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INTRODUCTION 

There are numerous appiications for magnetic-opticai 

sysGms that transport beams of charged particies from one 

iocation to another such that the transverse phase-space 

configuration of the beam at the finai position is a 

faithfui reproduction of the beam at the point of origin. 

The precision to which this objective may be achieved 

depends upon the magnitude of the phase-space voiume to be 

transmitted and upon the opticai distortions (aberrations) 

introduced by the intervening transport system. It is the 

purpose of this paper to describe a reiativeiy simpie method 

of devising a ciass of beam-transport systems which approach 

this ideai objective by eiiminating aii of the second-order 

geometric and chromatic aberrations at the end-point of the 

system. 

BASIC DESIGN CONCEPTS 

In this report we restrict the discussion to systems 

whose transverse phase-space voiume is conserved. We 

furthermore assume that space-c harge effects are negiigibie. 

Under these circumstances the foiiowing of a charged 

particie through a system of magnetic ienses may be reduced 

to a process of matrix muitipiication (2,3), such that at 

any specified position in the system an arbitrary 

charged-particie trajectory may be represented by a vector 

(singie coiumn matrix) X, whose components are the 
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positions, angies, and momentum of the particie being 

considered with respect to some reference particie (the 

centrai trajectory). In this appiication, we take the 

components of the vector X to be the same as those used in 

the TRANSPORT program (3), i.e., 

x = 

I 
where 

x= the horizontai dispiacement of the arbitrary 

trajectory with respect to the assumed centrai trajectory. 

X '= the angie this trajectory makes in the horizontai 

piane with respect to the assumed centrai trajectory. 

y= the verticai dispiacement of the trajectory with 

respect to the assumed centrai trajectory. 

y'= the verticai angie of the trajectory with respect 

to the assumed centrai trajectory. 

R= the path iength difference between the arbitrary 

trajectory and the assumed centrai trajectory. 

dp/p= the fractionai momentum deviation of the particie 

from the assumed centrai trajectory. As we are concerned 
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with oniy the transverse phase-space variabies, the 

iongitudinai component X5 = R wiii be ignored for the 

- remTinder of this report. 

In this TRANSPORT formaiism, the iinear properties of 

each magnetic iens are represented by a square matrix R, 

which describes the action of the magnet on the particie 

coordinates: 

xl = Rx0 

i.e., the ith component of the vector X is 

X i,l = c R ij 'j,O 

(1) 

where X 
0 

is the initiai coordinate vector and Xl is the 

finai coordinate vector of the particie under consideration. 

The same iinear transformation matrix R is appiicabie to aii 

such particies traversing the system (one particie being 

distinguished from another by its initiai coordinate vector 

x0 ). 

The traversing of severai magnets and interspersing drift 

spaces is described by the same basic equation, but with R 

now being the product matrix R t = Rn . ..R3 R2 Rl of the 

individuai matrices representing each of the system 

eiements. 

This iinear matrix formaiism is convenientiy extended to 

inciude second-order terms (aberrations) by the addition of 

a matrix T 
ijk 

as foiiows: 

x = c RX + c T 
i,l ij j,O ijk 'j,O 'k,O ' (2) 
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where T is a matrix representing the second-order geometric 

and chromatic aberrations. The vector components of 

interest are X = x, X 1 2 =x1,x =y,x 3 4 
= y', and 

'6 = dp/p. The geometric terms are those for which i,j or k 

are equai to 1,2,3 or 4; and the chromatic terms are those 

for which j or k is equai to 6. 

We now define a second-order achromat as any system for 

which aii R ij and aii T 
ijk 

vanish for i = 1,2,3 or 4 and j 

or k equais 6, i.e., any system for which aii of the first- 

and second-order transverse chromatic terms vanish. 

The particuiar soiution we present here is further 

restricted to the speciai case where the transformation 

matrix, from the beginning to the end point of-the system, 

is the unity matrix to second-order for both the x and y 

transverse pianes; that is, to those systems where R,, = 1 
iJ 

for i = j, and R.. 
iJ 

= 0 for i not equai to j, and aii 

T ijk = 0 for i = 1,2,3 or 4. 

ELIMINATION OF THE SECOND-ORDER GEOiclETRIC ABERRATIONS 

Now consider a static magnetic-opticai beam-transport 

system composed of a series of N identicai unit ceiis where 

each unit ceii contains dipoie and quadrupoie magnetic fieid 

components. It is then possibie to choose the dipoie and 

quadrupoie components for each ceii such that the iinear 

transfer matrix R, representing the first-order transverse 
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optics of the totai system, is equai to the unity matrix: 

i.e., such that R = 1 for i = j and R.. = 0 for i not 
* ij =J 

equai to j. This corresponds to a 2x betatron phase shift 

between the beginning and the end of the transport system. 

It then foiiows from the generai theory of second-order 

beam-transport optics (2) that the resuiting system wiii 

have vanishing second-order transverse geometric aberrations 

provided that the number of unit ceiis, N, comprising the 

totai system, does not equai one or three. Furthermore, it 

can be shown that if N = 4 or more, the addition of two 

sextupoie components to each unit ceii, one for the x-piane 

and one for the y-piane, combined with the dispersion 

introduced by the dipoies is sufficient to eiiminate aii of 

the second-order chromatic aberrations and at the same time 

st iii have vanish ing second-order geometric aberrations. 

The proof that aii second-order geometric aberrations 

wiii vanish under these circumstances is seen by writing the 

integrais which are used to caicuiate these terms in a form 

invoiving the phase shift Q and the muitipoie strengths 

Kn( '4) . Where n = 0 is the dipoie term, n = 1 is the 

quadrupoie term, and n = 2 is the sextupoie term. For a 

system of N repetitive unit ceiis making up a totai phase 

shift of Q = 27r, the second-order geometric terms in 

T ijk are generated by integrais of the form: 

2V 

/ 
K,(Q) cosRJ, sinmJ, d+ (3) 

0 
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where 

x=y=o 

and (a+m) = 3 for the dipoie and sextupoie contributions. 

(See ref. 4 for a derivation of Kn.) 

The first important observation to make is that 

quadrupoie components do not contribute to the second-order 

geometric terms but that the dipoie and sextupoie components 

do. (See ref. 2 for a generai derivation of these 

integrais.) 

Transforming this integrai to the compiex piane, it 

assumes the form 

2lT 

J- 
K,($) [ei$ + eei$le l [ei” - emi’lrn dJI 

0 

(4) 

Expanding and ignoring the numericai coefficients, the 

finai resuit may be expressed as a sum of terms containing 

two basic integrai forms, i.e., 

2Tr 

/ K,($) e +i$ d9 

0 
and 

2lT 

/ 
Kn(JI) e +3i’ dJI 

(5) 

(6) 

0 
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Evaiuating these integrais for a repetitive unit ceii 

structure, it is observed that the dipoie or sextupoie 

components may each be viewed as "vector additions in the 

compiex piane", where Kn(JI) is the ampiitude of the vector, 

$ is its phase for eq. (5), and 3~ is its phase for integrai 

(6) l Both integrais vanish when N, the number of unit ceiis 

comprising a 2~r betatron phase shift, does not equal one or 

three. N = 1 is exciuded because there is no possibiiity for 

a vector canceiiation in either integrai, and N = 3 is 

exciuded because aii of the vector components in equation 

(6) add constructiveiy even though vector canceiiation does 

occur for equation (5). But both integrais vanish for any 

other integer vaiue of N. 

ELIMINATION OF THE SECOND-ORDER CHROMATIC ABERRATIONS 

Aii of the second-order chromatic aberrations in a unity 

transform system composed of four or more identicai 

first-order unit ceiis may be eiiminated, without 

introducing new second-order geometric aberrations, by the 

proper distribution of sextupoie components through the ceii 

structure. One obvious way of achieving this is as foiiows: 

(1) Identicai dipoies are introduced into each ceii of 

the system to provide momentum dispersion and to aiiow the 

above integrais to vanish. The dispersion provides coupiing 

between the chromatic terms of the T ijk matrix and the 

-8- 



sextupoies. The strength of this coupiing is proportionai 

to the magnitude of the momentum dispersion at the iocation 

of each sextupoie component. 

(2) Two sextupoie components are then introduced into 

each unit ceii, one for the x-piane and one for the y-piane. 

The x-piane sextupoies are positioned where the x-piane 

monoenergetic beam enveiope is iarge compared to the y-piane 

beam envelope. Simiiariy the y-piane sextupoie components 

are positioned at a iocation where the y-piane beam enveiope 

is iarge compared to the x-piane enveiope. This procedure 

maximizes the reiative coupiing coefficients to the 

chromatic terms in each transverse piane and thereby 

minimizes the strength of the sextupoie components required 

for the correction process. 

These sextupoie components may be thought of as providing 

additionai "quadrupoie-iike" gradient focusing eiements for 

the off-momentum trajectories. The strengths of the two 

sextupoie components are then adjusted to make the chromatic 

terms vanish in both the x and y pianes. This consists of 

soiving two simuitaneous iinear equations via an appropriate 

beam optics program such as TRANSPORT (3). The remarkabie 

resuit is that aii of the second-order chromatic terms 

vanish simuitaneousiy with the introduction of oniy two 

variabies, the x-piane and y-piane sextupoie strengths that 

are introduced into each unit ceii structure. 
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The above solution is perhaps the easiest to comprehend. 

However, other soiutions are aiso possibie, aii of which 

have the common characteristic that at ieast four 

appropriateiy positioned sextupoie components are needed in 

each transverse piane to correct for the chromatic 

aberrations. There are a number of ways to see why four or 

more sextupoie components in each transverse piane are 

needed. One is the observation that the transformation 

matrix for the totai system is the unity matrix to 

second-order. To achieve this it is necessary to have a 

sextupoie array that aiiows a unity transform matrix to be 

achieved in both the x and y pianes for the off-momentum 

trajectories. By anaiogy with the monoenergetic case, a 

minimum of eight sextupoies is required, four for the x 

piane and four for the y piane. Another way of viewing the 

probiem is to note that the soiution of the homogeneous beam 

optics equation for any given momentum has two normai-mode 

soiutions, the so-caiied sine-iike function and the 

cosine-iike function (2), from which aii possibie 

monoenergetic trajectories may be derived by a iinear 

combination of these two characteristic trajectories. 

Therefore, in order to coupie to aii possibie off-momentum 

trajectories, the sextupoie correcting eiements must coupie 

to both the sine- and cosine-iike trajectories and at the 

same time not introduce new geometric aberrations. With some 

thought it is again evident that at ieast four sextupoie 

correcting eiements in each piane are required. 
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HIGHER ORDER OPTICAL ABERRATIONS 

Aberrations of higher than second order should aiso be 

considered when formuiating a particuiar soiution for an 

achromat. They arise from two primary sources: (A) those 

which are inherent in the basic design of the first-order 

optics soiution, and (B) those which arise from the 

introduction of the sextupoie correcting eiements. 

Aberrations of type A are best minimized by gaining design 

experience, whereas the type B aberrations can be uniqueiy 

eiiminated in some appiications by choosing the pattern in 

which the sextupoies are introduced into the iattice 

structure. This is discussed beiow in greater detaii. 

In the recipe given in the above paragraphs for 

formuiating a second-order achromat, it is impiicitiy 

assumed that the iattice structure remains essentiaiiy 

iinear. This is a vaiid assumption if the strength of the 

sextupoies needed for the correction process is sufficientiy 

smaii. If this is not the case, then the sextupoie 

components may introduce non-iinear distortions into the 

system and thereby iimit the usefuiness of the design. 

Fortunateiy there is a soiution to this particuiar probiem 

if there is enough space avaiiabie and the budget is 

adequate. This speciai soiution wiii be discussed in 

subsequent paragraphs. 

- 11 - 



In the discussions above it has been assumed that the 

totai iength of the achromat corresponds to a 2~ phase 

shift. But it is obvious that the resuits quoted are 

equaiiy vaiid for systems whose iength is a muitipie of a 

~II phase shift. Under these circumstances the sextupoie 

correcting eiements may be distributed over a ionger 

distance, measured in units of phase shift. Consider, for 

exampie, the interesting case where the number of 

first-order unit ceiis N making up each 2a phase shift 

section is four or more and is an even integer. The 

sextupoie components may then be introduced in pairs, the 

eiements of each pair being identicai and separated by a 

phase shift of IT in both transverse pianes. The 

transformation matrix between them is then equai to minus 

the unity matrix. If under these circumstances the two 

sextupoies are of equai strength and of the same poiarity, 

then for aii monoenergetic trajectories, corresponding to 

the momentum of the centrai trajectory, the effect of the 

first sextupoie on the trajectory at the end of the system 

is uniqueiy canceiied by the second sextupoie. This is 

vaiid to aii orders in the monoenergetic optics to the 

extent that the phase shift over the iength of the sextupoie 

is negiigibie. Using this principie , it is then possibie 

to formuiate achromats which have no higher order 

monoenergetic geometric aberrations caused by the 

introduction of the sextupoie correcting eiements. This can 
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be achieved in a 6a phase shift iattice by correctiy 

positioning two pairs of non-interiaced sextupoies into each 

trazsverse piane, x and y, making a totai of eight 

sextupoies. See exampie 3 at the end of the report. 

SOME EXAMPLES OF SECOND-ORDER ACHROMATS 

Before giving specific exampies of achromats, it is 

perhaps usefui to review the fundamentai purpose of the 

various muitipoies and iist the different ways in which 

these muitipoie components may be introduced into a iattice 

structure. 

The primary function of the dipoie is to bend the optic 

axis of the beam and to introduce momentum dispersion into 

the system. Dipoies, however, aiways have a first-order 

focusing action in addition to their zero'th order bending 

properties. For smaii angies of bend, the first-order 

focusing action is usuaiiy very smaii compared to the 

focusing strength of the quadrupoies in the iattice. However 

for iarge angies of bend and/or combined-function iattice 

structures, the first-order focusing of the dipoies can be 

dominant. 

The purpose of quadrupoies is to provide first-order 

focusing to suppiement that provided by the dipoies. A 

quadrupoie component may be defined as any physicai eiement 

that introduces a first derivative of the magnetic fieid 
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with respect to the transverse coordinates x and y. This 

can occur in any one of three ways: by an actuai four-poie 
4 

quadrupoie magnet, or by a rotated entrance or exit face of 

a bending magnet, or finaiiy by a iinear fieid variation in 

the transverse fieid expansion of a bending magnet. 

Sextupoie components affect the second- and higher order 

optics of the system. Sextupoie components may be introduced 

via a six-poie magnet, or by a second-order curved surface 

on the entrance or exit face of a dipoie, or by introducing 

a second-order fieid derivative into the transverse fieid 

expansion of a dipoie or quadrupoie magnet. 

The exampies given beiow use either the most convienent 

and/or the most economicai method of introducfng the 

muitipoie components for the particuiar case iiiustrated. A 

TRANSPORT printout of each exampie is given at the end of 

the report. 

EXAMPLE _1; 

One typicai exampie of an achromat is a separated 

function FODO array of aiternating strong-focusing 

quadrupoies (Q) with interspersed dipoies (B), sextupoies 

(S), and drift spaces. An acceptabie unit ceii is the 

foiiowing symmetric array of magnetic eiements: 
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Q(x) S(x) B(x) S(y) Q(y)Q(y) S(Y) B(x) S(x) Q(x) 

where 

- Q(x) is a quadrupoie focusing in the x piane and 

defocusing in the y piane. 

Q(y) is a quadrupoie focusing in the y piane and 

defocusing in the x piane. 

S(x) is a sextupoie with strong coupiing to the x piane 

and weak coupiing to the y piane. 

S(y) is a sextupoie with strong coupiing to the y piane 

and weak coupiing to the x piane. 

B(x) is a dipoie whose magnetic midpiane iies in the x 

piane. The opticai equivaient of the above FODO array is 

shown in fig. 1, where the "lenses" represent the quadrupoie 

components, the triangies the dipoie componen-ts, and the 

hexagons the sextupoie components. 

An assembiy of four or more such unit ceiis adjusted to a 

totai phase shift of 2~ constitutes a second-order achromat 

when the sextupoie components are adjusted to make the 

second-order chromatic aberrations vanish. 

As an aiternative, the sextupoies may be introduced into 

the unit ceii in an asymmetric manner as foiiows: 

Q(x) S(x) B(x) Q(y) S(y) B(x) 

Another aiternative soiution is to combine the quadrupoie 

and sextupoie components into the same physicai eiement. Aii 
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three cases are acceptabie achromats and wiii be essentiaiiy 

equivaient in system performance. The advantage of the iast 

two^cases is simpiy that the number of physicai eiements 

needed is iess than in the first case. 

If in the exampie given above, the first-order focusing 

action is achieved predominateiy via a FODO array of 

focusing and defocusing quadrupoies of equai focai iength f 

separated by a distance R, then in the thin-iens 

approximation, and to the extent that the focusing action of 

the dipoies may be ignored, the phase shift per unit ceii, 

UY is given by the equation 

sin ~12 = R/2f . 

If now the system is composed of N unit ceiis such that 

N1-l = 2a radians, the iength L of the totai system is 

L = 2NR = 4Nf sin(T/N) 

EXAMPLE 2 

A unit ceii may aiso be generated by using a combined 

function magnet as shown in fig. 2. The strength of the 

dipoie component is equai to the bending angie a. The 

dipoie aiso provides first-order focusing in the radiai 

piane. A quadrupoie component, focusing in the non-bend 
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piane and defocusing in the bend piane, is introduced via 

the rotated input face of the magnet; and two sextupoie 

comFonents are introduced via the curved surfaces, R 1 and 

R2' on the entrance and exit faces of the magnet. The unit 

ceii then consists of the combined-function magnet and a 

drift space preceeding and foiiowing it. The total achromat 

is composed of at ieast four such unit ceiis adjusted to a 

totai phase shift of 2~. 

EXAMPLE 2 

An exampie of a 6x phase-shift achromat, having 

non-interiaced sextupoie pairs, is iiiustrated in fig. 3. 

The phase shift in each transverse piane is chosen to be the 

same. The correcting sextupoies are introduced- in pairs with 

the individuai members of each pair being identicai and 

separated by a phase shift of r. This corresponds to a minus 

unity first-order transform matrix between the members of 

the pair. The respective pairs, iabeied Sxl, Sx2, Syl, and 

sy2 are separated (non-interiaced) and therefore do not 

introduce higher-order geometric distortions. The distance 

of separation is chosen such that the strengths of Sx 1 and 

sx2 are the same as Syl and Sy2. The ratio of the sextupoie 

strengths in the x and y pianes is then determined by the 

magnitude of the coupiing coefficients averaged over aii 

four sextupoles in each piane. The coupiing coefficient is 

proportionai to the magnitude of the momentum dispersion at 

each correcting eiement. 
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The 671 phase-shift achromat is most appiicabie to those 

systems where it is desirabie to avoid higher order 

geozetric aberrations caused by the interiacing of the 

sextupoies. An exampie of this is a chromatic correction 

system for iarge storage rings (6). Another exampie is in 

the design of secondary charged particie beams where 

residuai taiis in the transverse spatiai distribution at the 

end point is important. 

SUlYMARY 

Severai exampies of second-order achromats have been 

studied using the computer programs TRANSPORT (3) and TURTLE 

(5). Other studies have been made using the achromat 

principie to make chromaticity corrections for iarge storage 

rings (6). In addition secondary beams have been designed 

based on the achromat principie which have significant 

improvement in the transmitted phase-space voiume(7). From 

the study of these few exampies it is evident that there are 

many potentiai appiications for the achromat concept. 
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TRANSPORT PRINTOUTS OF EXAMPLES 

(TRANSPORT INPUT FOR EXAMPLE 1) 

'A 4 TELL ACHROMAT USING SEPARATED FUNCTION MAGNETS 9126177' 
0 
15 1 'MM'; 
100000010; 
17; 
9 4; 
5 .4 8.02262 100 'QX'; 
18 .2 1.22642 100 'SX'; 
3 .3; 
2 1; 4 5.82179 2 'BX'; 2 1; 
3 .3; 
18 .2 -2.38768 100 ‘SY’; 
5 .8 -8.01363 100 'QY'; 
18 .2 -2.38768 100 'SY'; 
3 .3; 
2 1; 4 5.82179 2 'BX'; 2 1; 
3 .3; 
18 .2 1.22642 100 'SX'; 
5 .4 8.02262 100 'QX'; 
9 0; 
13 4; 
SENTINEL 

(TRANSPORT OUTPUT FOR EXAMPLE 1) 

'A 4 CELL ACHROMAT USING SEPARATED FUNCTION MAGNETS g/26/77' 

*BEAM* 1. 
*2ND ORDER* 17. 
*QUAD* 5. “QX 

0.400 M 
*SEXT* 18. " sx 

0.600 M 
*DRIFT* 3. 

0.900 M 
*ROTAT* 2. 

0.900 M 
*BEND* 4. "BX 

( 166.782 M BEND RADIUS 
6.722 M 

*ROTAT* 2. 
6.722 M 

*DRIFT* 3. 
7.022 M 

*SEXT* 18. "SY 
7.222 M 

*QUAD* 5. “QY 
8.022 M 

*SEXT* 18. "SY 
8.222 M 

10.00000 GEV 

II 0.40000 M 8.02262 KG 100 PlM 

II 0.20000 M 1.22642 KG 100 MM 

0.30000 M 

1.00000 DEG 

II 5.82179 M 2.00000 KG 
2.000 DEGREE BEND) 

1.00000 DEG 

0.30000 M 

11 0.20000 M -2.38768 KG 100 MM 

I, 0.80000 M -8.01363 KG 100 MM 

11 0.20000 M -2.38768 KG 100 MM 
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*DRIFT* 3. 0.30000 M 
8.522 M 

*ROTAT* 2. 1.00000 DEG 
8.522 M 

*BEND* 4. "BX 11 5.82179 M 2.00000 KG 
( 166.782 M BEND RADIUS 2.000 DEGREE BEND) 

14.344 Pl 
*ROTAT* 2. 1.00000 DEG 

14.344 M 
*DRIFT* 3. 0.30000 M 

14.644 M 
*SEXT* 18. "SX II 0.20000 M 1.22642 KG 100 MM 

14.844 M 
*QUAD* 5. “QX " 0.40000 M 8.02262 KG 100 MM 

( THE ABOVE UNIT CELL IS REPEATED 4 TIMES, THE KESULTANT 
TRANSFORM MATRIX IN FIRST- AND SECOND-ORDER IS GIVEN BELOW. ) 

*TRANSFORM l* 
0.99999 0.00024 0.0 0.0 0.0 0.00007 

-0.00000 0.99999 0.0 0.0 0.0 0.00000 
0.0 0.0 0.99998 -0.00002 0.0 0.0 
0.0 0.0 0.00000 0.99998 0.0 0.0 

-0.00000 -0.00000 0.0 
0.0 0.0 0.0 

*2ND ORDER TRANSFORM* 
1 11 -4.065E-09 
1 12 1.183E-06 
1 13 0.0 
1 14 0.0 
1 16 7.048E-08 
1 66 -l.l59E-07 

2 11 2.023E-10 
2 12 1.777&-09 
2 13 0.0 
2 14 0.0 
2 16 2.859E-09 
2 66 -3.817E-08 

3 11 0.0 
3 12 0.0 
3 13 5.051E-09 
3 14 9.394E-08 
3 16 0.0 
3 66 0.0 

1 22 -5.373E-06 
1 23 0.0 
1 24 0.0 
1 26 -2.048E-05 

2 22 -3.902E-07 
2 23 0.0 
2 24 0.0 
2 26 2.727E-08 

3 22 0.0 
3 23 -1.923E-07 
3 24 1.259E-06 
3 26 0.0 

0.0 1.Q0000 -0.14072 
0.0 0;o 1.00000 

1 33 1.593E-08 
1 34 -4.838E-07 
1 36 0.0 

2 33 -1.576E-09 
2 34 -2.143E-08 
2 36 0.0 

3 33 0.0 
3 34 0.0 
3 36 -7.719E-08 

1 44 -1.4443-06 
1 46 0.0 

2 44 -7.299E-08 
2 46 0.0 

3 44 0.0 
3 46 -l.O05E-05 
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4 1+ 0.0 
4 12 0.0 4 22 0.0 
4 13 -3.832E-09 4 23 7.034E-08 4 33 0.0 
4 14 -3.596E-08 4 24 1.57LE-07 4 34 0.0 4 44 0.0 
4 16 0.0 4 26 0.0 4 36 4.883E-07 4 46 5.245E-08 
4 66 0.0 

*LENGTH* 60.97400 M 

(TRANSPORT INPUT FOR EXAMPLE 2) 

'A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 10/5/77' 
0 
15 1 'MM'; 15 11 'MEV'; 15 8 'CM'; 15 5 'MM'; 
1 1 1 1 1 0 0 40.51097; 
17; 
16 5 5; 
16 7 .4; 
16 12 .02177; 
16 13 -.025908; 
9 4; 
3 21.23306; 
2 30.97464; 4 16.55821 8.54609; 2 0; 
3 21.23306; 
9 0; 
13 4; 
SENTINEL 

(TRANSPORT OUTPUT FOR EXAMPLE 2) 

'A 4 CELL ACHROMAT USING COMBINED FUNCTION MAGNETS 1015177' 

*BEAM* 1. 
*2ND ORDER* 17. 
* G/2 * 16. 
* Kl * 16. 
* l/R1 * 16. 
* l/R2 * 16. 
*DRIFT* 3. 

21.233 CM 
*ROTAT* 2. 

21.233 CM 

40.51093 MEV 
GAUSSIAN DISTRIBUTION 

5. 0.50000E+01 
7. 0.40000E+OO 

12. 0.21770E-01 
13. -0.25908E-01 
21.23303 CM 

30.97461 DEG 

16.55817 CM 8.54609 KG 
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*BEN@ 4. 
( 15.812 CM BENDING RADIUS, 
37.791 CM 

*ROTAT* 2. 
37.791 CM 

*DRIFT* 3. 
59.024 CM 

*DRIFT* 3. 
80.257 CM 

*ROTAT* 2. 
80.257 CM 

*BEND* 
( 15.812 CM BINDING RADIUS, 
96.815 CM 

*ROTAT* 2. 
96.815 CM 

*DRIFT* 3. 
118.048 CM 

*DRIFT* 3. 
139.281 CM 

*ROTAT* 2. 
139.281 CM 

*BEND* 
( 15.812 CM iiND1NG RADIUS, 

155.840 CM 
*ROTAT* 2. 

155.840 CM 
*DRIFT* 3. 

177.073 CM 
*DRIFT* 3. 

198.306 CM 
*ROTAT* 2. 

198.306 CM 
*BEND* 

( 15.812 CM iiND1NG RADIUS, 
214.864 CM 

*ROTAT* 2. 
214.864 CM 

*DRIFT* 3. 
236.097 CM 

*TRANSFORM I* 
0.99999 -0.00000 
0.00004 1.00000 
0.0 0.0 
0.0 0.0 
0.00001 0.0 
0.0 0.0 

60 DEGREE BEND ANGLE ) 

0.0 DEG 

21.23303 CM 

21.23303 CM 

30.97461 DEG 

16.55817 CM 8.54609 KG 
60 DEGREE BEND ANGLE ) 

0.0 DEG 

21.23303 CM 

21.23303 CM 

30.97461 DEG 

16.55817 CM 8.54609 KG 
60 DEGREE BEND ANGLE ) 

0.0 DEG 

21.23303 CM 

21.23303 CM 

30.97461 DEG 

16.55817 CM 8.54609 KG 
60 DEGREE BEND ANGLE ) 

0.0 DEG 

21.23303 CM 

0.0 0.0 0.0 0.00001 
0.0 0.0 0.0 -0.00012 
1.00000 -0.00001 0.0 0.0 
0.00006 0.99999 0.0 0.0 
0.0 0.0 1.00000 -12.93663 
0.0 0.0 0.0 1.00000 
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*2ND ORDER TRANSFORM* 
1 ll+-6.206E-08 
1 12 -4.526E-09 
1 13 0.0 
1 14 0.0 
1 16 -8.695E-08 
1 66 7.507E-08 

1 22 2.721E-09 
1 23 0.0 
1 24 0.0 
1 26 -3.772E-07 

2 11 2.779E-07 
2 12 1.213&-07 
2 13 0.0 
2 14 0.0 
2 16 2.830E-06 
2 66 -l.O51E-05 

2 22 7.570E-09 
2 23 0.0 
2 24 0.0 
2 26 l.O22E-07 

3 11 0.0 
3 12 0.0 
3 13 1.784E-07 
3 14 3.832E-08 
3 16 0.0 
3 66 0.0 

3 22 0.0 
3 23 6.310E-08 
3 24 -1.909E-09 
3 26 0.0 

4 11 0.0 
4 12 0.0 
4 13 1.547E-06 
4 14 -1.715E-07 
4 16 0.0 
4 66 0.0 

4 22 0.0 
4 23 1.367E-07 
4 24 -6.592E-08 
4 26 0.0 

*LENGTH* 236.09679 CM 

1 33 -5.415E-08 
1 34 6.396E-08 
1 36 0.0 

2 33 7.801E-07 
2 34 -1.827E-07 
2 36 0.0 

3 33 0.0 
3 34 0.0 
3 36 -4.725E-07 

4 33 0.0 
4 34 0.0 
4 36 -4.322E-06 

1 44 -3.417E-10 
1 46 0.0 

2 44 -2.37aE-08 
2 46 0.0 

3 44 0.0 
3 46 -1.831E-07 

( TRANSPORT INPUT FOR EXAMPLE 3 ) 

'A 6PI ACHROMAT USING SEPARATED FUNCTION MAGNETS 2112179' 
0 
15 1 'MM'; 
1 4.666 . 1286 4.666 .1286 0 5 10; 
17; 
5 'OX' . 375 9.08898 100; 
ia 'SXl' . 2 8.90763 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 2 .93464; 
3. 5125; 
5 'QY' .75 -9.08002 100; 
3 *2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 2 .93464; 

4 44 0.0 
4 46 3.502E-07 
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3 .5125; 
5 'QX' . 75 9.08898 100; 
3 .2; 
3 l 3125; 

-2 . 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QX' . 75 9.08898 100; 
18 'SXl' . 2 8.90763 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
18 'SYl' .2 -17.32425 100; 
3 .3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QX' . 75 9.08898 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QX' . 375 9.08898 100; 
5 'QX' . 375 9.08898 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
18 'SYl' .2 -17.32425 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QX' . 75 9.08898 100; 
18 'SX2' . 2 8.90763 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QX' . 75 9.08898 100; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

- 25 - 



3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 

- 5 'QY' .75 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QX' . 75 9.08898 100; 
18 'SX2' . 2 8.90763 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QY' .75 -9.08002 100; 
18 'SY2' .2 -17.32425 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QX' . 375 9.08898 100; 
5 'QX' . 375 9.08898 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QY' .75 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QX' . 75 9.08898 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QY' .75 -9.08002 100; 
18 'SY2' .2 -17.32425 100; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 -5125; 
5 'QX' . 75 9.08898 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3 .5125; 
5 'QY' .75 -9.08002 100; 
3 .2; 
3 .3125; 
2. 93464; 4 'BX' 5.4 2.015253; 
3. 5125; 
5 'QX' . 75 9.08898 100; 
3 .2; 
3. 3125; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2. 93464; 

2 l 93464; 
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4 'BX' 5.4 2.015253; 2 .93464; 

5 'QY' 175 -9.08002 100; 
3 .2; 
3. 3125; 
2. 93464; 4 'BX' 5.4 2.015253; 2 .93464; 
3 .5125; 
5 'QX' . 375 9.08898 100; 13 1; 13 4; 
SENTINEL 

( TRANSPORT MATRIX OUTPUT FOR EXAMPLE 3 ) 

*TRANSFORM l* 
0.99998 0.00060 0.0 0.0 0.0 0.00021 

-0.00000 - 0.99999 0.0 0.0 0.0 0.00001 
0.0 0.0 0.99996 -0.00010 0.0 0.0 
0.0 0.0 0.00000 0.99996 0.0 0.0 

-0.00000 -0.00000 0.0 
0.0 0.0 0.0 

*2ND ORDER TRANSFC)RM* 
1 11 -9.304E-08 
1 12 2.496E-06 
1 13 0.0 
1 14 0.0 
1 16 -1.746E-06 
1 66 4.833E-06 

2 11 -1.779E-09 
2 12 a.a65E-08 
2 13 0.0 
2 14 0.0 
2 16 1.927E-07 
2 66 -l.o12E-06 

3 11 0.0 
3 12 0.0 
3 13 -5.786E-08 
3 14 -7.715E-07 
3 16 0.0 
3 66 0.0 

4 11 0.0 
4 12 0.0 
4 13 -4.041E-09 
4 14 7.415E-08 
4 16 0.0 
4 66 0.0 

1 22 -9.062E-06 
1 23 0.0 
1 24 0.0 
1 26 -3.2783-05 

2 22 -1.210E-06 
2 23 0.0 
2 24 0.0 
2 26 2.476E-06 

3 22 0.0 
3 23 3.647E-06 
3 24 -9.055E-06 
3 26 0.0 

4 22 0.0 
4 23 9.750E-08 
4 24 -l.O47E-06 
4 26 0.0 

0.0 
0.0 

1.00000 -0.34682 
0.0 1.00000 

1 33 -2.243E-07 
1 34 1.719E-06 
1 36 0.0 

1 44 -8.287E-06 
1 46 0.0 

2 33 -l.l57E-08 
2 34 2.724E-08 
2 36 0.0 

3 33 0.0 
3 34 0.0 
3 36 9.359E-07 

4 33 0.0 
4 34 0.0 
4 36 1.3153-06 

2 44 3.561E-07 
2 46 0.0 

3 44 0.0 
3 46 -6.128E-06 

4 44 0.0 
4 -46 -3.094E-07 

*LENGTH* 172.19859 M 
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FIGURE CAPTIONS 
-h 

Fig. 1. A typical separated function unit cell for a second-order 

achromat. The lenses represent quadrupoles, the triangles 

dipoles, and the hexagons sextupoles. 

Fig. 2. An example of a combined function unit cell for a.second- 

order achromat. 

Fig. 3. A typical lattice arrangement for an extended, 6~ phase 

shift, second-order achromat using non-interlaced sextupole 

pairs. 
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