by (4 n 

are 0 or 1, discrimination is defined by 

D,(x,sr) = (x +2 y), = 

x1 +2 y1 

x2 +2 y2 
. . . 

xn + 2 'n 

x1 
x2 = . i! . . 
X n 

I where the x i 

A set of columns is discriminately closed if it is a single column or if 

the discrimination between any two columns in the set gives another 

(non-null) member of the set. This is true of the three vectors in the 

third set given above, as can be readily checked. Alternatively, we 

could have used as a basis the two linearly independent vectors CA C)- 

Either could be used for the calculation below. 

To go from this abstract scheme to dynamics, we must first interpret 

the discrimination operation in such a way that the quantum numbers are 

conserved. For this we assume, 1 following Feynman,that o represents i ) 

either'a positively charged particle moving forward in time (->> or a 

negative particle moving backward in time (<--). These are, of course 

antiparticles of each other. 0 Then 1 ( 1 is an antiparticle moving forward 
- 

in time (:->) or a particle moving backward in time (<-). In this simple 

environment particle-antiparticle conjugation (interchange of rows) is 

equivalent to time reversal is equivalent to charge conjugation. The 

1 third vector 1 ( ) or (w) we interpret as a bound state of a particle 

antiparticle pair, or quantum. It is, of course, self-conjugate, so the 
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line can be assigned either direction. We next interpret the discri- 

mination operation as corresponding to either of two Feynman vertices 

in which all particles are either incoming or outgoing (cf. Fig. l(.a),(b)). 

Interpreted as discrimination diagrams, 2 these express the fact that 

discrimination between any two columns gives the third, and there is no 

reference to time. Interpreted as Feynman diagrams, we see that charge 

is indeed conserved at the vertex, and that the time direction is arbitrary. 

To go from this to the particle-antiparticle-particle bootstrap we 

must first reinterpret these vertices as time-ordered diagrams, as in 

Fig. l(c). For the dynamical theory we use the relativistic generalization 

of the zero range theory for three body scattering, 4 which generates unique, 

unitary three-particle amplitudes under the assumption that for the two- 

body scatterings q ctn 6 = -l/a = constant. The corresponding relativisti- 

tally invariant two-body amplitude is A(s) = s4/[(m2- s/4) '- l/a] , assuming 

equal masses m and, in the c.m. system s = 4(q2+m2), q being the momentum 

of either particle. This is a special case of the separable approximation 

discussed by Brayshaw in his exact relativistic three-body scattering 

theory. 5 The S-wave equation we use can be obtained from Ref. 5, Eq. 6.14, 

which reduces in the non-relativistic limit to the theory just mentioned. 
4 

In the three-particle c.m. system, s = (Pi-k)2 = M:+m2- 2ekM3 = 

c@l;+iz2p- (m2+iz2p12 where M2 * - 3 is the invariant four momentum squared, 

k is the momentum of the third particle, E that momentum in the two-body 

2% c.m. system, and sk = (m2+k ) . As G varies from 0 to m, we see that s 

varies from (M3-m) to 0, so that the maximum value k can have in the 

three-body c.m. system when it refers to another Faddeev channel is 

@f; - m2)/2M3. Hence in the limit of three equal masses we wish to take, 
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the integrals vanish and we are left with driving terms! To obtain a 

three-body bound state amplitude we must iterate the equation once to 

get rid of the singular &function driving term before taking this limit, 

which leads to the Feynman diagram Fig. l(d). Evaluated 

must in our zero range theory, this gives the three-body 

T = AGoA = 

on-shell, as we 

amplitude 

(G - l/a) 

E = 
a J (K-&)2+(2m-sz)2 

3 3 . , 'b = 4(m'- l/a") 

In order to impose our bootstrap condition which makes this into a 

three-body bound state vertex, we first require that the particle- 

antiparticle state be bound with mass 2m- s + 
b' as already implied by our 

two-body amplitude. This is an old idea. In more familiar language, 

Fermi and Yang' suggested long ago that we consider the pion to be a 

bound state of a nucleon-antinucleon pair, to which we add the familiar 

idea that a nucleon, in first approximation, can be considered to be a 

bound state of a nucleon and a pion. We see immediately that if we 

require the mass of the particle-antiparticle bound state to be m by 

taking l/a2 = 3m2/4, impose overall momentum conservation K=k, and eva- - 

luate the scattering amplitudes at sl=m, our bootstrap condition M3=m 

gives T a l/(m2-s)(k2+m2). Hence the particle is also bound to the 

particle-antiparticle pair with mass m, and the particle-antiparticle- 

particle system binds with the unique mass m. Thus the mass spectrum 

of this system in M3 consists of a three-body bound state at~mass m 

(with the charge of one of the particles), elastic scattering threshold 
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for the scattering of the particle and the quantum at 2m, and breakup 

threshold at mass 3m. Numerical work to show that the three-body 

equations with l/a< &m/2 do converge to this limit is in progress. This 

will support what we already believe to be a rigorous conclusion that 

in this particular kinematic Emit the first iteration of the driving 

term produces the three-body bound state directly without solving an 

integral equation, a novel result that obviously only occurs in a zero 

range theory. 

It may be objected that we have not here justified the use of the 

relativistic on-shell theory in terms of fundamental concepts. This has 

been done in two earlier papers. 798 In particular, in the second 8 we 

have proved that starting from free particle wave functions operationally 

defined, we obtain the deBroglie relation from counts in detectors with 

the usual Born statistical interpretation, and further that, defining 

scattering boundary conditions, we can derive the usual scattering wave 

function as given, for example, by Goldberger and Watson' by requiring 

translational invariance and the absence of hidden variables, with the 

important distinction that the T which appears is kinematic, and can 

describe any process whether unitary or not. The need for a unitary 

relativistic three-particle dynamics for T has been met by Brayshaw, 5 

using - significantly we believe - the Goldberger-Watson propagator, 

which Brayshaw shows preserves the cluster property in an n-body rela- 

tivistic scattering theory. 

A second objection is that, having stripped down the theory to such 

a basic level, we have no guarantee that we can build it back up to 

approach both the quantum theory and the relativistic kinematics used 
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in the equations as a "correspondence limit." We believe that both 

problems have been solved, at least in principle, by Finkelstein. 10,11 

He has shown that given any partial ordering relation between two sets 

of entities, one can, by a theorem due to Galois, construct the lattice 

logic, and if that lattice logic is that of bra and ket, by a theorem 

due to Birkhoff, construct the Hilbert space. 10 We believe it significant 

that in interpreting the hierarchy so as to conserve quantum numbers 

and provide an ordered interpretation for dynamics we have been led to 

the flow of quantum numbers through time-ordered Feynman diagrams. It 

remains to find out whether the lattice implied by the hierarchy leads 

directly to quantum mechanics or is more general. The problem of rela- 

tivistic kinematics has also been solved by Finkelstein 11 by showing that 

the discrete moves of a dicotomic spinor on a checkerboard with finite 

step size gives,, in the limit as step size goes to zero, the full forward 

light cone in Minkowski &space. 

Before demonstrating either possibility, we must articulate the 

hierarchy much farther. At the second level, we have the quantum numbers 

needed to describe four baryons <BsB" and their antiparticles B-B') and 

three mesons m+m"m-. To see if we can extend the bootstrap we will first 

need a four-body theory. If we assume, a priori, that there is only one 

baryon mass and one meson mass at this level, we can try to get the mass - 

ratio along the lines indicated in the three-body situation. A unique 

result would indicated success, and ambiguity might indicate the need 

for additional postulates. For comparison with experiment we would have 

to go to the third level, which includes both strong and electromagnetic 

effects and spin. The success of the mp/me calculation might then be 
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justified on a firmer basis. For precise results we clearly have to go 

to the fourth level. 

Whether or not the speculative ideas in the last paragraph bear 

fruft in the uncertain future, we hope that this paper will at least be 

of interest as illustrating a novel bootstrap mechanism which works only 

if the particle, antiparticle, bound state of particle and antiparticle 

(quantum), and bound state of two particles and an antiparticle (or of 

a quantum and a particle) all have precisely the same mass. 

The integration of the combinatorial hierarchy with physical ideas 

drawn from particle physics would have been completely impossible without 

continuing and intimate collaboration with Ted Bastin. Less frequent, but 

often intense, discussion and correspondence with John Amson, Clive 

Kilmister, and Fredrick Parker-Rhodes was equally vital. The idea of 

producing an on-shell (or single time) relativistic quantum scattering 

theory was stimulated by a paper by T. E. Phipps, Jr., 12 as has been 

explained in more detail elsewhere; 798 continuing correspondence and 

discussion with him has been most rewarding. Clearly the exact three- 

body relativistic scattering theory constructed by David Brayshaw5 is 

essential for the technical result reported in this paper. I am also 

indebted to many colleagues in many countries both for encouragement 

and for much needed criticism. 
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Figure Captions 

Discrimfnation diagram for the first level of the hierarchy 

fnterpreted as a Feynman vertex with incoming lines and charge 

conservation. 

Same as l(a) with outgoing lines. 

Discrimination diagram as a time-ordered diagram representing 

a particle-antiparticle bound state vertex. 

l(d). Diagramatic representation of the particle-antiparticle-particle 

bound state vertex (bootstrap condition). 
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