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I . . 

1. Introduction 

The study of Reggeon field theory in zero transverse dimensions 
l-4 

(Reggeon quantum mechanics) has made significant contributions to our 

understanding of the behavior of the theory in higher transverse dimen- 

sions. In this paper we present accurate numerical calculations of the 

energy levels and Green’s functions in Reggeon quantum mechanics. 

Our calculations are based upon moment recursion relations, which 

have recently proven extremely useful in the study of the anharmonic 

osci 1 lator. 5 Reggeon quantum mechanics provides an interesting test of 

the recursion relation approach since the Hamiltonian is not hermitian 

and some of the standard calculational techniques are therefore not 

applicable. One can perform a canonical transformation of variables so 

that the new Hamiltonian is a simple function of the new position co- 

ordinate. 
1 

There are, however, subtleties in applying the proper boun- 

dery conditions in the new coordinates. in contrast, the moment approach 

is straightforward to apply to the original form of the hamiltonian 

(written in terms of creation and destruction operators) for which the 

boundary conditions are simple. 

The behavior of the theory when the intercept of the bare Poneron, 

ao, is above one is particularly interesting. In this region the un- 

renormaiized perturbation series in r, the triple Poneron coupling, is 

not Bore1 summable, and the energy levels and Green’s functionsrmust be 

defined by analytic continuation from a0 < 1. The moment recursion 

relations allow us to make this continuation and to obtain highly ac- 

curate numerical results. 
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We present the moment method in Section II and the method of 

so.lutioC in Section I I I. Then we briefly discuss our results in Section 

IV. 

II. Moment Recursion Relations 

We study the Hamiltonian 

where A = 

bare trip 

annihi lat 

H = A$+$ + $ir($+‘$ + qtq2), (1) 

1 - a0 is the intercept gap of the bare Pomeron and r is the 

le Pomeron coupling constant. I)+ and JI are the creation and 

ion operators of the bare Pomeron. They satisfy the standard 

commutation relations 

[*, v+1 = 1. 12) 

We have only taken into account the triplet Pomeron coupling, but the 

generalization of our techniques to include higher order couplings is 

straightforward. 

Let us first consider the eigenvalue equation 

(3) 

it is obvious that the bare vacuum state defined by $lO> = 0 is an 

exact left and right eigenstate of ff with eigenvalue zero. We therefore 

write I@o> = IO), Eo = 0, and focus our attention on the Ej with 

j 2 1. We start by introducing moments for the j th 
eigenstate: 
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, * I 

4 
Fm(Ej) ~ <Ol~ml~j)~ 

Taking matrix elements of the commutator 

[qrn, ,ff] = mA$" + +ir[m$m+ ’ + m(m - l)$“- ’ + 2mQ+$m] 

between the states (01 and laj> gives6 

EjFm(Ej) = mAFm(Ej) + +irm[Fm+l (Ej) + (m- 1)F m- 1 (Ej)]. 

Our program for obtaining the energy levels from Eq. (6) is as 

fQllOWS. We start by deriving an asymptotic expansion for FM(E) and 

M and general F H+l(E) f or some large valuesof 

sarily equal to E.. We then use 
J 

the F,(E) for m < M. Since Eq. 

Eq. (6) to ca 1 

(6) is linear, 1 

values of E, not neces- 

culate recursively al 1 

we of course determine 

the F,(E) only up to an overall constant (which will be fixed by norma- 

l iration). Equation (6) with m = 2 yields F1 (E). Since Fo(Ej) must 

vanish from orthogonality, Eq. (6) with m = 1 yields the eigenvalue 

(4) 

(5) 

equation 

This equat 

namely E = 

E = A + +irFZ (E)/F~ (E). 

sat isfied for part 

the eigenvalues of 

ion is, of course, only 

E .; 
J 

it thus determines 

The Green’s functions 

(7) 

icular values of E, 

if. 

G,(E) = <OI$“(E - 14)-l++ O> (8) 
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can be computed in a similar way. The matrix elements of the commutator 

[lCjm, E”ff] between the states (01 and (E - ff)-‘$+lO> can be easily 

manipulated to yield the equation 

EGm(E) - em 1 = mAGrn(E) + “rirm[Gm+ l(E) + (m- 1)~~~ 1(E)], (9) 
, 

Notice that for m > 1 Eqs. (6) and (9) are identical so that G,(E) is 

proportional to F,(E). The overall normalization of the G,(E) is deter- 

mined by Eq. (9) with m = I; this gives 

G;l (E) = E - A - firG2 (E)/G, (E). (10) 

Since Gz(E)/G~ (E) = Fz(E)/Fl (E), we see by referring to Eq. (7) that the 

Green’s functions will have poles if and only if E = E j, just as in the 

case of a hermitian Hamiltonian. 

III. Asymptotic Behavior 

We now turn to the problem of analyzing the asymptotic behavior of 

F,(E) in’order to determine the eigenvalues and the Green’s function. 

We first notice from Eq. (6) that F,(E) must be an increasing function 

of m for large m and that 

F m+, (E)/Fmwl (E) - -m. 
rn-+m 

We therefore write 

F,(E) =‘ (-iJT)m- ’ I?(+) f,(e) 

(11) 

(12) 
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and note that the reduced moment f,(e) satisfies the equation 

f m+ ,(e) - fm- ,(e) = -N(m) (d - %) f,(e) 9 

where 

Since Eq. (13) is a second order d 

dent solutions; in fact, note that 

does (-)mfm(-e, -d) . 

ifference equation, it has two indepen- 

if f,(e, d) satisfies (13)) then so 

Since for large m, 

(13) 

(14) 

I + - + O(m-*)I , (IS) 
4m 

We see that these solutions have the asymptotic forms (for m+a) 

f;(E) z C-expI-a(m)] (16) 

f:(E) g C+(-jm exp[+@(m)], 

where @b-d = 2dmf + (2e - +d + kd’)m-’ + O(m- % 

and the Cr are constants independent of m. 
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Thcperturbation series (in r) for Gm, Fm and Ej are all Bore1 

summable for A > 0. In fact, Reggeon field theory is originally defined 

by its bare perturbation series for positive A; thus we have the 

following boundary conditions for r + 0, A > 0: 

G , ( E )  * 6m ,  
, (E - A)-' 

Fm(Ej) -t ' ,,j (m!)' 

(17) 

E. 
J 

+ jA. 

As a result, it is clear that we must use the solution f,(E) for r > 0 

and f;(E) for r K 0. From Eqs. (6) and (9) we see that . 

Ej kd = Ej(r) (18) 

G,(-t-1 = (-)mGm(r), 

so without any loss of information we may take r > 0, and we shall do so 

for the remainder of this paper. 

For A < 0 any perturbation series in r is no longer Bore-l summable, 

and the quantities of interest must be defined by analytic continuation 

from A > 0. This means that (recall r > 0) we must use the solution 

with the.asymptotic form fi for all values of A. 
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Now for A > 0, r > 0, fi is the sub-dominant solution for large m 

and the^solution of our problem is straightforward. It is convenient to 

introduce the quantities 

h,(E) = fm + , (E)/fm(E) 

in terms of which Eq. (13) becomes 

h m _ 1 (E) = [h,(E) + N(m) (d - $)I-‘. 

For some large value of m, say M, we use the asymptotic form for f- 
m 

to write 

hM = exp[-dM -% + (e +xd3)M-’ + O(M 4 
>I, 

09) 

(20) 

(21) 

and then calculate all of the hm for m < M from Eq. (20). 

Since we are primarily interested in the Pomeron propagator Gl(E) 

and in the energy levels, E., it is convenient to write then in the 
J 

dimensionless form 

g(e, d) 5 rG1 

where g(e, d) is determined by 

g-‘(e, d) = e - d - (2.rr)-‘hl (e). 

The eigenvaloes e. are simply the zeroes of g-‘(e, d). The calculation 
J 
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llustrated in Table of g(e, d) and ej(d) converges very rapidly as is i 

FurtherGre, g(e, d) is quite insensitive to errors in h 
M‘ 

The reason 

I. 

is that even an error in h M 
of order one only corresponds to an admixture 

in hl of the unwanted solution, f i, of order exp(-4dM’). The insensiti- 

vity of g(e, d) to variations in hM is illustrated in Table II. 

The above procedure must be modified for A < 0, because the solution 

of interest, f- 
m’ 

is then the dominant one for large m. This means that 

g(e, d) will be extremely sensitive to any error in h 
M’ 

To avoid this 

difficulty, we make a similarity transform of the Hamiltonian by writing 

= (A - ar)$+$ + +i r[$+*JI + $+**I + ia(A - $ar)$ - 4ar$*. 

Fi will of course have the same eigenvalues as H. The e i genvector 

corresponding to E. 
J 

is lij> = exp(ia+)jQj>. 

introducing the new moments 

(24) 

(25) 

and Green’s functions 

G^ (E) = <OjGm(E - @$+/O>, 
m (26) 

we obtain by use of the commutator [$J~, Ci] the recursion relations 
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I 

Ejpm(Ed = (A - ar)mFm(Ej) (27) 

+ +ir[(m+a(2d - a))Fm+l (Ej) * m(m- l)Fm-, (Ej)l - 4arFm+,(Ej) 

and 

Eim(E) - 6m , = (A - ar)Gm(E) (28) t 

+ +ir[(m+a(2d - a))im+, (E) + m(m- l)im-, (E)] 

- farGti2 (E) . 

Since Eqs. (27) and (28) are third-order difference equations, they have 

three independent solutions. These solutions have the asymptotic forms 

i,(E) 1 c^-(-ia)m-’ r($-) exp[-a(m)]’ (29) 

and 

c(E) = i+(ia)m-l r(T) exp[+4(m)] 

i;(E) = C^O(i/a)m r(m)(l/m)[l + 0(1/m)], 

where 

Q(m) = (2d - a)mf + [2e - +(2d - a) + &(2d - a)3]m-’ + O(m-‘). 

“+ 
F;II are the analytic continuations in a of the two solutions defined in 

Eqs. (12) and (16) for a = 0. For r > 0 it is the solution Fi which 

is of interest. Clearly, for any value d, positive or negative, we can 

choose a so that ;, is the subdominant solution for large m. As a 
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resu 

obta 

It, the recursion relations of Eqs. (27) and (28) can be used to 

in aTcurate numerical results for either sign of d. 

Our final formulae are obtained by defining 

“h,(E) = $ N(m) i;,T (E)/;,(E) 1 (30) 

in analogy with Eqs. (12) and (19). Equation (27) can then be rewritten 

in the form 

‘m-1 
- {hm[l +t (2d - a)] + N(m)fd- a-$- + GmGm+,ll-’ (31) 

for m >, 2. The asymptotic form for f for rn+m is 

hm(E) = exp{-4(2d - a)m -5 4 + [e + & (2d - a)3]m _ + O(m -51. 

The Green’s function G1 = r -‘g(e, d, a) is determined from the formula 

i” (e, d, a) = e - d + a - SatI; - (270 ;I[, + a(2d - a)], (33) 

and the Gm for m > 1 b.y combining Eqs. (30) - (33). 

The eigenvalues E. 
J 

are now given by the zeroes of G-‘(e,d,a). We 

have numerically verified that they are indeed independent of a. The 

Green’s function of actual interest is G, - g(e,d)/r. It can be ob- 

tained once the Grn are known by noting that 

G,(E) t <OI$e-ia’(E - $-‘eia’$+/O> = f (-Ly)” in+, (E, d, a). (34) 

n*O 
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IV. Conclus 

Our main results are shown in Figs. 

on 

-4 and Table Ill. They are 

given for r > 0, but the corresponding results for r < 0 can be read off 

using Eq. (18). In Fig. 1 we plot the energy levels ej(d) = Ej/r for 

j = 1, 2, . . . 5.7 As we have already noted, perturbation theory must 

be valid for A > 0 so ej (d) + jd for large positive values of d. As d 

is decreased, cl(d) approaches zero and becomes nearly degenerate with 

e0 = 0. In fact for d * -1.5, cl(d) is well approximated’by its asymp- 

totic form2’3 

cl(d) z (2s)-f2&e-2d2 , - -!- 
d -t -Q) I 2d2 

as can be seen from Table Ill. For d large and negative 

the other eigenvalues approach integer multiplets of IdI and become 

almost doubl e degenerate. 
1 

In addi tion to the energy levels we have discussed, there is a 

second set , E; arising from the solutions of Eq. (6) with the asymptotic 

form f+m for r > 0. One sees from Eq. (61 that EA = -En for all r > 0. 

This set of solutions has a perturbation expansion for A < 0, but not 

for A > 0. It is #eforeMrelevant to the conventional discussion 

(35) 

of Reggeon field theory. 

In Figs. 2 and 3 we plot the inverse Pomeron propagator, g-‘(e,d) 

i= r-‘G;‘(E), as a ,function of e for two typical values of d. One of 

the interesting features to notice is the zeroes of g(e, d), One 

sees from the perturbation expansion that for d >> 1, g(e, d) has two 
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zeroes in the range e2 < e -C e3, none in the range e3 < e < e4 , two in 
A 

the range e4 < e < e4, etc. We see in Fig. 2 where the zeroes, of 

-1 
course , appear as poles in g , that this pattern persists down to d = 1. 

However , as d decreases further, the zeroes collide and leave the real e 

axis. We find none at d = -2. 

Probably the most important application of Reggeon quantum mechanics 

has been in the development of the analogue spin model. 83 This model 

has played an important role in our understanding of the theory in higher 

transverse dimensions, particularly in the supercritical region. It was 

introduced by putting the theory on a lattice in impact parameter space. 

If one starts by ignoring the couplings between lattice points, which 

arise from the kinetic energy terms in the Hamiltonian, then at each 

lattice point one must merely solve the problem of Reggeon quantum 

mechanics. It was then argued that for calculations in the regime Ez 0 

and d << 0, it was only ‘necessary to include the two lowest energy 

levels of the single-site problem when the couplings between lattice 

points was taken into account. Under these circumstances the two 

lowest energy levels are nearly degenerate, and their mutual coupling 

is expected to be much stronger than their coupling to higher states. 

A measure of the coupling of the ground state to the j 
th 

excited state 

is 

S.(d) = R./E 
J J j’ 

(36) 

where R. 
J 

is the residue of the pole of g(e,d) at e = e.. 
J 

In Fig. 4 we 

plot Sl/Sp as functions of d, and we see that Si/Sz >> 1 for d < -1.5. 
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In conclusion, we see that moment recursion relations provide a 

powerfu;‘method for studying certain eigenvalue problems. In particular, 

when applied to Reggeon quantum mechanics, they yield a very simple and 

rapidly convergent numerical procedure for computing eigenvalues and 

Green functions. 
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Figure Captions 

A 

Fig. 1: The energy levels ej (d) = Ej/r. Recall that co(d) = 0 for all d. 

Fig. 2: The inverse Pomeron propagator for d = 1. 

Fig. 3: The inverse Pomeron. propagator for d = -2. 

Fig. 4: The ratio Sl/Sz as a function of d. 

Table Captions 

Table 5: g(0, 1) and el(l) calculated with different values of M. In each 

case h M is computed using Eq. (21) and the hn., for m < M using 

Eq. (20). 

Table 11: g(0, 1) calculated with hM given by the asymptotic form of Eq. (21) 

and with hM equal to 1, 0 and -1. Notice that for large M, g(0, 1) 

is independent of variations in h 
M‘ 

Table Ill: el is the energy of the first excited state calculated to eight 

significant figures. el (Eq. 35) is the approximation to el 

glven by the asymptotic form of Eq. (35). 
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TABLE I 

TABLE I I 
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TABLE 1 I I 

d el el (Eq. 35) 
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