A DEvice to measure quadrurole gradient-LENGTH product*

Daryl Reagan \dagger

Scmmary

This instrument measures the "focusing strength," féz, of a quadrupade by moving a bundie of wares aross ite bore and recotding the integrals of the two Wltage ioos gencagted by each stroke, together with the Logeh of the stroke. A aiscussion of errors is Styen het indicates thot th is possible to do . 01% messuremence upon electromagnets of moderately good qualty wth the device if anplitudes and phases of noh-gharonole field components axe known fron other meacmemants.

Incroduction

Quabupole focusing seaengths, or gradiont-1engith awducte, are comonly measured by recording the e.m.f. pommeat by long moving or rotating coils which are Grecded througt the guadrupoles and extended weil bepow the onds of the ebectraghets. To establish the Calibeation enmbint uf such a "iung-coil," ie is neceesary to memsune its average width and stroke or arerage radius of rotation. For examie, to do . 01% madmbmens with a 5 ch wide rotating coil, it would be nesessary to measure the average radius of rotation at its mowng mommotnes to 2.5 mon tether. Since it maf be difinut and expensive to build and measme a Gag-cosi to euch accuracy, the device that has been developed as a standare for PEP quadripole measurements doperts mpa a singie moving bundie of wires to generate its edm. With this device, it is necessary to noke only tho "stroke" measurements, one at each end of the moving bundle of wires. The instrument (see Fig. 1)

Fig. i. Rase, bearings, and moving framework. 1) legs; 2) Fixed Erame; 3) Vee-block-and-ball bearings; 4) end bail bearing races; 5) moving frame; 6) epoxy and glass Fiber "crux" omports; 7) tensioning screws and gauge pointe; 3) epoxy and glass fiber stiffening "crux"; 9) Wire-bundie; 10) Fb counterweight (one of eight show); 11) drave point; i2) bell crank mounting point; 13) bell cranc; 14) push-rod and elastomer retainer; 15) centerting screw; (15) comecting rod; 17) motor dzive and flywheal.
consists of a fixed frame with beaxings for the moving parts, and a moving frame supporting the bundle of wire, which jis held in a cuciform stiffener.

[^0]
Rationale

If a long wire is stretched along the z axis of a quadrupole and moved in the x direction (see sketch), it will generate a voltage which is

$$
\begin{equation*}
V=\ell\left\langle B_{y}\right\rangle v_{z}=k 2 x \dot{i}, \tag{1}
\end{equation*}
$$

were λ is the effective length of the quadrupole, 〈Ry is the average vertical component of the magnetic induction, $v_{X}=\dot{x}$ is the speed of motion of the wre, and $k 2$ is the gradient-length product of the megnet. In an ideaj quadrupole, Eq. (1) would be exact. In accual magnets, deviacions will occur, which will be discussed below. If V is integrated over time foc an ideri quadrupole,

$$
\begin{equation*}
\int v d t=(k \ell / 2)\left(x_{2}^{2}-x_{1}^{2}\right) \tag{2}
\end{equation*}
$$

Where x_{2} and x_{1} are the endpoints of the motion in x of the wire, assming the wire remains parallel to the quadrupole axis and extends beyond the fringtng fiefis. In the device to be described, many loops of wiru are used, with the retum nembers all bundled together and held fixed within the bore of the magnet.

Electrical measurements can provide informacion which makes it possible to center the stroke and aliminate the necessity for measuring mid-stroke posivion. As the wire-burdle moves from one end of its travel to the other, it generates two loops of voltage having opposite polarity. The area of each is integrated by a digital voltmeter and recorded as a (signed) nomber by a computer. The two numbers can be written as

$$
\begin{equation*}
n_{1}=-m k 2\left[n w x_{1}+\frac{x_{1}^{2}}{2}+\frac{\gamma z_{1}^{3}}{3 w}+\frac{n^{2} w^{2}}{2}+o\left(n^{3} \gamma^{2}\right)\right] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{2}=m k \ell\left[n w x_{2}+\frac{x_{2}^{2}}{2}+\frac{\gamma x_{2}^{3}}{3 w}+\frac{n^{2} w^{2}}{2}+0\left(n^{3} \gamma w^{2}\right)\right] \tag{4}
\end{equation*}
$$

Where m is the numer of loops of wire, x_{1} and x_{2} represent the extremes of the motion, measured from the magnetic axis, the full stroke $\dot{\square} s=2 \bar{W}=\left|x_{2}-x_{1}\right|$, and η and γ are the average magnitudes of the veaticei dipoie and in-phase sextupole magnetic field components expressel as fractions of the guadrupole Eteld when all three are measured at $x=w, y=0$. The zuniber if is proportional to Eath's magnecic fieta, ant is sf prder 10-4. The aemtupole coefficient, γ, must be meagured by sone oher device such as rototing Iong-coil, and
 pole efferts will be discussed, further below for ied $x_{1}=-(i-\varepsilon)$, and $x_{2}=(i-r) w$, and assme e<ci, Subscituang and combinimg brs. (3) und (4) sives

$$
\begin{equation*}
n_{1}+n_{2} \simeq 2 m k 2 w^{2}\left[\varepsilon+r_{1}+\frac{\gamma}{3}+\gamma e^{2}+r\left(\gamma n^{3}\right)\right] \tag{5}
\end{equation*}
$$

$$
\text { and } n_{1}-n_{2} \simeq-2 m u^{2}\left[1+(\varepsilon+m)^{2}+2 \gamma \varepsilon+\frac{2 \gamma \varepsilon^{3}}{3}+\sigma_{\gamma} q^{3} \gamma\right]
$$

Solving Eqs. (5) and (6) by successive approximations,

$$
\begin{equation*}
\varepsilon \simeq \cdots-7 / 3-8 / 2 \tag{7}
\end{equation*}
$$

and
$\mathrm{k} \ell \simeq 8\langle n\rangle\left(1-\frac{\delta^{2}}{4}+\frac{2 \gamma \delta}{3}+\frac{5 \gamma^{2}}{9}+2 \gamma \eta\right) /\left(\mathrm{mS}^{2}\right) \quad$,

Where $\langle n\rangle=\left(n_{2}-n_{1}\right) / 2$ is the average incegral of the volcage loops in volt-seconds, and $\delta=\left(n_{1}+n_{2}\right) /\left(n_{1}-n_{2}\right)$. An adjusting screw is provided (see Fig. 1) to adjust the centering of the stroke of the wire-bundle with respect to the quadrupole so that ($n_{1}+n_{2}$) can be made very nearly equal to zeno.

Rotatse Coll ve. Peciprocating Wire-Buncle Calibration The calibiation of a rotating long-coil, using two similar quadrupoles, is illustrated in Fig. 2. To

Firse comparison: Moving wires in magnet "A" give N_{1} counts per integration, rotating coil in magnes "E" gives N_{2} counts per integration at current I.

Second comparison: Rotating coil in magnet "A" gives N3 counts per integration, moving wires
 current J.

Fig. 2. Calibrating a rotating long-coil.
reduce errors due to DVM arift and non-linearity, the rotaring coil and the reciprocating wire-bundle device are designed so that their signal frequencies and peak signal voltages will be closely matched. Note that the reciprocating wire and rotating coil instruments axe exchanged between quadrupoles for the second half of the procedure. Let C be the calibration constant of the rotating coil in m^{2}, and $\mathrm{N}_{1}, N_{2}, N_{3}$, and N_{4} be the induced voltage waveform integrals as indicated. Then

$$
\begin{equation*}
\mathrm{C} \cong-\frac{\mathrm{mS}_{4}}{8}\left(\frac{\mathrm{~N}_{2}{ }^{2} 3}{N_{1} \mathrm{~N}_{4}}\right)^{\frac{3}{2}}\left[1+O\left(\hat{0}^{2}, \gamma \delta, \gamma^{2}, \gamma\right)\right], \tag{9}
\end{equation*}
$$

where S_{1} and S_{4} are the strokes corresponding to N_{1} and N_{4}, and the correction terms can be worked out using Eq. (8).

Some Sources of Error

If the path of the moving wire-bundle is not parallel with the magnetic x-axis of the quad, the apparent sensitivity of the device will be low. A one degree error in this parameter will cause a $.06 \%$ sensitivity error. This error goes as the square of the angie. If the strokes measured at pach end of the wire-bundle differ in length, the proper "average $s^{2 "}$ +is

$$
\begin{equation*}
\left\langle s^{2}\right\rangle \cong\left(s_{1}^{2}+s_{1} S_{2}+s_{2}^{2}\right) / 3 \tag{10}
\end{equation*}
$$

where S_{1} and S_{2} are measured at the ends of the magnet. Tosts must be made to vertfy that any yaw at the ends
of the stroke introduces no error. In a perfect quadrupole, if the wire-bundle has an angular extor in pitch, the error due to increased wire-length in the Field is cancelled by the cosine dependence of the induced e.m.f. This is also true of sag.

Some Wire-Bundle Size and Position Effects

In an ideal quadrupole where
$B_{\phi}=k_{21} x \cos 2 \phi$ and $B_{y}=k_{21} x$ (see sketch), the size or shape of the wire-bundle will not affect the signal. To show this, let the bundle consist of mi wires, each having
 a position $x_{i}(t), y_{i}$, with y_{i} constant, let $x_{i}=x(t) \div u_{i}$, and choose $x(t)$ so that $\sum u_{i}=0$. The integrated signal produced by one half-stroke will be

$$
\begin{align*}
U_{21} & =\sum_{i} k_{21} \ell \int_{x=0}^{x=w} x_{i} \dot{x}_{i} d t=k_{21} \ell \sum_{i}\left[\left(w+u_{i}\right)^{2}-u_{i}^{2}\right] / 2 \\
& =n k_{21}{ }^{l i w} / 2 \tag{i1}
\end{align*}
$$

Note that U_{21} is independent of y .

> In an "in-phase" pure sextupole where
$B_{\phi}=k_{31} r^{2} \cos 3 \phi$ and $B_{y}=k_{31}\left(x^{2}-y^{2}\right)$, the signal would be

$$
\begin{align*}
U_{31} & =\sum_{i} k_{31} \ell \int\left(x_{i}^{2}-y_{i}^{2}\right) \dot{x}_{i} d t \\
& =m k_{31} \frac{\ell}{3} w^{3}\left(1+3\left\langle u_{i}^{2}\right\rangle / w^{2}-3\left\langle y_{i}^{2}\right\rangle / w^{2}\right) \tag{12}
\end{align*}
$$

This result indicates that an m-wire-bundle that was flattened horizontally would be somewhat more than m * times as sensitive to an in-phase sextupole component than a single small wire would be, and thae a perfectly circular bundle moving with its center on the x-axis would have exactly m times the in-phase sextupole sensitivity as a single wire. In any event, in this device, $\left\langle u_{i}^{2}\right\rangle / w^{2} \cong\left\langle y_{i}^{2}\right\rangle / w^{2}<3 \times 10^{-3}$, and for practical purposes, no correction is required in the value of γ which appears in Eq. (8).

An "out-of-phase" sextupole component, where $B_{6}=k_{32} r^{2}$ sin 3ϕ and $B_{y}=2 k_{32} x y$, may produce a signai which is similar to that of a pure quadrupole:

$$
\begin{equation*}
u_{3\rangle}=\operatorname{mi}_{32} \operatorname{lw}^{2}\left(\left\langle y_{i}\right\rangle+2\left\langle u_{i} y_{i}\right\rangle / w\right) \tag{13}
\end{equation*}
$$

Note that U_{32} has a first order tern in 〈 $\left.\mathrm{y}_{1}\right\rangle$. To rem duce the error from this sounce, it is inecessary to make $\left\langle y_{i}\right\rangle$ small by adjusting the average elevation of the wire-bundle to agree with that of the magnotic axis of the quadrupole. The $\left\langle u_{j} y_{i}\right\rangle$ tern will be zero if the wire-bunde is symmetrical about a vertical piane.

An "in-phase" octupole component will hewe $B_{\phi}=k_{41} r^{3} \cos 4 \phi$ and $B_{y}=k_{4}\left(x^{3}-3 x y 2\right)$. The integrated signal is
$U_{41}=m k_{41}^{2}\left(\frac{w^{4}}{4}+\frac{3 w^{2}}{2}\left\langle u_{i}^{2}\right\rangle-\frac{3 v^{2}}{2}\left\langle y_{i}^{2}\right\rangle+w\left\langle u_{i}^{3}\right\rangle-30\left\langle u_{i} v_{i}^{2}\right\rangle\right)$.
Here again, as with an intphase sextupole componeat, bunde size effects make small changes in octupole signals which, for most quadrupoles, are alreedy small.

An "out-of-phase" octupole component will have $B_{\phi}=k_{4} 2^{3} \sin 4 \phi$ and $B_{y}=k_{42}\left(3 x^{2} y-y^{3}\right)$. It wiil produce a signal of maynitude

$$
\begin{equation*}
\left.\mathrm{U}_{4,2}=\mathrm{mk} \mathrm{~m}_{42} \ell\left(\mathrm{w}^{3}\left\langle\mathrm{y}_{i}\right\rangle+3 \mathrm{~m}^{2}\left\langle u_{i} \mathrm{y}_{i}\right\rangle+3 \mathrm{w}\left\langle u_{i}^{2} y_{i}\right\rangle-w_{i}\right\rangle\right\rangle \tag{15}
\end{equation*}
$$

Again, the largest term in this signal can be eliminated by installing the wire-bundle at the proper elevation. The other terms will then be zero for circular symetry.

Mecharidoal Arrangement

Excopt for the linear motion txansducers, the noving parts of the device are illuserated in Fig. 1. Host of the $\sim 100 \mathrm{~kg}$ veight of the moving frame (items 5-11) is supported upon two herdened steel balls which axe captive in Vee grooves in steel bearing blocks (item 3). The bail bearing assemblies at each end (iceri b) prevent tipping. The moving frame is welded ram .32 an rectangular Al tubing. The noving assembly is braced by tightening the tensioning screws (item 7), so that che epoxy glase fiber crux supperts (item 6) are mantained in tension. The epoxy-glass cuciform stiffening structure, of "crux" (item 8), in which the wherbundle is clemped, is counterweighted and supported in euch a way that its average inertial deflection is zevo, when the average is taken over the span between its supporrs. Its peak horizontal deflection is ~ 15 pim at the ceater.

The reciprocating drive mechanism is shom in the saset of Fig. l. The pusin-rod (item 14) has spherical ends and is held in conical sockets by elastomer bands. The centering adjustment screw is item 15 . The design speed is 1 revolution in 5 seconds. The flywheel was found to be necessary for suooth motion, storing about twice as much as the peak kinetic energy of the moving Erameworz.

The displacement of the moving wire-bundle is measured at each end by a Sony Magnascale. ${ }^{2}$ These instruments operate on the principle of a magnetic tape player, measure distances to $1 \mu \mathrm{~m}$, and produce digital output. The measuring probes are held in aluminum fixtures which are bolted to the frame of the guadrupole. Elastic deformations of the crux, the crux supports, the gauging-point screws, the transducer mounting fixtures, and the quadrupole frame can all contribute to error ia the measurements. $\because \because$ is estimated that in the configuration show . rete of these deformations is less than 20% on $w, 1 m$ resolution of the transducers.

A future report will describe later modifications made to the device to adapt it for routine direct measurements of PEP interaction region quadrupoles.

Acknowledgments

J. K. Cobb was responsible for developing and programing the data acquisition systen. 2. Vassilian improved the drive mechandsm to make the device run smoothly.

References

1. J. K. Cobb and D. Horelick, Proe. 3rd Interar tional Conference on Magnet Tachnoloey (DESY, Hamburg, 1970), p. 1439.
2. Trademark, Sony Magnascale, Inc.

[^0]: wherk supported by the Department of Energy under contrect no. iv-76-c-03-0515.
 +Stanfurd Jinear Accelerator Center, Stanford Universtty, Stonford, Caitfomia 94305.

