A SECOND-ORDER MAGNETIC OPTICAL ACHROMAT*

K. L. Brown
Stanford Linear Acceierator Center Stanford University, Stanford, Caiifornia 94305

ABSTRACT

A design procedure is given for the elimination of ail of the second-order transverse geometric and chromatic aberrations in a particuiar ciass of staticmagnetic transport systems for charged-particie beams (1).

Submitted to Nuciear Instruments and Methods**

* Work supported by the Department of Energy under contract number EY-76-C-03-0515.
** A condensed version wiil appear as paper $F-11$ in the 1979 Particie Acceierator Conference.

INTRODUCTION

There are numerous appiications for magnetic-opticai systems that transport beams of charged particies from one Iocation to another such that the transverse phase-space configuration of the beam at the final position is a faithfui reproduction of the beam at the point of origin. The precision to which this objective may be achieved depends upon the magnitude of the phase-space voiume to be transmitted and upon the optical distortions (aberrations) introduced by the intervening transport system. It is the purpose of this paper to describe a reiativeiy simpie method of devising a ciass of beam-transport systems which approach this ideai objective by eiiminating ail of the second-order geometric and chromatic aberrations at the end point of the system.

BASIC DESIGN CONCEPTS
In this report we restrict the discussion to systems whose transverse phase-space voiume is conserved. We furthermore assume that spacemharge effects are negiigibie. Under these circumstances the foliowing of a charged particie through a system of magnetic ienses may be reduced to a process of matrix muitipiication $(2,3)$, such that at any specified position in the system an arbitrary chargedmparticie trajectory may be represented by a vector (singie coiumn matrix) X, whose components are the
positions, angies, and momentum of the particie being considered with respect to some reference particie (the centrai trajectory). In this appiication, we take the components of the vector X to be the same as those used in the TRANSPORT program (3), i.e.,

$$
x=\left[\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\ell \\
d p / p
\end{array}\right]
$$

where
$x=$ the horizontai dispiacement of the arbitrary trajectory with respect to the assumed centrai trajectory. $x^{\prime}=$ the angie this trajectory makes in the horizontai piane with respect to the assumed centrai trajectory. $y=$ the verticai dispiacement of the trajectory with respect to the assumed centrai trajectory. $y^{\prime}=$ the verticai angle of the trajectory with respect to the assumed centrai trajectory.
$\ell=$ the path iength difference between the arbitrary trajectory and the assumed centrai trajectory.
$d p / p=$ the fractionai momentum deviation of the particie from the assumed centrai trajectory. As we are concerned
with oniy the transverse phase-space variables, the Iongitudinai component $X_{5}=\ell$ will be ignored for the remảinder of this report.

In this TRANSPORT formailism, the inear properties of each magnetic iens are represented by a square matrix R, which describes the action of the magnet on the particie coordinates:

$$
\begin{equation*}
X_{1}=R X_{0} \tag{1}
\end{equation*}
$$

i.e., the ith component of the vector X is

$$
X_{i, 1}=\sum R_{i j} X_{j, 0}
$$

where X_{0} is the initiai coordinate vector and X_{1} is the final coordinate vector of the particie under consideration. The same iinear transformation matrix R is appiicabie to ail such particies traversing the system (one particie being distinguished from another by its initial coordinate vector X_{0}).

The traversing of severai magnets and interspersing drift spaces is described by the same basic equation, but with R now being the product matrix $R_{t}=R_{n} \ldots R_{3} R_{2} R_{1}$ of the individuai matrices representing each of the system eilements.

This inear matrix formalism is convenientiy extended to inciude second-order terms (aberrations) by the addition of a matrix $\mathrm{T}_{\text {ijk }}$ as foilows:

$$
\begin{equation*}
X_{i, 1}=\sum R_{i j} x_{j, 0}+\sum T_{i j k} X_{j, 0} X_{k, 0} \tag{2}
\end{equation*}
$$

where T is a matrix representing the second-order geometric and chromatic aberrations. The vector components of interest are $X_{1}=x, X_{2}=x^{\prime}, X_{3}=y, X_{4}=y^{\prime}$, and $X_{6}=d p / p . \quad$ The geometric terms are those for which i, j or k are equai to $1,2,3$ or 4 ; and the chromatic terms are those for which j or k is equai to 6 .

We now define a second-order achromat as any system for which ail $R_{i j}$ and ail $T_{i j k}$ vanish for $i=1,2,3$ or 4 and j or k equais 6, i.e., any system for which aii of the firstand secondmorder transverse chromatic terms vanish.

The particuiar soilution we present here is further restricted to the speciai case where the transformation matrix, from the beginning to the end point of the system, is the unity matrix to second-order for both the x and y transverse pianes; that is, to those systems where $\mathrm{R}_{\mathrm{ij}}=1$ for $i=j$, and $R_{i j}=0$ for i not equai to j, and aii $T_{i j k}=0$ for $i=1,2,3$ or 4 .

Elimination of the second order geometric aberrations
Now consider a static magnetic-opticai beam-transport system composed of a series of N identicai unit ceiis where each unit ceii contains dipoie and quadrupoie magnetic fieid components. It is then possibie to choose the dipoie and quadrupoie components for each ceil such that the inear transfer matrix R, representing the first-order transverse
optics of the totai system, is equai to the unity matrix: i.e., such that $R_{i j}=1$ for $i=j$ and $R_{i j}=0$ for i not equai to j. This corresponds to a 2π betatron phase shift between the beginning and the end of the transport system. It then foliows from the generai theory of secondmorder beam-transport optics (2) that the resuiting system wiil have vanishing secondmorder transverse geometric aberrations provided that the number of unit ceils, N, comprising the totai system, does not equai one or three. Furthermore, it can be shown that if $N=4$ or more, the addition of two sextupoie components to each unit ceil, one for the x-piane and one for the ympiane, combined with the dispersion introduced by the dipoies is sufficient to eiminate ail of the second-order chromatic aberrations and at the same time stiil have vanishing second-order geometric aberrations.

The proof that aii second-order geometric aberrations wiil vanish under these circumstances is seen by writing the integrais which are used to caicuiate these terms in a form invoiving the phase shift ψ and the muitipoie strengths $K_{n}(\psi)$. Where $n=0$ is the dipoie term, $n=1$ is the quadrupoie term, and $n=2$ is the sextupoie term. For a system of N repetitive unit ceils making up a totai phase shift of $\psi=2 \pi$, the second-order geometric terms in $T_{i j k}$ are generated by integrais of the form:

$$
\begin{equation*}
\int_{0}^{2 \pi} K_{n}(\psi) \cos ^{\ell} \psi \sin ^{m} \psi d \psi \tag{3}
\end{equation*}
$$

where

$$
K_{n}(\psi)=\left.\left(\frac{1}{n!}\right)\left(\frac{1}{B \rho}\right) \frac{\partial^{n} B_{y}}{\partial x^{n}}\right|_{x=y=0}
$$

and $(\ell+m)=3$ for the dipoie and sextupoie contributions.
(See ref. 4 for a derivation of K_{n}.)

The first important observation to make is that quadrupoie components do not contribute to the second-order geometric terms but that the dipoie and sextupoie components do. (See ref. 2 for a generai derivation of these integrais.)

Transforming this integrai to the compiex piane, it assumes the form

$$
\begin{equation*}
\int_{0}^{2 \pi} K_{n}(\psi)\left[e^{i \psi}+e^{-i \psi}\right]^{\ell} \cdot\left[e^{i \psi}-e^{-i \psi}\right]^{m} d \psi \tag{4}
\end{equation*}
$$

Expanding and ignoring the numericai coefficients, the finai resuit may be expressed as a sum of terms containing two basic integrai forms, i.e.,

$$
\begin{equation*}
\int_{0}^{2 \pi} k_{n}(\psi) e^{ \pm i \psi} d \psi \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} k_{n}(\psi) e^{ \pm 3 i \psi} d \psi \tag{6}
\end{equation*}
$$

Evaiuating these integrais for a repetitive unit ceī structure, it is observed that the dipoie or sextupoie components may each be viewed as "vector additions in the compiex piane", where $K_{n}(\psi)$ is the ampiitude of the vector, ψ is its phase for eq. (5), and 3ψ is its phase for integrai (6). Both integrais vanish when N, the number of unit ceiis comprising a 2π betatron phase shift, does not equai one or three. $N=1$ is exciuded because there is no possibiiity for a vector canceilation in either integrai, and $N=3$ is exciuded because ail of the vector components in equation (6) add constructiveiy even though vector canceilation does occur for equation (5). But both integrais vanish for any other integer vaiue of N.

ELIMINATION OF THE SECOND-ORDER CHROMATIC ABERRATIONS

Ail of the second-order chromatic aberrations in a unty transform system composed of four or more identicai first-order unit ceiis may be eiiminated, without introducing new secondmorder geometric aberrations, by the proper distribution of sextupoie components through the ceil structure. One obvious way of achieving this is as foilows:
(1) Identical dipoies are introduced into each ceil of the system to provide momentum dispersion and to ailow the above integrais to vanish. The dispersion provides coupiing between the chromatic terms of the $T_{i j k} m a t r i x$ and the
sextupoies. The strength of this coupiing is proportionai to the magnitude of the momentum dispersion at the location \rightarrow of each sextupoie component.
(2) Two sextupoie components are then introduced into each unit ceil, one for the x-piane and one for the $y m p i a n e$.
 monoenergetic beam enveiope is iarge compared to the y-piane beam enveiope. Simiiariy the $y-p i a n e ~ s e x t u p o i e ~ c o m p o n e n t s$ are positioned at a iocation where the y-piane beam enveiope is Iarge compared to the $x-p i a n e ~ e n v e i o p e . ~ T h i s ~ p r o c e d u r e ~$ maximizes the reiative coupiing coefficients to the chromatic terms in each transverse piane and thereby minimizes the strength of the sextupoie components required for the correction process.

These sextupoie components may be thought of as providing additionai "quadrupoiemifke" gradient focusing eiements for the offamomentum trajectories. The strengths of the two sextupoie components are then adjusted to make the chromatic terms vanish in both the x and y pianes. This consists of soiving two simuitaneous iinear equations via an appropriate beam optics program such as TRANSPORT (3). The remarkabie resuit is that ail of the second-order chromatic terms vanish simuitaneousiy with the introduction of oniy two variabies, the $x-p i a n e$ and $y-p i a n e ~ s e x t u p o i e ~ s t r e n g t h s t h a t$ are introduced into each unit ceil structure.

The above soiution is perhaps the easiest to comprehend. However, other soiutions are aiso possibie, aii of which have the common characteristic that at least four appropriateiy positioned sextupoie components are needed in each transverse piane to correct for the chromatic aberrations. There are a number of ways to see why four or more sextupoie components in each transverse piane are needed. One is the observation that the transformation matrix for the totai system is the unity matrix to second-order. To achieve this it is necessary to have a sextupoie array that aliows a unity transform matrix to be achieved in both the x and y pianes for the off-momentum trajectories. By analogy with the monoenergetic case, a minimum of eight sextupoies is required, four for the x piane and four for the y piane. Another way of viewing the probiem is to note that the soiution of the homogeneous beam optics equation for any given momentum has two normaimmode soiutions, the so-cailed sine-iike function and the cosine-iike function (2), from which ail possibie monoenergetic trajectories may be derived by a iinear combination of these two characteristic trajectories. Therefore, in order to coupie to ail possibie offmomentum trajectories, the sextupoie correcting eiements must coupie to both the sinem and cosinemiike trajectories and at the same time not introduce new geometric aberrations. With some thought it is again evident that at ieast four sextupoie correcting eiements in each piane are required.

HIGHER ORDER OPTICAL ABERRATIONS

Aberrations of higher than second order shouid aiso be considered when formuiating a particuiar soiution for an achromat. They arise from two primary sources: (A) those which are inherent in the basic design of the first-order optics soiution, and (B) those which arise from the introduction of the sextupoie correcting eiements. Aberrations of type A are best minimized by gaining design experience, whereas the type B aberrations can be uniqueiy eilminated in some appiications by choosing the pattern in which the sextupoies are introduced into the iattice structure. This is discussed below in greater detaii.

In the recipe given in the above paragraphs for formuiating a second-order achromat, it is impiicitiy assumed that the iattice structure remains essentiaily Iinear. This is a vaiid assumption if the strength of the sextupoies needed for the correction process is sufficientiy smail. If this is not the case, then the sextupoie components may introduce non-iinear distortions into the system and thereby iimit the usefuiness of the design. Fortunateiy there is a soiution to this particuiar probiem if there is enough space avaiiabie and the budget is adequate. This speciai soiution wiil be discussed in subsequent paragraphs.

In the discussions above it has been assumed that the totai length of the achromat corresponds to a 2π phase shift. But it is obvious that the resuits quoted are equaily vaiid for systems whose iength is a muitipie of a 2π phase shift. Under these circumstances the sextupoie correcting eiements may be distributed over a ionger distance, measured in units of phase shift. Consider, for exampie, the interesting case where the number of first-order unit ceiis N making up each 2π phase shift section is four or more and is an even integer. The sextupoie components may then be introduced in pairs, the eiements of each pair being identicai and separated by a phase shift of π in both transverse pianes. The transformation matrix between them is then equai to minus the unity matrix. If under these circumstances the two sextupoies are of equai strength and of the same poiarity, then for ail monoenergetic trajectories, corresponding to the momentum of the centrai trajectory, the effect of the first sextupole on the trajectory at the end of the system is uniqueiy canceiled by the second sextupoie. This is vaiid to aii orders in the monoenergetic optics to the extent that the phase shift over the iength of the sextupoie is negiigibie. Using this principie, it is then possibie to formuiate achromats which have no higher order monoenergetic geometric aberrations caused by the introduction of the sextupoie correcting eirments. This can
be achieved in a 6π phase shift iattice by correctiy positioning two pairs of non-interiaced sextupoies into each transverse piane, x and y, making a totai of eight sextupoies. See exampie 3 at the end of the report.

SOME EXAMPLES OF SECOND~ORDER ACHROMATS

Before giving specific exampies of achromats, it is perhaps usefui to review the fundamentai purpose of the various muitipoies and iist the different ways in which these muitipoie components may be introduced into a iattice structure.

The primary function of the dipole is to bend the optic axis of the beam and to introduce momentum dispersion into the system. Dipoies, however, aiways have a first-order focusing action in addition to their zero'th order bending properties. For smail angies of bend, the first-order focusing action is usuaily very smail compared to the focusing strength of the quadrupoies in the iattice. However for iarge angies of bend and/or combined-function iattice structures, the firstmorder focusing of the dipoies can be dominant.

The purpose of quadrupoies is to provide first-order focusing to suppiement that provided by the dipoies. A quadrupoie component may be defined as any physicai eiement that introduces a first derivative of the magnetic fieid

```
with respect to the transverse coordinates x and y. This
can occur in any one of three ways: by an actuai four-poie
quadrupoie magnet, or by a rotated entrance or exit face of
a bending magnet, or finaily by a iinear fieid variation in
the transverse fieid expansion of a bending magnet.
Sextupoie components affect the second- and higher order optics of the system. Sextupuie components may be introduced via a six-poie magnet, or by a second-order curved surface on the entrance or exit face of a dipoie, or by introducing a second-order fieid derivative into the transverse fieid expansion of a dipoie or quadrupoie magnet.
The exampies given beiow use either the most convienent and/or the most economicai method of introducing the muitipoie components for the particuiar case iilustrated. A TRANSPORT printout of each exampie is given at the end of the report.
```

EXAMPLE 1

One typicai exampie of an achromat is a separated function $F O D O$ array of aiternating strong-focusing quadrupoies (Q) with interspersed dipoies (B), sextupoies (S), and drift spaces. An acceptabic unit ceil is the foilowing symmetric array of magnetic eiements:

$$
Q(x) S(x) B(x) S(y) Q(y) Q(y) S(y) B(x) S(x) Q(x)
$$

where
$Q(x)$ is a quadrupoie focusing in the x piane and defocusing in the y plane.
$Q(y)$ is a quadrupoie focusing in the y piane and defocusing in the x piane.
$S(x)$ is a sextupoie with strong coupiing to the x piane and weak coupiing to the y piane.
$S(y)$ is a sextupoie with strong coupiing to the y piane and weak coupiing to the x piane.
$B(x)$ is a dipoie whose magnetic midpiane iies in the x piane. The opticai equivaient of the above fodo array is shown in fig. 1 , where the "ienses" represent the quadrupoie components, the triangies the dipoie components, and the hexagons the sextupoie components.

An assembiy of four or more such unit ceils adjusted to a total phase shift of 2π constitutes a second-order achromat when the sextupoie components are adjusted to make the second-order chromatic aberrations vanish.

As an aiternative, the sextupoies may be introduced into the unit ceil in an asymmetric manner as foilows:

$$
Q(x) \quad S(x) \quad B(x) \quad Q(y) \quad S(y) \quad B(x)
$$

Another aiternative soiution is to combine the quadrupoie and sextupoie components into the same physicai eiement. Air

```
three cases are acceptabie achromats and wiil be essentiaily
equivaient in system performance. The advantage of the iast
twor cases is simpiy that the number of physical elements
nceded is iess than in the first case.
If in the exampie given above, the firstmorder focusing action is achieved predominateily via a FODO array of focusing and defocusing quadrupoies of equai focai iength \(f\) separated by a distance \(\ell\), then in the thin-iens approximation, and to the extent that the focusing action of the dipoies may be ignored, the phase shift per unit ceil, \(\mu\), is given by the equation
```

```
sin \mu/2=\ell/2f.
```

sin \mu/2=\ell/2f.
If now the system is composed of N unit ceiis such that $N \mu=2 \pi$ radians, the iength L of the totai system is

$$
L=2 N \ell=4 N f \sin (\pi / N)
$$

```

\section*{EXAMPLE 2}

A unit ceil may aiso be generated by using a combined function magnet as shown in fig. 2. The strength of the dipoie component is equai to the bending angie \(\alpha\). The dipoie aiso provides first-order focusing in the radiai piane. A quadrupoie component, focusing in the non-bend
piane and defocusing in the bend piane, is introduced via the rotated input face of the magnet; and two sextupoie components are introduced via the curved surfaces, \(R_{1}\) and \(R_{2}\), on the entrance and exit faces of the magnet. The unit ceil then consists of the combined-function magnet and a drift space preceeding and foīowing it. The totai achromat is composed of at ieast four such unit ceils adjusted to a totai phase shift of \(2 \pi\).

\section*{EXAMPLE 3}

An exampie of a \(6 \pi\) phase-shift achromat, having non-interiaced sextupoie pairs, is iliustrated in fig. 3 . The phase shift in each transverse piane is chosen to be the same. The correcting sextupoies are introduced in pairs with the individuai members of each pair being identicai and separated by a phase shift of \(\pi\). This corresponds to a minus unity first-order transform matrix between the members of the pair. The respective pairs, iabeied \(S x_{1}, S x_{2}, S y_{1}\), and \(S_{2}\) are separated (non-interiaced) and therefore do not introduce higher-order geometric distortions. The distance of separation is chosen such that the strengths of \(S x_{1}\) and \(S x_{2}\) are the same as \(S y_{1}\) and \(S y_{2}\). The ratio of the sextupoie strengths in the \(x\) and \(y\) pianes is then determined by the magnitude of the coupiing coefficients averaged over ail four sextupoles in each piane. The couping coefficient is proportionai to the magnitude of the momentum dispersion at each correcting eiement.

The \(6 \pi\) phase-shift achromat is most appiicabie to those systems where it is desirabie to avoid higher order geometric aberrations caused by the interiacing of the sextupoies. An exampie of this is a chromatic correction system for large storage rings (6). Another exampie is in the design of secondary charged particie beams where residuai taiis in the transverse spatiai distribution at the end point is important.

SUMMARY
Severai exampies of second-order achromats have been studied using the computer programs TRANSPORT (3) and TURTLE (5). Other studies have been made using the achromat principie to make chromaticity corrections for iarge storage rings (6). In addition secondary beams have been designed based on the achromat principie which have significant improvement in the transmitted phasemspace voiume(7). From the study of these few exampies it is evident that there are many potentiai appiications for the achromat concept.

\section*{ACKNOWLEDGEMENTS}

It is a pieasure to acknowiedge many discussions with various coileagues during the deveiopment of the achromat concept. But \(I\) particuiariy wish to thank Roger Servranckx who enthusiasticaily accepted my suggestion that the
achromat concept be adapted to the probiem of making
chromatic corrections for iarge storage rings (6), and aiso
for his suggestion that my originai concept of the achromat be anaiysed in the compiex piane.

\section*{(TRANSPORT INPUT FOR EXAMPLE 1)}
```

'A 4 - CELL ACHROMAT USING SEPARATED FUNCTION MAGNETS 9/26/77'
0
15 1 'MM';
1 0 0 0 0 0 0 10;
17;
9 4;
5 .4 8.02262 100 'QX';
18.2 1.22642 100 'SX';
3.3;
2 1; 4 5.82179 2 'ВX'; 2 1;
3.3;
18 .2 -2.38768 100 'SY';
5 . 8-8.01363 100 'QY';
18.2 -2.38768 100 'SY';
3.3;
2 1; 4 5.82179 2 'BX`; 2 1;
3.3;
18.2 1.22642 100 'SX';
5 .4 8.02262 100 'QX';
9 0;
134;
SENTINEL

```

\section*{(TRANSPORT OUTPUT FOR EXAMPLE 1)}
```

'A 4 CELL ACHROMAT USING SEPARATED FUNCTION MAGNETS 9/26/77'

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * BEAM* & 1. & & & 10.00000 & GEV & & & & \\
\hline * 2 ND ORDER* & 17. & & & & & & & & \\
\hline *QUAD* & 5. & "QX & " & 0.40000 & M & 8.02262 & KG & 100 & MM \\
\hline \[
\underset{\text { *SEXT* }}{0.400 \mathrm{M}}
\] & 18. & "SX & " & 0.20000 & M & 1.22642 & KG & 100 & MM \\
\hline 0.600 M & & & & & & & & & \\
\hline *DRIFT* & 3. & & & 0.30000 & M & & & & \\
\hline 0.900 M & & & & & & & & & \\
\hline *ROTAT* & 2. & & & 1.00000 & DEG & & & & \\
\hline 0.900 M & & & & & & & & & \\
\hline * BEND* & 4. & "BX & " & 5.82179 & M & 2.00000 & KG & & \\
\hline ( 166.782 M & 1 BEND & RADIUS & 2.000 & DEGREE & BEND) & & & & \\
\hline 6.722 M & & & & & & & & & \\
\hline *ROTAT* & 2. & & & 1.00000 & DEG & & & & \\
\hline 6.722 M & & & & & & & & & \\
\hline *DRIFT* & 3. & & & 0.30000 & M & & & & \\
\hline 7.022 M & & & & & & & & & \\
\hline *SEXT* & 18. & "S Y & " & 0.20000 & M & \(-2.38768\) & KG & 100 & MM \\
\hline 7.222 M & & & & & & & & & \\
\hline *QUAD* & 5. & "QY & " & 0.80000 & M & -8.01363 & KG & 100 & MM \\
\hline 8.022 M & & & & & & & & & \\
\hline *SEXT* & 18. & "SY & " & 0.20000 & M & \(-2.38768\) & KG & 100 & MM \\
\hline 8.222 M & & & & & & & & & \\
\hline
\end{tabular}
```

DRIFT 3.
8.522 M
ROTAT 2.
8.522 M
BEND 4. "BX " 5.82179 M 2.00000 KG
(166.782 M BEND RADIUS 2.000 DEGREE BEND)
14.344 M
ROTAT
14.344 M
DRIFT
14.644 M
*SEXT** 18. "SX " 0.20000 M 1.22642 KG 100 MM
14.844 M
QUAD 5
5. "QX
0.40000 M
8.02262 KG 100 MM

```
( THE ABOVE UNIT CELL IS REPEATED 4 TIMES, THE RESULTANT TRANSFORM MATRIX IN FIRST- AND SECOND-ORDER IS GIVEN BELOW. )
*TRANSFORM 1 *
\begin{tabular}{ccllll}
0.99999 & 0.00024 & 0.0 & 0.0 & 0.0 & 0.00007 \\
-0.00000 & 0.99999 & 0.0 & 0.0 & 0.0 & 0.00000 \\
0.0 & 0.0 & 0.99998 & -0.00002 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.00000 & 0.99998 & 0.0 & 0.0 \\
-0.00000 & -0.00000 & 0.0 & 0.0 & 1.00000 & -0.14072 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.00000
\end{tabular}
* \(2 N D\) ORDER TRANSFORM*
    1 11-4.065E-09
    \(1121.183 \mathrm{E}-06\)
    \(1130.0 \quad 123 \quad 0.0 \quad 1 \quad 331.593 \mathrm{E}-08\)
    \(124 \quad 0.0 \quad 134-4.838 \mathrm{E}-07\)
    \(1 \quad 16 \quad 7.048 \mathrm{E}-08\)
    \(134-4.838 \mathrm{E}-07 \quad 144-1.444 \mathrm{E}-06\)
    1 26-2.048Eー05
    1360.0
        1460.0
    1 66-1.159E-07
    \(211 \quad 2.023 \mathrm{E}-10\)
    \(\begin{array}{llllll}2 & 12 & 1.777 E-09 & 22 & -3.902 \mathrm{E}-07\end{array}\)
    \(2130.0 \quad 2 \quad 23\) 0.0 \(2033-1.576 \mathrm{E}-09\)
    \(\begin{array}{lllllllllll}2 & 14 & 0.0 & 2 & 24 & 0.0 & 2 & 34 & -2.143 E-08 & 2 & 44\end{array}-7.299 E-08\)
    \(\begin{array}{llllllllllll}2 & 16 & 2.859 E-09 & 2 & 26 & 2.727 E-08 & 2 & 36 & 0.0 & 46 & 0.0\end{array}\)
    \(266-3.817 E-08\)
    \(\begin{array}{lll}3 & 11 & 0.0\end{array}\)
    \(\begin{array}{lllll}3 & 12 & 0.0 & 3 & 22 \\ 3 & 0.0\end{array}\)
    \(313 \quad 5.051 \mathrm{E}-09 \quad 3 \quad 23-1.923 \mathrm{E}-07 \quad 3 \quad 33 \quad 0.0\)
    \(\begin{array}{llllllllll}3 & 14 & 9.394 \mathrm{E}-08 & 3 & 24 & 1.259 \mathrm{E}-06 & 3 & 34 & 0.0 & 44\end{array} 0.0\)
    \(\begin{array}{lllllllllll}3 & 16 & 0.0 & 3 & 26 & 0.0 & 3 & 36-7.719 \mathrm{E}-08 & 3 & 46 & -1.005 \mathrm{E}-05\end{array}\)
    3660.0
```

 4 1+ 0.0
 412 0.0 4 22 0.0
 4 13-3.832E-09 4 23 7.034E-08 4 33 0.0
    ```

```

 416 0.0 4 26 0.0 4 4 4 4 4 4 4.883E-07 4 46 5.245E-08
 466 0.0
 LENGTH 60.97400 M
(TRANSPORT INPUT FOR EXAMPLE 2)

```
```

'A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 10/5/77'

```
'A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 10/5/77'
0
0
15 1 'MM'; 15 l1 'MEV'; 15 8 'CM'; 15 5 'MM';
15 1 'MM'; 15 l1 'MEV'; 15 8 'CM'; 15 5 'MM';
1 1 1 l 1 0 0 40.51097;
1 1 1 l 1 0 0 40.51097;
17;
17;
16 5 5;
16 5 5;
16 7.4;
16 7.4;
16 12 .02177;
16 12 .02177;
16 13 -.025908;
16 13 -.025908;
9 4;
9 4;
3 21.23306;
3 21.23306;
2 30.97464; 4 16.55821 8.54609; 2 0;
2 30.97464; 4 16.55821 8.54609; 2 0;
3 21.23306;
3 21.23306;
9 0;
9 0;
134;
134;
SENTINEL
SENTINEL
(TRANSPORT OUTPUT FOR EXAMPLE 2)
'A 4 CEll ACHROMAT USING COMBINED FUNCTION MAGNETS 10/5/77'
*BEAM* 1. 40.51093 MEV
*2ND ORDER* 17. GAUSSIAN DISTRIBUTION
*G/2 * 16. 5. 0.50000E+01
* Kl 16. 7. 0.40000E+00
* 1/R1 * 16. 12. 0.21770E-01
* 1/R2 * 16. 13. -0.25908E-01
*DRIFT* 3. 21.23303 CM
    21.233 CM
*ROTAT* 2.
    21.233 CM
    30.97461 DEG
16.55817 CM 8.54609 KG
```

```
* BEND*
                    4.
    ( 15.812 CM BENDING RADIUS, 60 DEGREE BEND ANGLE )
    37.791 CM
*ROTAT* 2. 0.0 DEG
    37.791 CM
*DRIFT* 3.
    59.024 CM
*DRIFT* 3.
    80.257 CM
*ROTAT* 2.
    80.257 CM
*BEND* 4. 16.55817 CM 8.54609 KG
    ( 15.812 CM BENDING RADIUS, 60 DEGREE BEND ANGLE )
    96.815 CM
*ROTAT* 2.
    96.815 CM
*DRIFT* 3.
    118.048 CM
*DRIFT* 3.
    139.281 CM
*ROTAT* 2.
    139.281 CM
*BEND* 4. 16.55817 CM 8.54609 KG
    ( 15.812 CM BENDLNG KADIUS, 60 DEGREE BEND ANGLE )
    155.840 CM
*ROTAT* 2. 0.0 DEG
    155.840 CM
*DRIFT* 3.
    177.073 CM
*DRIFT* 3.
    198.306 CM
*ROTAT* 2.
        198.306 CM
*BEND* 4. 16.55817 CM 8.54609 KG
        (15.812 CM BENDING RADIUS, 60 DEGREE BEND ANGLE)
        214.864 CM
*ROTAT* 2. 0.0 DEG
    214.864 CM
*DRIFT* 3.
    236.097 CM
*TRANSFORM 1*
\begin{tabular}{lclllr}
0.99999 & -0.00000 & 0.0 & 0.0 & 0.0 & 0.00001 \\
0.00004 & 1.00000 & 0.0 & 0.0 & 0.0 & -0.00012 \\
0.0 & 0.0 & 1.00000 & -0.00001 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.00006 & 0.99999 & 0.0 & 0.0 \\
0.00001 & 0.0 & 0.0 & 0.0 & 1.00000 & -12.93663 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.00000
\end{tabular}
```

```
* 2ND ORDER TRANSFORM*
    1 11_-6.206E-08
    1 12-4.526E-09 1 22 2.721E-09
    113 0.0 1 23 0.0 1 33-5.415E-08
    114 0.0 1 24 0.0 1 1 34 6.396E-08 1 44 -3.417E-10
    1 16-8.695E-08 1 26-3.772E-07 1 36 0.0 1 1 4 - 1 0-0.0
    1 66 7.507E-08
    2 11 2.779E-07
    212 1.213E-07 2 22 7.570E-09
```



```
    2 14 0.0 2 24 0.0 2 < 2 < < -1.827E-07 2 44 -2.378E-08
    2 16 2.830E-06 2 26 1.022E-07 2 2 36 0.0 2-0.0
    2 66-1.051E-05
    3 11 0.0
    3 12 0.0 3 22 0.0
    313 1.784E-07 3 23 6.310E-08 3 33 0.0
```



```
    316 0.0 3 26 0.0 3 % 36-4.725E-07 3 46 -1.831E-07
    306 0.0
    111 0.0
    412 0.0 4 4 22 0.0
    4 13 1.547E-06 4 23 1.367E-07 4 33 0.0
    414-1.715E-07 4 24-6.592E-08 4-0. 4 34 0.0 4-0.0
```



```
    4 66 0.0
*LENGTH* 236.09679 CM
( TRANSPORT INPUT FOR EXAMPLE 3 )
* \(A\) 6PI ACHROMAT USING SEPARATED FUNCTION MAGNETS \(2 / 12 / 79^{\circ}\)
0
\(151{ }^{\prime} \mathrm{MM}^{\prime}\);
\(14.666 .12864 .666 .12860510 ;\)
17;
5 ' QX " . 375 9.08898 100 ;
18 'SXI". 2 8.90763 100;
3.3125;
2.93464; 4 ' \(\mathrm{BX}^{\prime}\) 5.4 2.015253; 2.93464;
3.5125;
\(5^{\circ} \mathrm{QY} . .75-9.08002100\);
3.2;
3. 3125;
2.93464; 4 "BX" 5.4 2.015253; 2.93464;
```

```
3.5125;
5 'QX' . 75 9.08898 100;
3 . 2;
3.3125;
`2 . 93464; 4 'BX' 5.4 2.015253; 2 . 93464;
.5125;
'QY'.75 -9.08002 100;
.2;
.3125;
.93464; 4 'BX' 5.4 2.015253; 2 . 93464;
.5125;
5 'QX' . 75 9.08898 100;
18 'SX1' . 2 8.90763 100;
3.3125;
.93464; 4 'BX' 5.4 2.015253; 2 . 93464;
. 5125;
'QY' . 75 -9.08002 100;
18'SY1' . 2-17.32425 100;
.3125;
    .93464; 4 'BX' 5.4 2.015253; 2 .93464;
    . 5125;
    'QX' . 75 9.08898 100;
    . 2;
    . 3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    . 5125;
    'QY' . 75-9.08002 100;
    . 2;
    .3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    . 5125;
    'QX' . 375 9.08898 100;
    'QX' . 375 9.08898 100;
    . 2;
    . 3125;
    .93464; 4 'BX' 5.4 2.015253; 2 .93464;
    .5125;
    'QY' .75-9.08002 100;
18'SY1'. .2-17.32425 100;
.3125;
    .93464; 4 'BX' 5.4 2.015253; 2 .93464;
    . 5125;
5 'QX' .75 9.08898 100;
18 'SX2'. . 2 8.90763 100;
3.3125;
2.93464; 4 'BX' 5.4 2.015253; 2 . 93464;
3.5125;
5 'QY' . 75 -9.08002 100;
. 2;
3.3125;
2 . 93464; 4 'BX' 5.4 2.015253; 2 . 93464;
3.5125;
5 'QX' . 75 9.08898 100;
```

```
3.2;
3.3125;
2.93464; 4 'BX' 5.4 2.015253; 2 . 93464;
3.5125;
'QY' . 75 -9.08002 100;
    .2;
    .3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
3.5125;
5 'QX' . 75 9.08898 100;
18 'SX2'. . 2 8.90763 100;
.3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    . 5125;
    'QY' . 75 -9.08002 100;
18 'SY2'. . - -17.32425 100;
.3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    .5125;
    'QX' . 375 9.08898 100;
    .QX' . 375 9.08898 100;
    .2;
    . 3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    .5125;
    'QY' . 75 -9.08002 100;
    .2;
    .3125;
    2 . 93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    3.5125;
    ' QX' . 75 9.08898 100;
    . 2;
    . 3125;
    .93464; 4 ' BX' 5.4 2.015253; 2 . 93464;
3.5125;
5 'QY' . 75 -9.08002 100;
18 'SY2'. 2 -17.32425 100;
    .3125;
    2 .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    3.5125;
    'QX' . 75 9.08898 100;
    .2;
    .3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    3.5125;
    'QY' . 75-9.08002 100;
    . 2;
    .3125;
    .93464; 4 'BX' 5.4 2.015253; 2 . 93464;
    .5125;
    'QX' . 75 9.08898 100;
    .2;
3.3125;
```

```
2.93464; 4 'вX' 5.4 2.015253; 2 .93464;
3.51\overline{25};
5 'QY' . 75 -9.08002 100;
3.2;
3.3125;
2.93464; 4 'BX' 5.4 2.015253; 2 .93464;
3.5125;
5'QX' . 375 9.08898 100; 13 1; 13 4;
SENTINEL
( TRANSPORT MATRIX OUTPUT FOR EXAMPLE 3 )
*TRANSFORM l*
\begin{tabular}{cclclc}
0.99998 & 0.00060 & 0.0 & 0.0 & 0.0 & 0.00021 \\
-0.00000 & 0.99999 & 0.0 & 0.0 & 0.0 & 0.00001 \\
0.0 & 0.0 & 0.99996 & -0.00010 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.00000 & 0.99996 & 0.0 & 0.0 \\
-0.00000 & -0.00000 & 0.0 & 0.0 & 1.00000 & -0.34682 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.00000
\end{tabular}
*2ND ORDER TRANSFORM*
    l 11 -9.304E-08
    1 12 2.496E-06 1 22 -9.062E-06
    113 0.0 1 23 0.0 1 33-2.243E-07
    1 14 0.0 14 24 0.0 1 1 1 34 1.719E-06 1 44 -8.287E-06
    1 16-1.746E-06 1 26-3.278E-05 1 36 0.0 1 46 0.0
    1 66 4.833E-06
    2 11 -1.779E-09
    2 12 8.865E-08 2 22-1.210E-06
    2 13 0.0 2 23 0.0 2 33-1.157E-08
    2 14 0.0 2 24 0.0 2 3 < 2 < 2 % 2.724E-08 2 44 3.561E-07
```



```
    2 66-1.012F-06
    3 111 0.0
    3 12 0.0 3 22 0.0
    3 13-5.786E-08 3 23 3.647E-06 3 33 0.0
```



```
    366 0.0
    411 0.0
    4 12 0.0 4 22 0.0
    4 13-4.041E-09 4 23 9.750E-08 4 33 0.0
    414 7.415E-08 4 24-1.047E-06 4 4 34 0.0 0.0.0.0
    416 0.0 4 26 0.0 4 4 36 1.315E-06 4 46 -3.094E-07
    4 66 0.0
*LENGTH*
    172.19859 M
```


REFERENCES

1. A preiiminary report on this work was given at the Heavy Ion Fusion Workshop heid at BNL, October 17-21, 1977. BNL 50769, pp. 107-108, and in a private communication to E. Keil at CERN in September 1977.
2. K. L. Brown, "A firstm and second-order matrix theory for the design of beam transport systems and charged particie spectrometers," SLAC Report No. 75 , or Advances in Particie Physics, 1,71-134 (1967).
3. K. L. Brown, D. C. Carey, Ch. Iseiin and F. Rothacker, "TRANSPORT a computer program for designing charged particie beam transport systems," SLAC 91 (1973 rev.), NAL 91, and CERN 73-16.
4. K. L. Brown, "A systematic procedure for designing high resoiving power beam transport systems or charged particie spectrometers," Proc. 3rd. Int. Conf. on Magnet Technoiogy, Hamburg, Germany, May 1970, p. 348 .
5. D. C. Carey, K. L. Brown and Ch. Iseiin, "TURTLE a computer program for simuiating charged particie beam transport systems, inciuding decay caicuiations," FERMILAB Report NAL-64, December 1971, and CERN 74-2, February 1974.
6. R. V. Servranckx and K. I. Brown, "Chromatic corrections for iarge storage rings," 1979 Particle Accelerator Conference and SLAC-PUB-2270.
7. D. C. Carey, FERMILAB report on the redesign of the Ml beamiine, to be pubiished 1979.

FIGURE CAPTIONS

Fig. 1. A typical separated function unit cell for a second-order achromat. The lenses represent quadrupoles, the triangles dipoles, and the hexagons sextupoles.

Fig. 2. An example of a combined function unit cell for a secondorder achromat.

Fig. 3. A typical lattice arrangement for an extended, 6π phase shift, second-order achromat using non-interlaced sextupole pairs.

Fig. 1

Fig. 2
_- sine-like function cosine-like function

Fig. 3

