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ABSTRACT 

Simple assumptions which have little or no connection to Quantum 

Chromo Dynamics, lead to general upper and lower bounds for the slope 

of the graph for log MN, versus log MN, where MN is the N-th moment of 

the deep inelastic structure function xF3(x,q2). The published results 

of the CDHS and BEBC collaborations cover the entire range allowed by 

our bounds and therefore cannot be considered as evidence for the 

validity of QCD. 
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It is extremely important to confront experimental data with 

unambiguous predictions of Quantum-Chromo-Dynamics (QCD). One such 

prediction Cl1 concerns the large- q2 behaviour of the moments of the 

structure function xF3(x,q2) for deep inelastic neutrino-nucleon 

scattering. In a recent analysis of their neutrino experiments, the 

BEBC 121 and the CDHS c3I collaborations have plotted the logarithm of 

one such moment versus the logarithm of another moment. The slope of 

the obtained graph is then compared with the predicted ratio of 

anomalous dimensions in QCD. Agreement with QCD is good, and the 

analysis allegedly confirms the vector nature of the gluons and provides 

strong support for QCD. 

In the present note we examine this analysis. We show that under 

quite general assumptions, having little or no connection to QCD, we can 

derive non-trivial bounds for the ratios of anomalous dimensions of 

the xF3 moments. Needless to say, the QCD prediction as well as all 

available data, obey our bounds. However, the data cover the entire 

range between the two bounds rather uniformly, and it cannot be 

viewed as confirming QCD. Thus the ratios of anomalous dimensions 

do not yet provide a convincing test of QCD. 

We first ignore scaling violations, and try to "guess" the form 

of the structure function xF3(x). Near x =l a (l-~)~ behaviour is 

recommended by several arguments such as the Drell-Yan connection [41, 

Bloom-Gilman duality C5l or dimensional counting C61. Near x= 0 an 

approximate x' behaviour is suggested by the leading Regge asymptotic 

term for a non-singlet function. We therefore "guess" that for some 

value q2= qz within the presently available experimental region: 
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xF3b,43 = cx+ (1-x)3 

We f;ther assume the Gross-Llewellyn-Smith (GLS) [71 sum rule: 

1 s F3(x,q2) dx = 3 

0 

Hence 

’ = B(b ,3,4, 

(1) 

(2) 

(3) 

where B(x,y) is an Euler beta function. 

Having assumed an explicit x-dependence for some accessible value 

of q2, we now introduce scaling violations. It is very likely that any 

field theory would yield scaling violations and that for larger q2, the 

function xF3 will shift towards x=0, as a result of the emission of 

whatever fields (or "partons") which appear in the theory. A simple 

way to do this is to suggest that as q2 changes, the two powers (% and 

3) change slowly in opposite directions. We are therefore led to our 

final form: 

1 

xF3(x,q2) = cxz (1 -x)3g (4) 

2 
where f and g are arbitrary, slowly varying, functions of q , obeying 

f (4:) = g(qE) = 1 

f'(qt) g'(qZ) 2 0 

(5) 

The coefficient C, as determined by the GLS sum rule r71, will now 

depend on f and g: 

(6) 

C 
3 = 

( 
1 

Bp%+l ) 
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Our complete equation for xF3 is therefore: 

1 
4r 

xF3(x,q2) = 
3x= (1-x)3g 

B(&, %+I) 
(8) 

The N-th moment s(q2) is defined as C81: 

1 

y$Jq2) = 
J 

xN-2 
l xF3(x,q2) dx (9) 

0 

It is easy to see that by inserting eq. (8) into eq. (9) we get: 

Notice that all of our assumptions have little or no relation to QCD. 

Most of them are likely to be true in any field theory. Others (such 

as the x' behaviour near x=0) are more suspect, but are supported by 

empirical evidence and are unrelated to any known field theory. 

We are now ready to state our main result. Given our expression 

(81, we can calculate upper and lower numerical bounds for the slope 

of the graph of log MN(q2) versus log s,(q'). Denoting such a slope 

by p,,/p, we find (for N' > N): 

$(rJ'+3.5)--JI(4.5)~J,(N)-0.5)+Q(0.5) -< PN' _< $(N'+3.5)-G(4.5) 
JICN+3.5)-J,(4.5)-$(N-0.5)+$(0.5) PN $(N+3.5)-G(4.5) 

(11) 

where $(x) is the logarithmic derivative of the gamma function: 

$W = $ log r(x) (12) 
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An equivalent form of the bound (11) utilized the recursion formula 

for t,he function G(x). We get (for N' > N): 

N'-1 1 

c( 
1 

k+3.5 - k-O.5 pN '2' (k+13.5) 
k=l 

-<- 
N- 1 

C( 

1 1 
k+3.5 - k-O.5 

k=l 

'd -< ii: ( k+13,5, 
(13) 

k=l 

The numerical values of the bounds for some N', N values are listed in 

table I together with the corresponding predictions of QCD and the 

results of the CDHS and BEBC analysis. 

The derivation of the bounds is straightforward. Using eq. (10) 

we find: 

-+ log M.&12) = 
dq q2= 4: 

+(N-0.5)~$(0.5)1 

- (3g’- 5) C$(N+3.5) -Q(4.5)1 (14) 

where f', g' are the derivatives of f,g at qt, obeying eq. (6). Re- 

2 membering that f and g are slowly varying functions of q , the slope 

pN,/pN is then given by: 

pN’= C$(N'-0.5) -$(0.5)1+ (6$ l)C$(N'+3.5) -9(4.5)1 

pN 
(15) 

C$(N-0.5) -$(0.5)1+ (6% -1)CJ,(N+3.5)-+(4.5)1 

The slope is a monotonic function of the non-negative ratio g'/f' and 

its bounds are found by substituting g'/f'=O and f'/g'=O, respectively, 

leading to eq. (11). 

The assumptions which lead to our form (eq. (8)) of xF3 are quite 

general (and are consistent with the gross features of the existing data). 
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It is therefore apriori guarranteed that the slope of log MN, versus 

log MN will obey our bounds (eq. (11)). In order to claim that the 

experimental slope provides a valid test of QCD (or that it prefers QCD 

over some other reasonable possibility) we have to show that within the 

domain defined by our bounds, the QCD value is preferred. Figure 1 

indicates that this is not the case. The CDHS data [21 for the Cornwall- 

Norton moments L81 and Nachtmann moments L81 cover the entire range 

between our bounds. The BEBC points C2l for the Nachtmann moments C81 

are slightly more convincing, but they lean heavily on low-q2 data. 

In fact, a reanalysis of the BEBC data with a higher q2-cutoff yields 

higher values C91 for pN,/pN. 

An extremely puzzling numerical coincidence emerges from our 

analysis. We have no good reason to assume that f'=g' in our expression 

(15) for pN,/pN. However, if we arbitrarily make this assumption, we 

obtain pNr /pN values which are incredibly close to the QCD predictions 

<e.g., we obtain p5/p3 = 1.453 compared wit,h the QCD value 1.456; 

p6'p4 = 1.301 compared with 1.291, etc.). We do not understand this 

peculiar coincidence, which does depend on the powers % and 3 in our 

original formula for xF3. 

We conclude with a few comments: 

(.a) The widely publicized QCD test C2,31 of plotting log MN, versus 

log $ has the advantage that it does not depend on the two free 

parameters NF (number of quark flavours) and A (the scale para- 

meter). However, in integrating the data and eliminating the 

q2-dependence, important additional information is lost. The 

explicit q2-dependence predicted by QCD is not probed by the test, 
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and, as we have showed in this note - the present data do not 

allow us to reach definite conclusions. 

(b) We have no criticism of more direct QCD tests such as plotting 

s(q2) versus log q2. Such tests are valid, but they depend, 

of course, on NF and A. 

(c) The numerical values of 

variation of the powers 

our bounds are not very sensitive to a 

% and 3, assumed in eq. (8). Any value 

of these powers which is not far from the experimental x-dependence 

in the present q2-domain, would yield bounds similar to those 

listed in table I and shown in fig. 1. For instance, an x4(1-x)~ 

behaviour gives 1.19 < p5/p3 2 1.75 instead of 1.18 < p5/p3 5 1.71. 

(-d) A technical side remark: Our general expression eq. (8) has the 

property that if one slope pN,/pN agrees with QCD, all other slopes 

(for N', N < 8) must be in good agreement with QCD. Hence, when 

and if data are sufficiently accurate to select a small numerical 

range within our bounds, thus providing a meaningful test of QCD, 

one slope will tell us the whole story. Other slopes will not 

provide independent tests. 

Until such time, we believe that the practice of using the slope 

of log MN , versus log s as a convincing test of QCD is unjustified. 

Direct plots of q2-dependence over wide q2 -ranges are more meaningful, 

and will hopefully support QCD. 

We thank our colleagues in the SLAC theory group for helpful 

discussions. 
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FIGURE CAPTION 

4 

Fig. 1. For each published slope of log MN, versus log MN we show 

our lower and upper bounds together with the results of the 

BEBC (ref. 2) and CDHS (ref. 3) analysis. We show only 

results which were published by the experimental groups 

themselves. We therefore do not have the p,/p, values for 

CDHS, the p6/p3 value for BEBC and the Cornwall-Norton 

moments for BEBC. The figure indicates that the data do 

not clearly prefer any particular slope within the guaranteed 

bounds. 
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