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ABSTRACT 

The existing data on the line-reversed reactions n+p+K+C+ 

and K-p+r -+ C near 4, 7, and 11.5 GeV/c are discussed from the 

point of view of weak exchange degeneracy (WEXD). It is noted 

that a smooth and simple generalization of the model of Navelet 

and Stevens is able to describe adequately, in the Regge region, 

the data at 7 and 11.5 GeV/c. (Recall that the Navelet and Stevens 

model appears to fit the pronounced violation of WEXD for leading 

K* and K 
** 

exchanges in the data near 4 GeV/c whereas the data 

at 7 and 11.5 GeV/c are in agreement with this particular WEXD.) 

A prediction for 70 GeV/c (namely, essentially that WEXD for 

leading K* 
** 

and K exchanges should hold true) is given. Further, 

an effort is made to indicate how this particular generaliiation 

of the model of Navelet and Stevens may arise in a dual multi- 

peripheral bootstrap model of the general H. Lee-Veneziano-Chan- 

Paton variety as formulated by Balszs. 
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1. INTRODUCTION 

Sometime ago, it was pointed out by Gilman' that, if K* and K** 
- 

Regge exchanges were indeed weak exchange degenerate, then the line- 

reversed reactions 

n+p + ++ K C (1) 

-+ K-p -+ 71 C , (2) 

when dominated by these two exchanges, should have equal differential 

cross sections da/dt and mirror symmetric polarizations, where t is the 

momentum transfer squared. (The K* and K** exchanges are said to be weak 

exchange degenerate if their trajectories are equal.) According to the 

lore, the kinematic region in which the two exchanges should dominate 

would be the region of high s and relatively low Itl, where s is the 

squared center of momentum energy. Thus, it has come to pass that a 

number of experiments 2'3'4'5 h ave been done which probe the region 

s 2 6 (GeV/c)2 , ItI 5 1 (GeV/c)2 . 

We should mention that the ideas of weak exchange generacy also make 

similar predictions about other line- reversed pairs of reactions and 

that we, by focusing on a+p + K+C+ -+ and K-p + IT C , in no way mean to 

imply that the other reactions are less significant. Rather, we take 

the view that all of the predictions of the (weak) exchange degeneracy 

idea are important and that, in order to have a complete picture of the 

data in relation to the idea, one should evidently consider all of the 

relevant predictions in relation to observation. For a more complete 

picture of the various predictions, we refer the reader to Ref. 1. 

Our work must be viewed in this broader context. 
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The single most interesting aspect of the data on the two line- 

reversed reactions (1) and (2) is that the lower energy data, near a 

labora^tory momentum of 4 GeV/c , exhibit marked violations of weak ex- 

change degeneracy (WJXD) for K* and K** leading trajectories whereas 

the higher energy data of Baker, et a1.,4 at 7 and 11.5 GeV/c labor- 

tt atory momenta are in general agreement with WFXD. The agreement appears 

to be better at the higher laboratory momentum. Further, we should also 

mention that the data of Berglund, et a1.,3 taken at 7.0 and 10.1 GeV/c 

laboratory momenta, are in general agreement with the data of Baker, et - 

g. ,4 and, hence, are also in general agreement with the expectations of 

WEXD. Thus, for the sake of simplicity we shall work with the data of 

Baker, et a1.,4 with the understanding that, at the level of our dis- -- 

cussions, everything we say about the data of reference 4 will apply in 

general also to the data of reference 3. A more complete discussion of 

both sets of data may be appropriate at a later time. In other words, 

here we simply take the data of Baker, et a1.,4 as representative of the 

level of agreement of WEXD with observation at the respective type of 

laboratory momenta, i.e., 7.0 and 11.5 GeV/c. 

Now, Navelet and Stevens,6 for example, have shown that the 

data at laboratory momenta -4 GeV/c, although in disagreement with 

the expectations of WEXD, nonetheless, can be fitted with a flip ampli- 

tude, J$, which is essentially weak exchange degenerate and a non-flip 

amplitude, 
?YF' 

which is the sum of an amplitude (a) that is esentially 

what one expects from weak exchange degenerate K* and K** exchange and 

an amplitude (b) which represents the effect of Regge- cuts. The latter 

amplitude (b) is taken as a sum of effective Regge poles, giving two 



distinct trajectories for each signature. Now, if we ignore the issue 

of summing the diagrams responsible for generating the cut to all orders, 

it is to be expected that a cut can be represented as a pole only in a 

iimite: kinematic region. For, there are logarithms which accompany such 

a cut. Thus, it is not surprising that the fit of Navelet and Stevens 

may fail at some higher energy. 

Of course, it can happen that the logarithms which are well-known 

to characterize the true effect of a Regge- cut at the one loop level, 

when all loops are summed, become a Regge pole with, perhaps, a trajectory 

which is quite different from the one-loop effective cut trajectory! 

Depending on the manner in which the two differ, a given phenomenologist 

may arrive at an effective representation of the data in one kinematic 

region which does not appear to bear a simple dynamical relationship to 

the representation of the data in another kinematic region, although all 

data are in the Regge region. It is from this particular.point of view 

that we shall discuss, in this paper, the data on reactions (1) and (2) 

in the range 6 $ s 5 23 (GeV/c)2. 

It will happen that we shall be able, strictly from the phenomeno- 

logical point of view, to predict da/dt and the polarization P for reac- 

tions (1) and (2) at even higher energy, in particular, at a laboratory 

momentum of 70 GeV/c where an upcoming result from Fermilabsy7 will be 

a direct check. And, indeed, a comparison or our generalized version of 

the Navelet and Stevens model with the preliminary results for reaction 

(1) alone at 70 GeV/c from the Fermilab experiment will be presented 

already in this paper. 

What we shall do is the following. First, we shall, by looking at 

the data at 4 GeV/c, 7 GeV/c and 11.5 GeV/c laboratory momenta arrive 

at a simple phenomenological description. This description will be a 



simple generalization of the work of Navelet and Stevens. Then, we shall 

attempt to illustrate how such a generalization might arise theoretically 

by ex:ining a simple toy model, the dual multiperipheral bootstrap advo- 

cated by H. Lee,8 G. Veneziano,' and Chan Hung-MO and J. Paton," as 

formulated by L. A. P. Balazs,ll to be specific. We would like to emphasize 

that we take this type of model no more seriously than do its authors. It 

will be necessary to extend the model, in a certain way, beyond the region 

investigated by Balrizs. This extension is such that we feel the conclu- 

sions which we arrive at may have something to do with nature! For, as 

one can see from the work of Refs. 8-11, the dual multiperipheral model 

does have some experimental support. 

Our work proceeds as follows. In Section II, we give our phenomeno- 

logical generalization of the work of Navelet and Stevens and discuss our 

predictions for a laboratory momentum of 70 GeV/c. In Section III, we 

analyze the dual multi-peripheral bootstrap to see if our phenomenological 

results can be a reasonable prediction of such a theory. Finally, Section 

IV contains some concluding remarks. 

II. THE PHENOMENOLOGICAL MODEL AND THE DATA 

Two experimentally accessible quantities for reactions (1) and (2) 

which are immediately relevant to the weak exchange degeneracy idea are 

do/dt and the polarization, P, of the C+. Specifically, one may write, 

following Ref. 6, for each reaction, 

(3) 

P $ = -21m(HNFHz) (4) 
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where I&F 
is the s- channel non-flip amplitude, HP is the s-channel 

flip amplitude, * denotes complex conjugation, and Im denotes the 
-E, 

imaginary part. As we indicated in Section I, t is the 4-momentum 

transfer squared and s is the squared center of momentum energy. Our 

metric is that of Bjorken and Drell. Thus, in order to distinguish the 

++ two amplitudes in each reaction, for IT+P -f K c , reaction (l), we shall 

use the obvious superscripts on HNF and %: H$' and HiI). Similarly, 

for K-p -f T-C+, reaction (2), we shall use the obvious notation (2) 
YJF 

and 4') for the non-flip and flip amplitudes, respectively. 

As one can see from Ref. 6, Navelet and Stevens are able to achieve 

a reasonable description of the data near 4 GeV/c laboratory momentum 

(a) (a) for do/dt and P by taking HNF and HF in Regge form as follows: 

(-l)?l~,,,,,(-l+ exp(-i+a,,(t))) s 
aK* (t) 

exp ("& NFt) 
, 

+Y K** NF('+ exp(-i*aK**(t))) s 
aK**(t) exp(a 

, K**,NFt) 

+ (-l)“+l a:*(t) 
YK* NFY~* i exp (-inaK* c (t>/2>s , 

exp (a&t) 

C 

- yK** ,NFy K** 
exp(-irac K**wms 

a;,*(t) t) 
exp (a-&* (5) 

(a> = 
5 

K fl (-l)'+'y,, ,(-I+ exp(-iraK*(t)))s 
aK*(t)exp(a 

, K*,Ft) 

+Y K** F(l+ exp(-iraK*,(t) > > s 
aK**(t)exp(a 

KA*,Ft) ' > 
(6) 

3 

R = 1, 2. 



Here, 

a,(t) = .375 + .678t 

'K*,NF = 10.34 , 

'K*,F = -9.862 , 

aK*,NF = 2.414 , 

aK*,F = 1.895 , 

a;*(t) = .099 + .532t 

C 

'K* = 1.01 , 
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= 1.134 , and 

also, 

t' = t-t min 

and 
.38935 M; 

K = 
16~52s 

mb/(GeV/c)2 , 

(8) 

(9) 

where pi is the incident momentum in the center of momentum frame and Mp 

aK&) = ,322 + .678 t , 

' K**,NF = 11.15 , 

' K**,F = -7.114 , 

aK**,NF = 1.331 , 

aK**,F = 1.895 , 

a ;**w = .127 + .532t , 

C 
y K*J; = 1.44 , 

a;** = .091 . (7) 

is the proton rest mass. Thus, all invariants and momenta are to be ex- 

pressed in GeV/c units. At this point, let us emphasize that we take the 

fit described by (5), (6) and (7) no more seriously than do its authors. 

For our purposes, it is a convenient representation of the lower energy 

data which is not unreasonable from the point of view of the standard 

Regge lore. 

Indeed, the form of the trajectory functions aKn(t) and aK**(t) in 

(5) is reasonably consistent with the expectations of weak exchange de- 

generacy for the K* and K** vector and tensor exchanges. Thus, interpre- 

ting the odd and even signatured terms as due to K* and K** exchange, 
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respectively, as our notation indicates, we see that the flip amplitudes 

are essentially weak exchange degenerate. However, the non-flip ampli- 
* 

tudes, containing, as they do, the contributions of the effective poles 

C 

aK* and a;+.* in addition to approximately weak exchange degenerate K* 

and K** exchange contributions, exhibit pronounced violations from what 

one expects from the weak exchange degenerate view of K* and K** leading 

exchanges. We remind the reader that, by weak exchange degeneracy, 

we should have a,(t) = aKA*(t). 

If one compares the prediction of (5) and (6) for the polarizationP, 
4 

for example, with the data of Baker, et al., at 11.5 GeV/c, one sees that 

the parameterization of Navelet and Stevens appears to fail at such labora- 

tory momenta. See Fig. 1. Thus, we are invited by this observation to 

modify the model described by (5) and (6). 

We should like to do this entirely phenomenologically, at first. 

For, in this way, we shall probably create the most interesting theoreti- 

cal challenge. Specifically, the main characteristic of the data of 

Baker, et al., 4 from our point of view, is the agreement with the expec- 

tations from weak exchange degeneracy for the K* and K** exchanges, 

assumming they are the leading Regge exchanges in reactions (1) and (2). 

Recall this agreement appears to be better at pLab = 11.5 GeV/c than at 

'Lab = 7 GeV/c. Here, pLab is the laboratory incoming momentum. Hence, 

in the simplest situation, which is the one we shall discuss; we need 

(2) non-flip amplitudes HNF which extrapolate smoothly from equation (5) at 

'Lab 2 4 GeV/c to essentially weak exchange degenerate K* and K** exchange 

at 'Lab = 7 'GeV/c. (i> The flip amplitudes HF in equations (6) are already 

essentially weak exchange degenerate. So, we shall leave them as they 

are given in (6). Further, we wish to stay close to the Regge form (5). 
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Thus, we replace, for simplicity, the effective poles a:,(t), a:*,(t) 

with a E,(t) -n, a;,,(t) -n, respectively, for some integer n. If we 

require that the phase of the effective pole amplitudes be unchanged at 

'Lab = 4 GeV/c, we shall assure that the asymmetric polarization 

predictions of (5) and (6) are unchanged at this momentum, provided we 

C C correct 
'K* and y K** in (7) by an appropriate power of s1 = rn: + M2 

P 

+ 2Mp /(4 GeV/c)2 + rnf in H$), 1 = 1,2,where ml is the IT+ rest mass 

and m2 is the Kf rest mass; clearly, the correct power is n 
s1 

in I$$). 

Thus, we require 

-ir(-n) / 2 = 2mri (10) 

or 

n =. 4m , (11) 

for some integer m. Notice that, since ~'"1, in order for the effec- 

tive poles to be at most a few percent of the remaining approximately weak 

exchange degenerate parts of (i) 
SF at 'Lab = 7 GeV/c, we must have 

(Si / 8 5 a few percent (12) 

at 'Lab = 7 GeV/c. In other words, we need 

(4/7P 5 a few percent (13) 

For the sake of discussion we take m = 1 in (ll), giving n = 4: 

(4/7)4 - 10% . 

The data of reference 4 are expected to be accurate to about this level. 

Now, clearly, if we had extremely accurate data, one might wish to 

C 
try replacing the effective poles aK*, a;** with the sum of a series 

of poles 

1 
a&-n] n=O,l,2,... , a;,,-nl n=O,l,2,... , 

1 i > 
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each with YK* ' b-4 = an sz YE* , I&, = bnsiy& in H$) 

and require 
03 co 
c 

a e-i7r n/2 = 
n 1 , 

c bne 
-in n/2 = 1 

. (14) 
n=O n=O 

In other words, for example, one might wish to carry out a fit to the 

detailed t- and s-dependence of the data by replacing, in (5), 

(-l)'+lyK, NFy$ i exp(-iTa&(t)/2)s 
a;*(t) 

exp(a&t) (15) , 
with 

co 

(-1) R+l 
C 

'K*,NFYK* c 
n=O 

ansiiexp(-ir(a&(t)-n)/2)s 
(a& (t>-n> 

exp (a ;*t) (16) 

and by replacing 

C a;**(t) 

-YK*?r,NFYK** exp (4 7~ ai*, (t> /2> s exp(aC Kd) (17) 

with 

a, 

C 
-YKMJFYK** c b snexp(-irr(aE**(t)-n)/2)s 

(a &,(t)-d 

n=O n ’ 
exp(a' K& (18) 

subject to (14). 

In the notation of (17) and (18), the choice n= 4 in (11) corresponds 

to 

a4 = 1, a = 0 for n n # 4, b4 = 1, bn = 0 for n # 4. (19) 

We now have 

m-k 1 aK&) 
NF = K (-1) YK*NF(-l+exp(-ilraK*(t)))s , exp(aK*,NFt) 

+ ‘K-k*,NFcl+ exp(-iIr aK*.pc(t)j) saK**(t)exp(aKkk,NFf) 

+ (-1p+’ C 

'K*,NFYK* i exp(-i*a&(t)/2)s "*(c)(si/s)4 exp(aCkt ) K 



C 

-YKWJFYK** exp (- 

-ll- 

.iru&,(t)/2)s S. s ex 
1 

, )4 p( c 
aK*s;t > > , (20) 

where all parameters are given by (7) and (9). The comparisons of (20) 
4 

and (6) with experiment at pLab = 7 and 11.5 GeV/c are shown in Fig. 2. 

Figs. 3 and4 show the predictions of (20) and (6) for pLab = 70 GeV/c, 

where only the Fermilab data on m+p -f K+C+ are available. The data on 

-+ K-p + IT C should be available soon. One sees that the agreement between 

the amplitudes (20), (6) and the data is rather reasonable in the strict 

Regge region.** 

Having achieved a phenomenological description of the data at 7 and 

11.5 GeV/c we turn, in the next section to the obvious theoretical 

question, "From where could such an amplitude as (20) come?" For, at this 

stage, one must consider the forms (16) and (18) completely ad hoc so 

that the amplitude (20) is a special case of an ad hoc, empirical analysis. 

III. A TOY MODEL 

The amplitude (20) and the more general forms (16) and (18) have the 

structure that might be associated with the daughter trajectories of the 

effective pole trajectories a i*(t) , a;** (t> l But, the latter poles are 

actually supposed to be approximations to Regge cuts. Thus, we are look- 

ing for a model which might have "daughters" of the cut trajectories. 

For simplicity, we will ignore the difference between a ;* (t> and a& (t> 

and consider ourselves to have the cut trajectory 

at(t) G .1+ .5t , (21) 

which is taken to be weak exchange degenerate, i.e., which gives contri- 

butions of both odd and even signature in the same way as a weak exchange 

degenerate leading trajectories would. A theoretical framework which is 
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set-up to consider the effects of cuts to all orders in Regge exchange is 

the dual multiperipheral bootstrap of H. Lee,8 Venezianop and Chan and 

Patonlr as represented by Balazs?' We will work in the planar approxima- 

tion, for we are not interested in the Pomeron. Balizs' representation 

is particularly appropriate to our needs because it pays special attention 

to certain threshold effects. 

Specifically, in this scheme the amplitude for the production of 

clusters is given by the standard multiperipheral diagrams illustrated 

in Fig. 5. In our case, we will be interested in generating Reggeons 

actually, so that the vertical lines are clusters and the horizontal lines 

are linear combinations of exchange degenerate sets of Regge exchanges 

with Regge propagators 

-irae u,(t) 
R= e S . (22) 

We are, of course, interested in the case of exchange degenerate K* and 

K** exchange. The diagrams illustrated in Fig. 5 give the two-body 

absorptive part, via multiparticle unitarity, as the sum of ladders as 

illustrated in Fig. 6. Since we are only interested in generating Reg- 

geons, only the (planar) quark-duality diagrams shown in Fig. 7 are 

relevant. 

The model has the following additional constraint. The vertical 

lines in Fig. 6 are dual to Regge behavior in the sense of a finite 

energy sum rule (FESR), as illustrated in Fig. 8. Specifically, we have 

(We will use the notation of Ref. 11 wherever possible.) 

~'(tI,tz,ti,t;,t) = F(t)gI(tl, ti, t)gz(tz, th, t) 3 (23) 

where F represents the Reggeon-Reggeon-cluster-Reggeon-Reggeon coupling 

in Fig. 8, g1 and g2 are triple-Regge couplings, and F is a kinematic 
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factor. In the model, it can be argued that F is independent of ti and 

t!, i = 1 1, 2, so that r factorizes; this permits a simple solution of 

the model. 

Specifically, we assume the absorptive part A(t,s) of the process 

1 2 -+ 1' 2' is given by Fig. 9, wherein only one narrow-resonance cluster 

of type a is produced, with the exception of the end clusters R and Q. 

A more realistic assumption might be to sum Fig. 9 over several such 

clusters a. We take the squared mass of a, sa, to be sa d .5 GeV2, 

corresponding to ignoring the difference between the squared masses of 

the p and K*. A better choice might be sa 2 .65 = (rn: + m&)/ 2, where 

m a = mass of a, a = p,K*. Clearly in each loop in Fig. 9, one of the 

exchanged Reggeons carries strangeness, the other does not. However, 

since the empirical result in (7) 

a,(t) = .375 -I- .678t , (24) 

is not too far from the canonical form 

q(t) = .5 + t (25) 

for the leading vector trajectory, we shall, for simplicity, consider that 

we have a single exchange trajectory function a,(t) = a: + a:t. We then 

require that the cut trajectory at(t) in (21) be associated with a in e 

the usual way 

.l + .5t =aC(t) = 2ae(*t)-1 

= 2aO + $akt-1 . e 

This gives 

a = .55 + t e 

(26) 

(27) 

which is not too different from (24) and (25). Thus, in our toy 

calculation, we will simply use ae = av. 
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We shall take R = a and Q will play the role of an appropriate strange 

or non-strange baryon. In other words, if particle 1' is K+, particle 2' 
-2. 

+ is C so, if the last Reggeon coupled to 2' is strange, we could take Q 

to be the nucleon. If this Reggeon were non-strange, we must take Q to 

be a baryon with S # 0. In our toy calculation, we simply choose Q to 

have mass squared 
sQ 

2 1 GeV2. 

Let us now describe the actual computation of A(t,s). One first notes 

that in the narrow resonance approximation the graph in Fig. 8a, out of 

which A(t,s) is constructed, gives 

V(t,s) = ra6(S-sa> * (28) 

Therefore, from (23) the Mellin transform of V is 

where 

V(t,j) = g(t,, t2, t> g (t;, t;, t)Fa(t> sa 
-j-l 

, (29) 

00 
V(t,j) = ,/ dss -j-l A(t,s) (30) 

0 

and g is the ae- ae -K** triple Regge coupling. Hence, if one takes the 

Mellin transform of A(t,s) 

A(t,j) = jmdss-j-' A(t,s) , (31) 
0 

then, with the standard high energy approximations one obtains the result 

of Bal&zs:l' 

A(t,j) = Yll ,K**b) Q-l F,(t)B(t,j) FQ(t) s -j-l Y 
Q 22 ~J@r&) - (32) 

Herey Y1l’K**y Y22’KWe are the ll'K**, 22'K** Regge couplings respec- 

tively and B(t,j) is given by 

B(M) = K(t,j) / D(t,j> (33) 
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where K(t,j) has the general structure 

- K(t,j) = /Greg (34) 

and 

D(t,j> = l-s-j-l 
a F,(t) K(t,j) . (35) 

Thus, B corresponds to summing the series of graphs shown in Fig. 10; 

K is evidently just the one loop graph in this series. In other words, 

one can write B as 

B(t,j) 
-j-l 

= K(t,j) + K(t,j)Fa(t) sa K(t,j) i- . . . . (36) 

The function K(t,j), whose treatment by Balszs represents the 

central point of his form of the dual multiperipheral planar bootstrap, 

is the function which we wish to concentrate on in this toy model of 

ours for the hypercharge exchange reactions () and (2). Specifically, 

for the case of v--~T scattering, Balizs solved for the output f- trajectory 

a = .5 + t with sa taken to be the same as in our toy model. Working to 

first order in t, from Balazs' work we know that if one takes 

ko(l+%m,ct) c . 
K(t,j) = 

j - a' 
(x0 -t Xlt)a -J (37) 

and require D(t, av(t))'= 0 so that A(t,j) has a pole at j = a 
V' 

then a 

conventional first moment finite energy sum rule will give, approximately, 

kg= .36, 'c= 1.39, x0= 1.34, x1= 1.76~~ , (38) 

completely solving the model. (See Ref. 11 for more details on the 

derivation of the results (38). We have used the FESR 

F,(t) g (sa+&& (2Sa-t-Qt) av+2(aV+ 2)-l 

for simplicity.) The choice (37) is motivated by two things: 

(1) K(t,j) 
C is known to have a logarithmic singularity at j =a , 
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which is approximated by the pole in (37). (It is expected that this 

approximation fails for j <a '.>; and (2), K(t,s) should have a threshold 

factor>t s = x(t) c x0 + xlt . Thus, we are invited to consider a more 

realistic choice for K(t,j). 

Specifically, since we know that in (37) l/ (j -a') should be 

-Rn (l/ (j-a') > , we could simply replace l/ (j -aC) by 

This we do as follows: we take 

c . 
K(t,j) 

j - am 
= k;)(l+%~-rt)(xoi-xlt)a-JIln - 

j - a' 

where k; and a m are constrained by the requirement that 

k{ Rn aV-am ; kO . 
C 

aV-a av- a' 

the logarithm. 

(39) 

(40) 

For simplicity, we work with (40) to zeroth order in t only and find 

att=O 

k;lRn ) l-2am 1 = 2ko . (41) 

The condition (40) insures that D(t,j> will still have a pole at j = av 

for the values of kg, T, x0 and XI in (38). 

In case the reader is wondering about the origin of am, let us 

remark that it is simply an approximation to the lower support limit 

cm (t) of the Amati-Stanghellini-Fubini-Bertocchi-Tonin13 Regge weight 

function p(t,s) in their multiperipheral theory of K: namely, following 

their notation, the first iteration of a Regge pole 

T(s,t) = c(t) saCt) (-cot ( 71t;(t)) + i) (42) 
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gives the asymptotic result 

-T (s,t) = 2P(t,r;) [-cot (T)+ i] dT , 

where 
0 0 

P(t,5) = & 
/ I 

dt' a(t') - a(t")) A(t,t',t") 
-co -00 

c(t') C(t")[cot (=p) cot(y4 + l] 

(43) 

(44) 

with 

A(t,t',t") = e(-t2424'2-t 2tt' + 2tt" + 2t't") . 
(45) 

-t2-t'2-tU2+ 2tt' + 2tt" + 2t't" 

The functions CM(t) and 5,(t) are the upper and lower support limits 

of p(t,<) and to make contact with our work, we should point out that 

s,(t) = at(t) (46) 

5,.(t) = a,(t) . (47) 

An advantage of (39) is that, unlike (37), it may be valid for 

C j<a. In other words, the toy model for A(t,j) does not obviously 

fail for j < a' if we use (39) whereas the model does appear to fail 

for j < a' if we use (37). Indeed, using (39).we have, again at t = 0, 

that, for example, there is a pole in A(t,j) also at j g a'- 4 if 

or 

1 = (saxo)- 5+lin/ -;?I /ni *521 (48) 

a,(O) = 0 . (49) 

This value of a,(O) is not inconsistent with aC(O>, although we would 

naively expect that a,(O) < 0. That am(O) = 0 is probably just an 
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artifact of our approximations; in a more complete treatment, more of the 

smoothJependence of p(t,<) in 5 would have to be taken into account. It 

is clear, however, that when properly extended to j < a', models like the 

dual multipheripheral planar bootstrap may indeed contain further Regge 

poles at places like j = a'-4, i.e., at places like the empirical extra 

trajectories that appear to be required by the data on the hypercharge 

exchange reactions (1) and (2). 

IV. DISCUSSION 

This paper has attempted to do two things. First, it has attempted 

to present an empirical fit to the apparently weak exchange degenerate 

data on the hypercharge exchange reactions x+p+kS+ and K-p-t r-c' 

at laboratory momenta like 7, 11.5 GeV/c which, at the same time, incor- 

porates apparent violations of weak exchange degeneracy at laboratory 

momenta of order 4 GeV/c. The type of fit arrived at requires a trajec- 

tory at a'-4, where a' may be identified with the cut trajectory of the 

leading K*, K** trajectory exchanges. Thus, the second part of the 

paper was devoted to a toy model calculation, which by the way is nothing 

but a simple version of the Chew-Goldberger-Low14 model applied to cluster 

production. The result of the model calculation is that if the j-plane 

structure of the two-Regge exchange graph is properly extended to the 

region j < a', one may indeed find trajectories like a'-4! -Thus, the 

emperical fit in Sect. II may not be without theoretical support. 

There is one more thing we should like to emphasize. This is that, 

from our empirical analysis, the trajectory oc-4, if it were the only 

trajectory persent in the reactions 
++ 

x+p+K C 
-+ and K-p-trr C , would give 
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essentially weak exchange degenerate predictions. Thus, in some sense, 
4 

the notion that each trajectory function contributes both odd and even 

signatured contributions in the weak exchange degeneracy sense is still 

true. What differs from the naive weak exchange degenerate idea is 

that at lower laboratory momenta, two different trajectories, each by 

itself respecting weak exchange degeneracy, nonetheless are both impor- 

tant and interfere to give apparent violations of the predictions one 

would make if one only had to consider a single weak exchange degenerate 

trajectory. 

Finally, there is an interesting coincidence to which we wish to 

call attention. This is that, if one follows the work of Balazs15 on 

threshold effects, one finds that the D* trajectory is, approximately, 

aD,(t) A -.75 + .433t 

= a c-l (50) 

where a C is given by (21) for example. At this time, we will simply 

leave this as a coincidence! 
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FIGURE CAPTIONS 

1. Comparison of the Navelet and Stevens model with the polarization 

data of Ref. 4 for r+p+K+C+. This figure is taken from Ref. 7. 

2. Comparison of the amplitudes (20) and (6) with the data of Ref. 4. 

3. Comparison of the amplitudes (20) and (6) with the data of Ref. 5 

++ on da/dt for IT+~+K C . 
--l- The prediction for K-~+IT C is also shown. 

4. Comparison of the amplitudes (20) and (6) with the data of Ref. 5 

++ 
on the C+ polarization for .rr+p+K C . The prediction for 

K-p&-C+ is also shown. 

5. Typical type of diagram in the multiperipheral model for cluster 

production. 

6. Absorptive part generated by the diagrams illustrated in Fig. 4. 

7. Planar quark-duality diagram relevant to the generation of Reggeons. 

8. Cluster (a) and Reggeon (b) average duality. 

9. Absorptive part A corresponding to the production of a-clusters. 

10. Series of graphs corresponding to B(t,j) in (32). 
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