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ABSTRACT 

The phenomenological analysis of the weak-strong instability 

for an electron storage ring is developed. The vertical size of 

the weak beam is found to depend on two machine parameters: 6, 

which is proportional to AQ, and b, which depends on the aspect 

ratio of the strong beam. The model also contains one fitting 

parameter. 

Experimental consequences of such dependence are discussed. 

(This manuscript is an extended version of a paper presented at 
the 1979 Particle Accelerator Conference, San Francisco, CA, 
March 12-14, 1979.) 
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1. INTRODUCTION 

-‘A complete analytical solution of the problem of the beam-beam 

interaction is hardly possible. The difficulty is mainly due to the 

nonlinear character of the forces involved. 

At the same time, this strong nonlinearity leads to fast mixing 

of the particles within the bunch. Particle coordinates in phase space 

become erratic and in the long run each given particle can be expected 

to appear at any point of the space occupied by a bunch. The behavior 

of the particle does not depend on its initial coordinates. The particle 

motion resembles a random walk rather more than movement along a 

trajectory. 

Under these conditions, we can try to find the volume of the phase 

space occupied by the ensemble of particles by considering the forces 

due to beam-beam interaction as a diffusion force (in addition to the 

diffusion forces which exist in their motion due to all other reasons 

such as quantum excitation, residual gas scattering, intrabunch 

scattering and so forth). 

It is extremely important in this approach to deal only with the 

nonlinear part of the force, since the linear part does not lead to 

stochasticity of the motion. The linear part can be included in the 

machine structure, thus giving only the changes in the closed orbit 

and tune shift of the particle oscillations. By no means does the 

linear force increase the phase volume (the Liouville theorem). 

Moreover, it is not quite clear how strong the nonlinearity should 

be to change the character of the motion to being purely stochastic. 
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The only criterion now existing is the Chirikov criterion1 which is very 

difffcult to formulate quantitatively in the presence of many resonances 

acting simultaneously. This uncertainty and the more or less arbitrary 

procedure of subtracting the linear part of the force makes this analysis 

of a phenomenological type, requiring the introduction of a fitting 

constant. It is not quite clear yet if and how this constant can be 

expressed through physical parameters of the storage ring. 

We restrict ourselves to the one dimensional case of a vertical 

motion of a particle in an electron storage ring. Further, we consider 

the weak-strong instability, thus assuming the particle distribution 

function of the strong bunch to be unaffected by beam-beam interaction. 

The action of the strong bunch on a probe particle in the weak bunch is 

approximated by a nonlinear "kick". 

In Section 2 we derive an approximate equation for the distribution 

function. In Section 3 the beam blow up is estimated for the case of a 

Gaussian strong bunch. In Section 4 we discuss experimental consequences 

suggested by this analysis and make the comparison with an experiment. 

2. EQUATION FOR THE DISTRIBUTION FUNCTION 

Let Y and ? = dY/dt be the excursion from the median plane and 

for corresponding velocity of a particle of the weak bunch at the 

interaction point. It is convenient to consider particle coordinates 

in units of the vertical size C of the strong bunch 

Y =Y/C , (1) 
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; =+/c . (2) 
-h 

If the length of the strong bunch is much less than the wave length 

of the vertical oscillations then by one passage through the strong 

bunch the coordinates of the particle are changed by: 

by=0 , (3) 

Ajr=F(y) . (4) 

The actual dependence F(y) can be found at least in principle for 

any given particle distribution of the strong beam. Taking this 

change into account we can write the following equation for the particle 

distribution function f(t, y, $) of the weak bunch: 

62f = 90 .2 - + c 6(t-tk) fCtk, Y, i+F(y)l - f(tk,y, ;) . 
6Y k 

The left hand side of this equation describes the change of the function 

f due to particle oscillations with a frequency WOQ and a damping 

rate ci. The right hand side represents the change of particle density 

in the phase space (y, I;) due to all possible reasons but beam-beam 

interaction (the first term) and due to the interaction occurring at 

the times t k = to f 28k /won, k = 1, 2, . . . , (the second term, n, 

is the number of interactions on one revolution). 

If we are not interested in details of the fast time variations 

of the distribution function which are of the order of magnitude of one 
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revolution period or less) then the sum on the right hand side of 

(5) C~JJ be simplified: 

c G(t-$1 
k 

f[tk,y, ;+F(y)l - f(tk,y, ;) > 

nQJ0 1! - {f[t,y,;+F(y)l - f(t,y, ;) . 
2lI > 

We can further expand the difference in (6) into series in 

F(y). We are ready now to use the feature of fast particle mixing 

discussed above. The application of this idea means that we can 

substitute the coefficients F(y) and F2(y) by the values obtained from 

averaging them over an ensemble of the particles of the weak bunch. 

The velocity jumps, of magnitude A;, occur in all phases of 

betatron oscillations. Hence the averaging over any distribution 

symmetric in y makes the first coefficient vanish. 

Let us define the diffusion coefficient due to interaction as 

nw 
9. int 

= 2 < F2(y) > , (7) 

where brackets stand for averaging the function F2(y) over the distri- 

bution function f(t, y, G), which satisfies the following Focker-Planck 

equation: 

6f + * 6f 6f 
6T 

Q-f -2 a" (iTf)- ,2Q2 y. = 
6Y 6Y 

( 
62f 

qO + 'int - ) 
6i2 . (8) 

The solution of this equation is well known.2 In the limit as t -t QI 

(stationary solution) it is a Gaussian function in both variables y 
. 

and y. 
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3. THE EVALUATION OF THE BEAM BLOW UP 

The dispersion u of the distribution function in y for the 

stationary solution can be found from the equation: 

(9 = 
( 4, + q-jnt 1 ‘2a 

or 

,2 = c2 + qint /2a 

(9) 

(10) 

by definition of C. Since qint is an integral over the distribution 

function with the same dispersion o, (10) is a transcendental equation 

for o. 

We solve now this equation assuming that the distribution function 

of the strong bunch is Gaussian in all three dimensions. In this case 

the function F(y) from (4) is known to be3: 

F (Y> = 6$,(y) , (11) 

where 

5 = 2~AQI:(Jli-b2 + b)/(m-b)l'/ 6 , (12) 

J 
1 

4J,(Y) = Y 
du 

exp (-uy') 
0 GTiP 

(13) 

In these expressions 

AQ = e2NB 
/( 

2 E(Ch+ C)Z) (14) 

is the Courant parameter giving the linear tune shift of the vertical 

betatron oscillations of the weak beam particle due to the electromagnetic 
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interaction with the strong bunch containing N particles.4 E is the 

particle energy and 6 is the value of betafunction at the interaction 

.poinC Ch and C are the dispersions of the strong bunch distribution 

in horizontal and vertical planes. 

Parameter b is defined as follows: 

b = ( z&)/Jl- (c/c )2 * (15) 

For a small aspect ratio of the beam, 

The function Oh(y) describes y -dependence of the force acting on 

a particle from the side of the strong beam. For small values of y 

4;(y) = 2(6-i?b)y (16) 

gives the linear part of the force. 

Let us describe the blow up of the weak beam by a ratio d = o/C. 

Equation (10) can now be rewritten as 

d2 = 1 + oQb(d) , 

where n and @ are defined by the following expressions: 

na0 
rl = K (2rAQj2 , 

m 

Qb(d) = (m+b) 

I 

T2 (y) !2-y2'd2dy . 
J;;d(m-b) 

-03 

(17) 

(18) 

(19) 

If AQ+O, so that n-to, then d=l, i.e., we have an unperturbed beam. 
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The function Tb in the integrand of (19) is related to the 

function 'b in (11) by some reduction procedure. 

The simplest possible reduction would be a subtraction from 

$b(y) of its linear part (16). Such a procedure seems to be unsatis- 

factory since large values of y yield unacceptably large values in (16). 

The introduction of a cut-off factor also does not give a reasonable 

description of the beam blow up. 

The only reasonably good results were obtained by the following 

reduction, depending on an arbitrary constant, h: 

Tb (y) = ‘#b(Y) - (I- h) $b O<h<l . (20) 

This expression does not contain the linear term for any value of h. 

Figs. l- 3 represent the results of the solution of equation (17) 

for different values of the parameters h and b. The value of d is 

plotted as a function of the variable fi which is proportional to AQ 

or, in different units, to the current of the strong beam. 

The calculation of the function cPb(d) can be found in the 

appendix. 

4. CONCLUSION 

The analysis suggested here has the major drawback of using an 

arbitrary and poorly understood reduction procedure (20). This intro- 

duced into the analysis a fitting parameter h, the magnitude of which 

should be chosen in such a way that instability occurs at the correct 

value of the strong beam current or the Courant parameter AQ. 

Fig. 4 illustrates this by comparing the vertical size of the 

weak beam measured5 on SPEAR with a calculated curve fitted with the 



-9- 

help of parameter h . The actual value of h for this case happens to 

be 0.U. 

We can also draw some conclusions which can be checked by experi- 

ment. First of all, we see that the beam blowup depends on the variable 

6 rather than on AQ, itself. Further, the model suggests a certain 

dependence of the instability threshold both on the number of the inter- 

action points and on the energy of the particle. Of course one should 

remember that this holds only if the fitting parameter h does not depend 

on either of these variables. And finally, for the quantitative descrip- 

tion of the beam blow up, one needs also to take into account the aspect 

ratio b of the strong bunch. 

The analysis can be extended to the much more complicated case of 

the strong- strong interaction. 
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APPENDIX 

We calculate here the function Oh(d) which enters equation (17). 

Let us define 4 b = yI(y). (S ee Equation (13).) 

1 

I(y) = 
/ 

du 

Ji-T-3 
0 

Using the reduction procedure (20) 

exp(-uy'). (Al) 

we get for Q, b : 

We change now the order of integration in (A2). Performing the 

integration over y we get: 

Qb(d) =- ; ;;" z; / Ju+dL2 [p,,(u) + (l-h)3plo(u) - 2(l-h)301i(u)].(A3) 

0 

where 

dv 

312 
Jm 

(A4) 

with 

h m = (1-mh)2, m= 0,l . 

It is easy to evaluate the integral in (A4): 

r. - s. 
pim(") = (uhm?ahi/diy(l- sim) ' 'im ' ' 

M) 

(A61 
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where 

h 

For sim = 1 

Jl+b2 
r = 

im Juhmfhi/d2+ 1 ' 

b 
S = 

im JUhm+hi/d2 ' 

p. = 1 
lrn 2(uhm+hi/d2)(uhm+hi/d2+1) ' 

All three integrals in (A3) are of the same type: 

$,,(u) = 
/ 

du 

l&T-P 
Pim(u) 

/ 

du Jl+b2 = 
4z-s- &hm+hi/d2+1 (uhm+hi/d2-b?) 

-1 du b 

dm &hm+hi/ d2 (uhm+hi/ d2- b2) 

We use the substitutions 

XT = uhm + hi/ d2 + 1 

for the first integral in (AlO) and 

2 = 
x2 uhm + hi/ d2 

for the second one. 

Using now the identity: 

(A71 

w3) 

(A91 

(AlO) 

(All> 

(A121 

2a 1 
,2-.2 =& - - x+a 
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we get the result: 
CI 

+,,(u) = -21= h. 
Jhm 

l-k2 - b2hm, m, 
d2 

x1 
j 

( h. 
- S l-t1 - b2hm, 

d2 
-m, x1 

j 

- &, 
m' 

Here the function S is defined as follows: 

s(a, B, x> = 

I 

- 

1 
A (xl for a > B2 

G-p- 

J(x+ 8)/(x- 8) / B for a = fi2 

1 

I 

L w for a < B2 
4F-T 

+S hi - - b2hm, -b, x2 
d2 . 

There are the following notations in (A15): 

A(x) = arctan f3x - a 

-42-a ’ 

JB'iT-ccJxT--a-a+Bx for a # 0 
X-B 

L(x) = 

1 
En 1 1 f B/x I for a = 0 

for b = 0 formula (A14) simplifies to: 

$,W = A- 
h. h. 

Jh7c; 
so++, 1, x1) - s(l++ -1, x1) 

d d2 

(AU) 

(Al5) 

(A16) 

(A17) 

(A181 
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The values of x1,x2 in formulae (A14-A18) should be taken equal 

to the values obtained by substituting the integration limits for u in 

formulae (All, A12). When b* < hi/d' or b* > hi/d2 f hm they are simply 

0 and 1. However, if hi/d2 I b* 5 hi/d2 + hm then the integration 

should be performed excluding point u0 = (b* - hi/d2>/hm from the 

integration path. 

Figs. 5- 7 give examples of the dependence Qb(d) for different 

values of parameters h and b . 
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FIGURE CAPTIONS 

Fig. 7. Beam blow up. The ratio d= o(G)/o(O) is plotted versus 
Vnw 

parameter J;; = /- -$- AQ, where n is the number of inter- 

action points, wo and a are revolution frequency and 

damping rate of vertical oscillations, AQ is the linear 

tune shift due to beam-beam interaction. The curves are 

calculated with different values of fitting parameter h. 

The left one corresponds to h = 0.01. For each subsequent 

curve h increments by 0.01. The value h for the last 

one is 0.10. The aspect ratio of the strong bunch 

b = 0.0 (infinitely thin flat strong Gaussian bunch). 

Fig. 2. The same as Fig. 1, with the aspect ratio of the 

strong bunch b = 0.1. 

Fig. 3. The same as Fig. 1, with the aspect ratio of the 

strong bunch b = 0.3. 

Fig. 4. The comparison of calculated beam blow up (the curve) 

with the measurements5 of the vertical size of the 

weak beam (points). The strong bunch aspect ratio 

b = 0.035. The value of the fitting parameter h = 0.04. 

The bars represent the measurement errors only, and do 

not include any instrumentation errors. 

Fig. 5. Function Oh(d) from (17) for different values of the 

fitting parameter h and for b = 0.0. 

Fig. 6. The same as Fig. 5, but b = 0.1. 

Fig. 7. The same as Fig. 5, but b = 0.3. 
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