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ABSTRACT

A design procedure is given for the eilimination of
all of the second-order transverse geometric and chromatic
aberrations in a particular ciass of static-magnetic

transport systems for charged-particle beams (1).
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INTRODUCTION

There are numerous applications for magnetic-optical
sysgéms that transport beams of charged particies from one
iocation to another such that the transverse phase-space
configuration of the beam at the final position is a
faithful reproduction of the beam at the point of origin.
The precision to which this objective may be achieved
depends upon the magnitude of the phase-space volume to be
transmitted and upon the optical distortions (aberrations)
introduced by the intervening transport system. It is the
purpose of this paper to describe a relatively simple method
of devising a class of beam-transport systems which approach
this ideal objective by eliminating all of the second-order
geometric and chromatiec aberrations at the end point of the

system.

BASIC DESIGN CONCEPTS

In this report we restrict the discussion to systems
whose transverse phase-space volume is conserved. We
furthermore assume that space-charge effects are negliigibie.
Under these circumstances the following of a charged
particlie through a system of magnetic lenses may‘be reduced
to a process of matrix multiplication (2,3), such that at
any specified position in the system an arbitrary
charged-particle trajectory may be represented by a vector

(singlie column matrix) X, whose components are the



positions, angles, and momentum of the particie being
considered with respect to some reference particle (the
central trajectory). In this application, we take the

components of the vector X to be the same as those used in

the TRANSPORT program (3), i.e.,

where
x= the horizontal displacement of the arbitrary
trajectory with respect to the assumed central trajectory.
x'= the angle this trajectory makes in the horizontal
plane with respect to the assumed central trajectory.
y= the vertical displacement of the trajectory with
respect to the assumed central trajectory.
y'= the vertical angle of the trajectory with respect
to the assumed central trajectory.
2= the path ilength difference between the arbitrary
trajectory and the assumed central trajectory.

dp/p= the fractional momentum deviation of the particie

from the assumed central trajectory. As we are concerned



with only the transverse phase-space variables, the
longitudinal component X5 = 2 will be ignored for the

remdinder of this report.

In this TRANSPORT formalism, the ilinear properties of
each magnetic lens are represented by a square matrix R,
which describes the action of the magnet on the particie
coordinates:

1 0 ()
i.e., the ith compornent of the vector X is
Xi1 = ERij X3,0
where XO is the initial coordinate vector and X1 is the
final coordinate vector of the particle under consideration.
The same linear transformation matrix R is applicable to all
such particies traversing the system (one particle being

distinguished from another by its initial coordinate vector

XO ).

The traversing of several magnets and interspersing drift
spaces is described by the same basic equation, but with R
now being the product matrix Rt = R ...R3 Ry Ry of the

individual matrices representing each of the system

elements.

This linear matrix formalism is conveniently extended to
inciude second-order terms (aberrations) by the addition of

a matrix Ti' as folliows:

ik

Xp t 2ty N0t 2T %0 Ko (2)
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where T is a matrix representing the second-order geometric

and chromatic aberrations. The vector components of

interest are X1 = x, X, =x', X, =1y, X4 = y', and
X6 = dp/p. The geometric terms are those for which i,j or k
are equal to 1,2,3 or 4; and the chromatic terms are those

for which j or k is equal to 6.

We now define a second-order achromat as any system for

which all Rij and all vanish for 1 = 1,2,3 or 4 and j

T
ijk
or k equals 6, i.e., any system for which alil of the first-

and second-order transverse chromatic terms vanish.

The particular solution we present here is further
restricted to the special case where the transformation
matrix, from the beginning to the end point of the system,

is the unity matrix to second-order for both the x and y

transverse planes; that is, to those systems where Rij = 1
for i = j, and Rij = 0 for i not equal to j, and all
Tijk = 0 for i = 1,2,3 or 4.

ELIMINATION OF THE SECOND-ORDER GEOMETRIC ABERRATIONS

Now consider a stétic magnetic—-optical beam-tpansport
system composed of a series of N identical unit cells where
each unit cell contains dipoie and quadrupole magnetic fieid
components. It is then possibie to choose the dipolie and
quadrupole components for each cell such that the linear

transfer matrix R, representing the first-order transverse



optics of the total system, is equal to the unity matrix:
i.ei; such that Rij = ] for i = j and Rij = 0 for i not
equal to j. This corresponds to a 27 betatron phase shift
between the beginning and the end of the tramsport system.
It then folliows from the general theory of second-order
beam~transport optics (2) that the resulting system will
have vanishing second-order transverse geometric aberrations
provided that the number of unit celis, N, comprising the
total system, does not equal one or three. Furthermore, it
can be shown that if N = 4 or more, the addition of two
sextupole components to each unit cell, one for the x-plane
and one for the y-plane, combined with the dispersion
introduced by the dipoles is sufficient to eliminate all of

the second-order chromatic aberrations and at the same time

still have vanishing second-order geometric aberrations.

The proof that all second-order geometric aberrations
will vanish under these circumstances is seen by writing the
integrals which are used to calculate these terms in a form
invoiving the phase shift ¢y and the muitipole strengths
Kn(w). Where n = 0 is the dipole term, n = 1 is the
quadrupole term, and n = 2 is the sextupole term. For a

system of N repetitive unit cells making up a total phase

shift of ¢y = 27, the second-order geometric terms in
Tijk are generated by integrals of the form:
2w
L .
f Kn(w) cos ¢ sin ¢ dy (3)
0



where

i 1 3 B
) o = (F)) =
! P/ gl

and (2+4mnm)

3 for the dipole and sextupole contributions.

(See ref. 4 for a derivation of Kye)

The first important observation to make is that
quadrupole components do not contribute to the second-order
geometric terms but that the dipole and sextupole components
do. (See ref. 2 for a general derivation of these

integrals.)

Transforming this integral to the complex plane, it

assumes the form

2m

. 4 . ;M
f Kn(w) [elw + e_lw] . [elw - e_lq)] dy (4)
0

Expanding and ignoring the numerical coefficients, the
final result may be expressed as a sum of terms containing

two basic integral forms, i.e.,

2w
f k() eV ay | (5)
0

and
2m '
f K_(¥) B3 gy (6)
0



Evaluating these integrals for a repetitive unit cell
structure, it is observed that the dipole or sextupole
components may each be viewed as '"vector additions in the
complex plane", where Kn(w) is the ampiitude of the vector,
Y is its phase for eq. (5), and 3¢y is its phase for integral
(6). Both integrals vanish when N, the number of unit cells
comprising a 2w betatron phase shift, does not equal one or
three., N = 1 is excluded because there is no possibiiity for
a vector cancellation in either integral, and N = 3 is
exciuded becauée all of the vector components in equation
(6) add constructively even though vector canceliation does

occur for equation (5). But both integrails vanish for any

other integer value of N.

ELIMINATION OF THE SECOND-ORDER CHROMATIC ABERRATIONS

All of the second-order chromatic aberrations in a unity
transform system composed of four or more identical
first-order unit cells may be eiliminated, without
introducing new second-order geometric aberrations, by the
proper distribution of sextupole components through the cell

structure. One obvious way of achieving this is as follows:

(L) Identical dipoles are introduced into each cell of
the system to provide momentum dispersion and to allow the
above integrals to vanish., The dispersion provides coupling

between the chromatic terms of the Tijk matrix and the



sextupoles. The strength of this coupling is proportional
to the magnitude of the momentum dispersion at the location

-

of each sextupole component.

(2) Two sextupole components are then introduced into
each unit cell, one for the x-plane and one for the y-plane.
The x—plane sextupoles are positioned where the x-plane
monoenergetic beam envelope is large compared to the y-plane
beam envelope. Similarly the y-plane sextupole components
are positioned at a location where the y-plane beam envelope
is large compared to the x-plane envelope. This procedure
maximizes the relative coupling coefficients to the
chromatic terms in each transverse piane and thereby
minimizes the strength of the sextupole components required

for the correction process.

These sextupole components may be thought of as providing
additional "quadrupole-iike" gradient focusing elements for
the off-momentum trajectories. The strengths of the two
sextupole components are then adjusted to make the chromatic
terms vanish in both the x and y planes, This consists of
solving two simultaneous linear equations via an appropriate
beam optics program such as TRANSPORT (3). The remarkabie
result is that all of the second-order chromatic terms
vanish simuitaneousiy with the introduction of onliy two
variabies, the x-plane and y-plane sextupole strengths that

are introduced into each unit cell structure.



The above solution is perhaps the easiest to comprehend.
ﬁowezgr, other solutions are also possibie, all of which
have the common characteristic that at least four
appropriately positioned sextupole components are needed in
each transverse plane to correct for the chromatic
aberrations. There are a number of ways to see why four or
more sextupole components in each transverse plane are
needed. One is the observation that the transformation
matrix for the total system is the unity matrix to
second-order. To achieve this it is necessary to have a
sextupole array that allows a unity transform matrix to be
achieved in both the x and y planes for the off-momentum
trajectories. By analogy with the monoenergetic case, a
minimum of eight sextupoles is required, four for the x
plane and four for the y plane. Another way of viewing the
probiem is to note that the soiution of the homogeneous beam
optics equation for any given momentum has two normal-mode
solutions, the so-called sine-iike function and the
cosine-iike function (2), from which all possiblie
monoenergetic trajectories may be derived by a linear
combination of these two characteristic trajectories.
Therefore, in order to couple to all possible off-momentum
trajectories, the sextupole correcting elements must couple
to both the sine-~ and cosine-like trajectories and at the
same time not introduce new geometric aberrations., With some
thought it is again evident that at least four sextupole

correcting elements in each plane are required.

- 10 -



HIGHER ORDER OPTICAL ABERRATIONS

Aberrations of higher than second order should also be
congidered when formulating a particular solution for an
achromat. They arise from two primary sources: (A) those
which are inherent in the basic design of the first-order
optics solution, and (B) those which arise from the
introduction of the sextupole correcting elements.
Aberrations of type A are best minimized by gaining design
experience, whereas the type B aberrations can be uniquely
eiiminated in some appiications by choosing the pattern in

which the sextupoles are introduced into the lattice

structure. This is discussed beiow in greater detail.

In the recipe given in the above paragraphs for
formuliating a second-order achromat, it 1is imélicitly
assumed that the lattice structure remains essentially
iinear. This is a vaiid assumption if the strength of the
sextupoles needed for the correction process is sufficientliy
smail. If this is not the case, then the sextupole
components may introduce non-linear distortions into the
system and thereby 1limit the usefulness of the design.
Fortunately there is a solution to this particular problem
if there is enough space available and the budgef is
adequate. This special solution will be discussed in

subsequent paragraphs.

- 11 -



In the discussions above it has been assumed that the
total length of the achromat corresponds to a 2m phase
shi?t. But it is obvious that the results quoted are
equally valid for systems whose length is a multiple of a
21 phase shift. Under these circumstances the sextupole
correcting elements may be distributed over a longer
distance, measured in units of phase shift. Consider, for
example, the interesting case where the number of
first-order unit cells N making up each 2w phase shift
section is four or more and is an even integer. The
sextupole components may then be introduced in pairs, the
eiements of each pair being identical and separated by a
phase shift of m in both transverse planes. The
transformation matrix between them is then equal to minus
the unity matrix. If under these circumstances the two
sextupoles are of equal strength and of the same poiarity,
then for all monoenergetic trajectories, corresponding to
the momentum of the central trajectory, the effect of the
first sextupole on the trajectory at the end of the system
is uniquely cancelled by the second sextupole. This is
valid to all orders in the monoenergetic optics to the
extent that the phase shift over the length of the sextupole
is negiigible. Using this principie , it is then possible
to formuliate achromats which have no higher order
monoenergetic geometric aberrations caused by the

introduction of the sextupolie correcting elements. This can



be achieved in a 67 phase shift lattice by correctly
positioning two pairs of non-interiaced sextupoles into each

transverse piane, x and y, making a total of eight

sextupoles., See exampie 3 at the end of the report.

SOME EXAMPLES OF SECOND-ORDER ACHROMATS
Before giving specific examples of achromats, it is
perhaps useful to review the fundamental purpose of the
various muitipoles and 1ist the different ways in which
these muiltipole components may be introduced into a lattice

structure,

The primary function of the dipolie is to bend the optic
axis of the beam and to introduce momentum dispersion into
the system. Dipoles, however, aiways have a first-order
focusing action in addition to their zero’th order bending
properties., For small angles of bend, the first-order
focusing action is usually very small compared to the
focusing strength of the quadrupoles in the lattice. However
for large angles of bend and/or combined-function lattice
structures, the first-order focusing of the dipolies can be

dominant.

The purpose of quadrupoles is to provide first-order
focusing to suppliement that provided by the dipolies. A
quadrupolie component may be defined as any physical element

that introduces a first derivative of the magnetic field



with respect to the transverse coordinates x and y. This
can occur in any one of three ways: by an actual four-pole
quadrupole magnet, or by a rotated entrance or exit face of

a bending magnet, or finaliy by a linear fieid variation in

the transverse field expansion of a bending magnet.

Sextupole components affect the second-~ and higher order
optics of the system. Sextupolie components may be introduced
via a six-pole magnet, or by a second-order curved surface
on the entrance or exit face of a dipole, or by introducing
a second-order field derivative into the transverse field

expansion of a dipole or quadrupole magnet.

The examples given below use either the most convienent
and/or the most economical method of introducing the
multipole components for the particular case illustrated. A
TRANSPORT printout of each example is given at the end of

the report.

EXAMPLE 1

One typical exampie of an achromat is a separated
function FODO array of alternating strong-focusing
quadrupoles (Q) with interspersed dipoles (B), sextupoles
(S), and drift spaces. An acceptable unit cell is the

foliiowing symmetric array of magnetic elements:



Q(x) s(x) B(x) S(y) Q(y)Q(y) s(y) B(x) S(x) Q(x)
where
T Q(x) is a quadrupole focusing in the x plane and
defocusing in the y plane.
Q(y) is a quadrupole focusing in the y plane and
defocusing in the x plane.
S(x) is a sextupole with strong coupling to the x plane
and weak coupling to the y piane.
S(y) is a sextupole with strong coupling to the y plane
and weak coupling to the x plane.
B(x) is a dipole whose magnetic midplane 1lies in the x
plane. The optical equivalent of the above FODO array is
shown in fig. 1, where the "lenses" represent the quadrupoie

components, the triangles the dipole components, and the

hexagons the sextupolie components,

An assembly of four or more such unit cells adjusted to a
total phase shift of 2m constitutes a second-order achromat
when the sextupole components are adjusted to make the

second-order chromatic aberrations wvanish.
As an alternative, the sextupoles may be introduced into

the unit cell in an asymmetric maunner as follows:

Q(x) S(x) B(x) Q(y) s(y) B(x)

Another alternative solution is to combine the quadrupole

and sextupole components into the same physical element. All



three cases are acceptable achromats and will be essentially
equivalent in system performance. The advantage of the last
two- cases is simply that the number of physical elements

needed is less than in the first case.

If in the example given above, the first-order focusing
action is achieved predominately via a FODO array of
focusing and defocusing quadrupoles of equal focal length f
separated by a distance £, then in the thin-lens
approximation, and to the extent that the focusing action of
the dipoles may be ignored, the phase shift per unit ceill,

U, is given by the equation

sinp/2 = 2/2£f .

If now the system is composed of N unit cells such that

Ny = 27 radians, the length L of the total system is

ol
N

2Ng = 4Nf sin(w/N)

EXAMPLE 2

A unit cell may also be generated by using a combined
function magnet as shown in fig. 2. The strengﬁh of the
dipole component is equal to the bending angie a. The
dipole also provides first-order focusing in the radiail

piane. A quadrupole component, focusing in the non-bend



plane and defocusing in the bend plane, is introduced via
the rotated input face of the magnet; and two sextupole
components are introduced via the curved surfaces, R1 and
RZ’ on the entrance and exit faces of the magnet. The unit
cell then consists of the combined-function magnet and a
drift space preceeding and following it. The total achromat

is composed of at least four such unit cells adjusted to a

total phase shift of 27w.

EXAMPLE 3

An example of a 6n phase-shift achromat, having
non-interiaced sextupole pairs, is iliustrated in fig. 3.
The phase shift in each transverse plane is chosen to be the
same, The correcting sextupoles are introduced in pairs with
the individual members of each pair being identical and
separated by a phase shift of ., This corresponds to a minus
unity first-order transform matrix between the members of

the pair. The respective pairs, labeled Sx sz, Syl, and

1’
Sy2 are separated (non-interiaced) and therefore do not

introduce higher-order geometric distortions. The distance

of separation is chosen such that the strengths of le and

sz are the same as Sy1 and Syz. The ratio of the sextupole
strengths in the x and y planes is then determined by the
magnitude of the coupiing coefficients averaged over aill
four sextupoles in each plane. The coupling coefficient is

proportional to the magnitude of the momentum dispersion at

each correcting element.



The 67 phase-shift achromat is most applicabie to those
systems where it is desirable to avoid higher order
geo;etric aberrations caused by the interlacing of the
sextupoles. An example of this is a chromatic correction
system for large storage rings (6). Another examplie is in
the design of secondary charged particle beams where
residual tails in the transverse spatial distribution at the

end point is important.

SUMMARY

Several examples of second-order achromats have been
studied using the computer programs TRANSPORT (3) and TURTLE
(5). Other studies have been made using the achromat
principie to make chromaticity corrections fof iarge storage
rings (6). 1In addition secondary beams have been designed
based on the achromat principie which have significant
improvement in the transmitted phase-space volume(7). From
the study of these few examples it is evident that there are

many potential applications for the achromat concept.
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TRANSPORT PRINTOUTS OF EXAMPLES

(TRANSPORT INPUT FOR EXAMPLE 1)

A 4 CELL ACHROMAT USING SEPARATED FUNCTION MAGNETS 9/26/77°

0

15 1 “"MM”;

1 000000 10;

17;

9 4;

5 .4 8.02262 100 “Qx’;

18 .2 1.22642 100 “SX’;

3 .3;

2 1; 4 5.82179 2 “BX”; 2 1;

3 .3;

18 .2 -2.38768 100 “SY’;

5 .8 -8.01363 100 QY ;

18 .2 -2.38768 100 “sY’;

3 .3,

2 1; 4 5.82179 2 “BX"; 2 1;

3 .3;

18 .2 1.22642 100 “SX°;

5 .4 8.02262 100 “QX’;

9 0;

13 4;

SENTINEL

(TRANSPORT OUTPUT FOR EXAMPLE 1)

‘A 4 CELL ACHROMAT USING SEPARATED FUNCTION MAGNETS 9/26/77°

*BEAM* 1. 10.00000 GEV

*2ND ORDER* 17.

*xQUAD* 5. "x " 0.40000 M 8.02262 KG
0.400 M

*SEXT* 18. "sx " 0.20000 M 1.22642 KG
0.600 M

*DRIFT* 3. 0.30000 M
0.900 M

*ROTAT=* 2. 1.00000 DEG
0.900 M

*BEND* 4, "BX 5.82179 M 2.00000 KG

( 166.782 M BEND RADIUS 2.000 DEGREE BEND)

6.722 M

*ROTAT* 2. 1.00000 DEG
6.722 M

*DRIFT* 3. 0.30000 M
7.022 M

*SEXT* 18. "sy " 0.20000 M -2.38768 KG
7.222 M

*QUAD* 5. "y " 0.80000 M ~-8.01363 KG
8.022 M

*SEXT* 18. "sy " 0.20000 M -~2.38768 KG
8.222 M

- 20 -
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100 MM

100 MM
100 MM

100 MM



-

*DRIFT* 3.
8.522 M
*ROTAT* 2.
8.522 M
*BEND* 4. ngx
( 166.782 M BEND RADIUS 2.000
14.344 M
*ROTAT* 2.
14.344 M
*DRIFT* 3.
14.644 M
*SEXT* 18. ngx
14.844 M
*QUAD* 5. "ex "

( THE ABOVE UNIT CELL IS REPEATED 4 TIMES,
TRANSFORM MATRIX IN FIRST-

*TRANSFORM 1%

0.99999
-0.00000

0.0
0.0

-0.00000

0.0

*2ND ORDER TRANSFORM*

1

el o

NN NN

wWwWwwwww

11
12
13
14
16
66

11
12
13
14
16
66

11
12
13
14
16
66

-4.065E-09
1.183E-06
0.0
0.0
7.048E-08

-1.159E~07

2.023E~-10

1.777E-09

0.0

0.0

2.859E-09
-3.817E-08

1
1
1
1

NN N

wWwww

0.00024 0.
0.99999 0.
0.0 0.
0.0 0.
-0.00000 0.
0.0 0.
22 -5.373E-06
23 0.0
24 0.0
26 -2.048E-05
22 -3.902E-07
23 0.0
24 0.0
26 2.727E-08
22 0.0
23 ~1.923E-0Q7
24 1.259E-06
26 0.0

0.30000

1.00000

5.82179

M

DEG

M 2.00000 KG

DEGREE BEND)

1.00000

0.30000

0.20000

0.40000

998
0600

CoOCOWVwWOo O
[enjNe]

33
34
36

NN N

33
34
3 36

w W

- 21 =

AND SECOND-ORDER IS GIVEN

DEG
M
M 1.22642 KG 100 MM
M 8.02262 KG 100 MM
THE RESULTANT
BELOW. )
0.0 0.0 0.00007
. 0.0 0.0 0.00000
-0.00002 0.0 0.0
0.99998 0.0 0.0
0.0 1.00000 -0.14072
0.0 0.0 1.00000
1.593E-08
-4.838E-07 1 44 -1.444E-06
0.0 1 46 0.0
-1.576E-09
~2.143E-08 2 44 -7.299E-08
0.0 2 46 0.0
0.0 _
0.0 3 44 0.0
-7.719E-08 3 46 -1.005E-05



4 1+ 0.0
4 12 0.0 4 22 0.0
4 13 -3.832E-09 4 23 7.034E-08 4 33 0.0
4 14 -3.596E~-08 4 24 1.571E-07 4 34 0.0
4 16 0.0 4 26 0.0 4 36 4.883E-07
4 66 0.0
*LENGTH* 60.97400 M

(TRANSPORT INPUT FOR EXAMPLE 2)

‘A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 10/5/77°

0

15 1 “MM°; 15 11

"MEV”;

1111100 40.51097;

17;
16 5 53
16 7 .4;

« Ty
16 12 .02177;
16 13 -.025908;
9 4;
3 21.23306;

15 8 “CM’°; 15 5 "MM’;

2 30.97464; 4 16.55821 8.54609; 2 0;

3 21.23306;
9 0;

13 4;
SENTINEL

(TRANSPORT OUTPUT FOR EXAMPLE 2)

‘A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 10

*BEAM*

*2ND ORDER*

*G/z*

* K1 *

* 1/R1 *

* 1/R2 *

*DRIFT*
21.233 CM

*ROTAT*
21.233 cM

1.
17.
l6.
16.
16.
l6.

3.

2.

40.51093 MEV

GAUSSIAN DISTRIBUTION

5. 0.50000E+01
7. 0.40000E+00
12, 0.21770E-01
13. -0.25908E-01

21.23303 CM
30.97461 DEG

16.55817 CM

- 22 -
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8.54609

0.0
5.245E-08

KG



CM BENDING RADIUS,

*BEND* 4
( 15.812
37.791 cM

*ROTAT* 2.
37.791 CM

*DRIFT* 3.
59.024 CM

*DRIFT* 3.
80.257 CM

*ROTAT* 2.
80.257 CM

*BEND* 4
( 15.812 ¢M
96.815 CM

*ROTAT* 2.
96.815 CM

*DRIFT* 3.

118.048 CM

*DRIFT* 3.

139.281 CM
*ROTAT* 2.
139.281 CM
*BEND* 4.
( 15.812 CcM
155.840 CM
*ROTAT* 2.
155.840 CM
*DRIFT* 3.
177.073 CM
*DRIFT* 3.
198.306 CM
*ROTAT* 2.
198.306 CM
*BEND* 4.

( 15.812 CM

214,864 CM
*ROTAT*

214.864 CM
*DRIFT*

236.097 CM

*TRANSFORM 1%

2.

3.

0.99999
0.00004
0.0
0.0
0.00001
0.0

BENDING RADIUS,

BENDING RADIUS,

BENDING RADIUS,

-0.00000
1.00000
0.0

S C o
O OO

60 DEGREE BEND ANGLE )

0.0 DEG
21.23303 CM
21.23303 CM
30.97461 DEG

16.55817 ¢cM

8.54609 KG

60 DEGREE BEND ANGLE )

0.0 DEG
21.23303 CcM
21.23303 CM
30.97461 DEG

16.55817 CM

8.54609 KG

60 DEGREE BEND ANGLE )

0.0 DEG
21.23303 CM
21.23303 CM
30.97461 DEG

16.55817 CM

8.54609 KG

60 DEGREE BEND ANGLE )

0.0 DEG

21.23303 CcM

0.0 0.0

0.0 0.0
1.00000

0.00006 0.99999
0.0 0.0

0.0 0.0

- 23 =

-0.00001

0.0 0.00001
0.0 -0.00012
0.0 0.0
0.0 0.0
1.00000 -12.93663
0.0 1.00000



*2ND ORDER TRANSFORM*
1 11,-6.206E-08

1 12 -4.526E~-09 1 22 2.721E-09
1 13 0.0 1 23 0.0 1 33 -5.415E-08
1 14 0.0 1 24 0.0 1 34 6.396E-08 1
1 16 -8.695E-08 1 26 -3.772E-07 1 36 0.0 1
1 66 7.507E-08
211 2.779E-07
2 12 1.213E-07 2 22 7.570E-09
2 13 0.0 2 23 0.0 2 33 7.80lE-07
2 14 0.0 2 24 0.0 2 34 -1.827E~-07 2
2 16 2.830E-06 2 26 1.022E-07 2 36 0.0 2
2 66 ~1.051E-05
3 11 0.0
312 0.0 3 22 0.0
3 13 1.784E-07 3 23 6.310E-08 3 33 0.0
3 14 3.832E-08 3 24 -1.909E-09 3 34 0.0 3
3 16 0.0 326 0.0 3 36 -4.725E-07 3
3 66 0.0
4 11 0.0
4 12 0.0 4 22 0.0
4 13 1.547E-06 4 23 1.367E-07 4 33 0.0
4 14 -1.715E-07 4 24 ~-6.592E~08 4 34 0.0 4
4 16 0.0 4 26 0.0 4 36 -4.322E-06 4
4 66 0.0

*LENGTH* 236.09679 CM

( TRANSPORT INPUT FOR EXAMPLE 3 )

‘A 6P1I ACHROMAT USING SEPARATED FUNCTION MAGNETS
0

15 1 “MM*;

1 4.666 .1286 4.666 .1286 0 5 10;

17;

5 QX" .375 9.08898 100;

18 “SX1° .2 8.90763 100;

.3125;

.93464; 4 “BX” 5.4 2.015253; 2 .93464;
.5125; ]

QY .75 -9.08002 100;

.23

.3125;

.93464; 4 “BX” 5.4 2.015253; 2 .93464;

N Wwwurw N w

- 24 ~

2/12/79°

44
46

44
46

44
46

44
46

-3.417E-10
0.0

-2.378E~-08
0.0

0.0
-1.831E-07

0.0
3.502E-07



-

3
5
3
3
2
3
5
3
3
2
3
5
1
3
2
3
5
1
3
2
3
5
3
3
2
3
5
3
3
2
3
5
5
3
3
2
3
5
1
3
2
3
5
1
3
2
3
5
3
3
2
3
5

8

8

8

8

.5125;

QX7 .75 9.08898 100;
.23

.3125;

.93464; 4 “BX” 5.4 2.015253;

.5125;

QY .75 -9.08002 100;
.25

.3125;

.93464; 4 “BX® 5.4 2.015253;

.5125;
‘QX” .75 9.08898 100;
“SX1° .2 8.90763 100;
.3125;

.93464; 4 “BX® 5.4 2.015253;

.5125;

‘QY’ .75 -9.08002 100;
“SYL* .2 =17.32425 100;
.3125;

.93464; 4 “BX” 5.4 2.015253;

.5125;

‘QX° .75 9.08898 100;
23

.3125;

.93464; 4 “BX® 5.4 2.015253;

.5125;

“QY” .75 -9.08002 100;
.23

.3125;

.93464; 4 “BX® 5.4 2.015253;

.5125;

‘QX” .375 9.08898 100;
“QX” .375 9.08898 100;
.23

.3125;

.93464; 4 “BX’ 5.4 2.015253;

.5125;

‘QY” .75 -9.08002 100;
“8Y1’ .2 -17.32425 100;
.3125;

.93464; 4 “BX” 5.4 2.015253;

.5125;
‘QX* .75 9.08898 100;
“SX2° .2 8.90763 100;
.3125;

.93464; 4 “BX” 5.4 2.015253;

.5125;

‘QY” .75 -9.08002 100;
.25

«.3125;

.93464; 4 “BX” 5.4 2.015253;

.5125;
QX" .75 9.08898 100;

- 25 -

2

2

2

2

2

«93464;

.93464;

.93464;

.93464;

.93464;

93464,

.93464;

.93464;

.93464;

.93464;



.23
.3125;
.93464; 4 “BX” 5.4 2.015253;
.5125;
‘QY’ .75 -9.08002 100;
VA
3125
.93464; 4 “BX® 5.4 2.015253;
.5125;
‘QX” .75 9.08898 100;
8 “8SX2° .2 8.90763 100;

.3125;

.93464; 4 “BX” 5.4 2.015253;
.5125;

‘QY’ .75 -9.08002 100;

8 “SY2° .2 -17.32425 100;

.3125;

.93464; 4 “BX® 5.4 2.015253;
.5125;

QX" .375 9.08898 100;
QX .375 9.08898 100;
23
.3125;
.93464; 4 “BX® 5.4 2.015253;
.5125;
“QY” .75 -9.08002 100;
23
.3125;
.93464; 4 “BX” 5.4 2.015253;
.5125;
“QX° .75 9.08898 100;
. 23
.3125;
.93464; 4 “BX® 5.4 2.015253;
.5125;
“QY” .75 «9.08002 100;
8 “SY2° .2 -17.32425 100;
.3125;
.93464; 4 “BX" 5.4 2,015253;
.5125;
QX .75 9.08898 100;
2
.3125;
.93464; 4 “BX” 5.4 2.015253;
.5125; :
‘QY’ .75 -9.08002 100;
.23
.3125;
.93464; 4 “BX® 5.4 2.015253;
.5125;
QX" .75 9.08898 100;
VA
.3125;

WWwWwuUuLRNDNWWLWULLWRND WWLULWLWNLLF,FULWNDNLLWLULLNNLWLULMVLWNWLWULMULWNWRFE ODWNWFEOUDWRRDWWOWNDWW

3]

2

2

+93464;

.93464;

. 93464

.93464;

93464

.93464;

.93464;

.93464;

. 93464,

.93464;



.5175;

.23
.3125;

.5125;

NULWNWwWLWWLWN

ENTINEL

.93464; 4 “BX’ 5.4 2.015253; 2

‘QY’ .75 -9.08002 100;

.93464; 4 °*BX’ 5.4 2.015253; 2

‘QX” .375 9.08898 100; 13 1; 13

( TRANSPORT MATRIX OUTPUT FOR EXAMPLE 3 )

*TRANSFORM 1%
0.99998
-0.00000
0.0
0.0
-0.00000
0.0
*#2ND ORDER TRANSFORM*
1 11 -9.304E-08
12 2.496E-06 1
13 0.0 1
14 0.0 1
16 -1.746E-0Q6 i
66 4.833E-06

S W

2 11 ~1.779E-09

2 12 8.865E-08 2
2 13 0.0 2
2 14 0.0 2
2 16 1.927E-07 2
2 66 -1.012E-06
311 0.0

312 0.0 3
3 13 -5.786E~0Q8 3
3 14 -7.715E-07 3
3 16 0.0 3
3 66 0.0

4 11 0.0

4 12 0.0 4
4 13 -4.041E-09 4
4 14 7.415E-08 4
4 16 0.0 4
4 66 0.0

*LENGTH*

0.00060

" 0.99999

0.0

0.0
-0.00000

6.0

22 -9.062E-06

23 0.0
24 0.0

26 ~3.278E-05

22 -1.210E-06

23 0.0
24 0.0

26 2.476E-06

22 0.0
23 3.64T7E-06
24 -9.055E~06
26 0.0
22 0.0
23 9.750E-08
24 -1.047E-06
26 0.0

172.19859 M

w W N —

-~

33
34
36

33
34
36

33
34
36

33

36

0.0

0.0
-0.00010

0.99996

0.0

0.0

-2.243E~07
1.719E-06

0.0

-1.157E~-08
2.724E-08

0.0

S~

0000

44
46

44
46

44
46

44

46

0.00021

0.00001

0.0

0.0
-0.34682

1.00000

~8.287E-06
0.0

3.561E-07
0.0

0.0
-6.128E~-06

6.0

-3.094E-07
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Fig. 1.

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

A typical separated function unit cell for a second-order
achromat. The lenses represent quadrupoles, the triangles
dipoles, and the hexagons sextupoles.

An example of a combined function unit cell for a second-
order achromat.

A typical lattice arrangement for an extended, 6w phase
shift, second-order achromat using non-interlaced sextupole

pairs.
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