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Summary 

The effects of a wiggler on the beam parameters 
depend on several integrals involving the machine 
functions and the field distribution in the wiggler. It 
is shown that these integrals are separable into sums 
of products of terms containing only the initial values 
of the machine functions, and terms containing integrala 
over the wiggler fields. The field-dependent integrals 
may be determined by numerical integrations based on 
measured field distribution. In typical wiggler designs, 
the energy and excitation dependencies of the integrals 
may be modeled mathematically by simple power series. 
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Figure 1. Wiggler Coordinate System 

Introduction 

= By C-y) (2) 
the X direction over the useful 

A wiggler is a system of bending magnets of alter- 
nating sign, placed in a storage ring to produce one or 
more of the following effects: 

(1) to modify the damping rates; 
(2) to modify the emittance of the beam; 
(3) to decrease the polarization time; or 
(4) to enhance the synchrotron radiation spectrum. 
In flat wigglers,l" which are considered here, 

the bends are all in the same plane. Helical wigglers3'4 
have been proposed and extensively studied in the liter- 
ature, but will not be discussed in the present note. 

For the purpose of establishing preliminary design 
criteria, a flat wiggler usually is treated as a number 
of "squared-off" or "hard-edge" magnets. However, in 
actual wigglers, much of the bending takes place in the 
end fields and therefore the beam effects, which depend 
on integrals of various powers of the local field, can 
not be expressed accurately by hard-edge models. 

The purpose of the present note is to show how the 
various effects of the wiggler may be modeled in a sim- 
ple way suitable for use in machine control. It will be 
seen that in general a total of about 17 functions are 
involved. However, in typical designs many of these func- 
tic:ns :ranish identically because of symmetries, and oth- 
ers are negligibly small. Furthermore, each of the func- 
tions may be modeled quite accurately by a simple power 
law in (B,,/E)" where Bois a measure of the field exci- 
tation, E is the beam energy, and n is an integer which 
takes on values of either 0,2, 3,4 or 5 for the differ- 
ent functions. Magnet saturation may cause the field 
distribution to vary with excitation so that the series 
coefficjents would vary slowly with Bg. 

A computer program has been used to obtain numeri- 
cal results for typical wiggler designs. In practice the 
required functions could be determined either by compllt- 
er analysis of the measured field data,or by experimen- 
tal calibration using the stored beam in the ring. 

symmetry: 
By(y) 

and to be uniform in 
beam region: aB 

Y 
ax = 0 

The design orbit may be found 
gration of the equations of motion 
(radiation reaction is neglected): 

X'(Z) = PX/PZ . 

cpP = -eB 

by numerical inte- 
in the midplane 

s'(Z) = /1+x12 

E'(Z) = 0 
where 

cPZ = E* - (mc*)* - c*p$ 

and 
B = By(O, 3, Z)(the midplane field) 

X(0) = X'(0) =o 

The circumference of the ring is perturbed by an amount 

AL=!%-to =js'dZ-P,o (8) 

where a,~ is the length along the Z axis and 11 is the 
length along the design orbit. 

The transport matrix for linearized motion 
relative to the design orbit is defined by 

Beam Optics 

It will he assumed that the wiggler is to be in- 
serted in a straight section. Two constraints then are 
imposed: (1) no net deflection of the beam;.and (2) no 
net offset of the beam. These criteria are satisfied if 
the net field integral vanishes: 

x(s) = T(s) x (0) (9) 

where the components of x(s) are [x,x', y, y', cAt,AE/El. 
(In the relativistic limit cAt- As= the path-length dif- 
erence and AEIE= Ap/p= the relative momentum deviation). 
Because of the assumptions of midplane symmetry and con- 
stant energy, the x,y and y,E coupling terms all vanish. 
The non-trivial elements tij(s) of the matrix T(s) are 
found by integration of the linearized equations of 
motion: 

tij = t2j (10) 

'ij = 
j = 1,2 

-(K+h2)tIj (11) 

(Bds = 0 (1) 
and if the bending field is symmetric about the midpoint. 
Fig. 1 illustrates coordinate nomenclature. Here X,2 
are rectangular coordinates in the midplane, s is the 
distance along the design orbit, x is the horizontal 
coordinate normal to s, and Y(Z)= y(s) is the vertical 
coordinate, The fields are assumed to have midplane 

d6 = t26 (12) 

t;6 = -(K+h*)tIB+h (13) 

4j = t4j j = 3,4 
(14) 

t4j = Ktg j (15) 

*Work supported by the Department of Energy under 
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tj, = htlj 
where 

h = l/p = B/(BP) 
K = l/(Bp)aB/ax 

tij (0) = 6ij 

j * 1,2,6 (16) 
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where 
ax = ml2 (23) 

In the vertical, m33=m4 4 by symmetry, and we 
may write 

I- 

1 %! 10 

MY = 
Y I[ I 1 4ay 

L I 

(24) 
0 1 -k 1 0 1 

where Y 

ky = -m43 (25) 

(26) 

Thus the optics are described by the fourfunctions 
1, fix, 11 
and (26 . sr 

and ky given by the equations (7). (23), (25). 
Modeling of these functions for use in ma- 

chine control will be discussed in a later section. 

As an alternative to integration of Eq. (16), 
t51 and t51 may be found from 

t51 = tllt26 - t21 t16 (17) 

t52 = t12t26 - t22 t16 

which result from the symplectic property or may be 
shown directly from the equations of motion. 

Let the matrix for the transformation all the way 
through the wiggler be defined by 

M = (mij) = T(e) (19) 

Because of the constraints of zero deflection and zero 
offset, and the symplectic property, it follows that 

m16 = m26 = m51 = m52 = 0 (20) 
Also, from the assumption that the fields are uniform 
in the X direction, it follows that 

m21 = 0 (21) 
Thus the (3x 3) horizontal matrix may be written 

M, = k:; ;:: ;;I = 1 ; !] (22) 

Synchrotron Radiation Integrals 

In order to describe the synchrotron motion, ener- 
gy loss, damping, energy spread and beam emittance, we 
need the following five integrals:5*6 

11 = fhrlds (27) 
I2 = fh2ds (28) 

13 = flh31ds (29) 

I4 = f(h3+ 2hK)nds (30) 

I5 = '$lh31Hds (31) 
with 

H = yn* + 2aqn' + 8~'~ (32) 
where y, a, 8,n and q' are the Courant and Snyder ma- 
chine functions7 in the horizontal plane (the subscript 
x is omitted for the sake of brevity).The relationship 
of these integrals to the machine parameters is given 
in Appendix A. 

The contributions of the wiggler to the above in- 
tegrals may be expressed in terms of the initial values 
of the Courant-Snyder functions, and integrals involv- 
ing only the properties of the wiggler itself. As will 
be shown in Appendix B, 

AI1 = nOAIl + $A112 + AI16 (33) 
AI2 = jh2ds (34) 
AI3 = /lh3/ds (35) 
AI4 = nOdI + n;IAI42 + AI16 (36) 

AI5 = HoAI3+ (aono+BOnh)AI5l+ (YOnO+aOn~)AI52 

+8oAI511+aoAI51z+~OAI522 (37) 

where 
HO = yonE + 2aononA + 80n;1* 

'Ilj = /htlj ds = m5j, j=l 

AI4j = /(h3+2hK)tljds, j = 1 

AIsl = 2J1h3(t51ds 

AI.52 = -2//h31t52ds 

AI511 = /Ih31t$lds 

A1512 = -2!lh31t51t52ds 

AI522 = /lh31tg2ds 

s2.6 

92.6 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

Modeling the Wiggler 

Obviously a machine control program is not going 
to evaluate on-line all the numerical integrals outlilmd 
above. What is needed is a simple mathematical model of 
each function, such as power series in hO=eBO/E(where 
B. is the wiggler field, 'say at the symmetry point).The 
coefficients of the power series could be precalculated 
from magnetic measurement data ?r found by experiments 
with stored beams. 

Fortunately several of the functions defined above 
vanish identically because of symmetries and other prop- 
ertie ‘s 

m21 , 
AI1 1 

Ah 
AI5 1 

of the wiggler. The functions which vanish are: 

ml6 and "26 (horizontal focusing anddispersion); 

= m51 and AI12 = m52 (path length terms); 

and AI42 (damping terms); 

and AI512 (quantum excitation terms). 

The remaining functions for a given wiggler field distri- 
bution may be represented by power series of the form 

f = h;(FO+F1h;‘+F2hJ;+... ) (49) 

Table I, below, gives the functional dependence of the 
leading terms on h as well as on the wiggle period X: 

L,At AP. xa $ Aq6 h;A3 

k 
Y 

h;A 

AI2 h;X 

AI3 I'+ 

AI469 AI52 h4X3' 0 

AI511 

'I522 II @Ii5 

TABLE I 

Functional Depend- 
ence of Leading 
Term of Expansions 
of Wiggler Func- 
tions. A factor of 
N (Number of Wiggle 
Periods) is implied 
for each function. 

where AL=II-a0, Aex=fix-eO, All =II -LO. The results 
in Table I have been found by cogputzr experiments. An- 
other useful result is k,,= AI2 in the lowest order. If 
the field distribution changes appreciably because of 
saturation effects, the Fj may be slowly varying func- 
tions which could be represented as power series in BO. 
Numerical examples for SPEAR and PEP wigglers are given 
elsewhere.B'g'10 Comparison of calculated results to 
experiments in SPEAR are given by Berndt, et al 8 For - -- 
normal-conducting wiggler magnets, it appears that only G 
the terms ky, A12, AI3 and (possibly) AI511 need be 
considered. 
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Appendix A. Beam Parameters 
1 

The integrals 11, 12, 13, I4 and 15 (Eqs. 33-37) 
are related tc beam parameters as follows5' 6 

2 UO = -re---<I2 
3 crnZ1 

3 
1 E 

a Y P- 3re,,2 0 f- 12 

a 
X = ay ( 1 - 14, I2 ) 

OE = ay(2+14/12) 

uE 
2 

( > E= 

E = 
x 

where 
"P = 
L= 

uo = 

r, = 

(~6) 

(A7) 

(E/L) dL/dE = "momemtum compaction"; 

ring circumference; 

energy loss per turn; 

e2/mc2 = classical electron radius; 

ax9 ay, aE are the damping rates in x, y and E; 

h/me is the reduced Compton wavelength of an 
electron; 

uE is the rms energy width; 

and 
ex is the horizontal beam emittance, in the 

absence of x-y coupling. 

Appendix B. Effect of Wiggles on the Integrals 

The transformation of : to any point in the wiggler 
may be written 

+ 
II = TX;;,+, (Bl) 

where 

To find how the function H transforms, we note that 

(B2) 
where 

c - 

B- 
7 

and n is the transpose of :. 

The matrix B is related to the invariant function W: 

W = yx2 + 2axx' + Bxr2 = 2 B s 

from which it follows that the transformation of B is 

(AZ) 
By combining Eqs. (B3), (B2), (Bl) and using 

(17) and (la), we find 

(B3) 

(A3) H = $Bo;t + 2&,BoT;ld + ;iflBoT;'d 

= HO + 2(aono+Bon~)t51-2(Yono+oon~)t52 

+ flO41 - 2aot51t52 + YoG2 (B4) 

Finally, by inserting Eqs. (Bl) and (B4) in (27) 
through (31), we find Eqs. (33) through (45). 
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