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APPENDIX I: ACCEPTANCE OF THE 8 GEV SPECTROMETER 

The solid-angle acceptance of the 8 GeV Spectrometer 

was calculated in two primary steps that utilized the SLAC 

beam transport program TRANSPORT ( 81 1 and a Monte-Carlo 

ray-tracing program initiated by C. Jordan. ( 82 1 Prior to 

these calculations, a computer model of the spectrometer 

was formulated; it incorporated ideal dipole and yuadrupole 

magnet elements as well as drift spaces and apertures. The 

program TRANSPORT used this model to generate matrices of 

transport coefficients that describe the passage of charged 

particles through the spectrometer magnet array. The trans- 

port coefficients are first-and second-order coefficients in 

a Taylor series expansion of the particle coordinates 

(x,e,y,$,z,B = AP/P) about the spectrometer central ray. 

In the second step the matrices of transport coefficients 

were used in the Monte Carlo program to calculate the accep- 

tance of the individual segments of the spectrometer focal planes. 

The TRANSPORT model of the 8 GeV Spectrometer, the same 

for all momenta, is listed in Table (XXII) for P= 8.0051 GeV/c. 

Negative quadrupole fields indicate vertical focussing; $ is 

the pole-face rotation of the bending magnets relative to the 

central ray. Similar models, with only the magnet field strengths 

altered, were used at P = 3.0062, 6.0091, and 9.0026 GeV/c, where 

optics data on the 8 GeV Spectrometer were available. ( 83 ) 

Table (XXIII) lists the magnet field strengths used at these 
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Table XXII. TRANSPORT model of the 8 GeV spectrometer 

P = 8.0051 GeV/c 

CI 
drift from target: 2.295 m 

quadrupole Q81 (z = 1.034 m, a = 13.97 cm, 7.488 kg) 

drift: 0.352 m 
l/2 

aperture #l (circle: (x2 + (y + .24)2) < 13.02 cm) 

drift: 0.614 m 

quadrupole Q82 (z = 1.334 m, a = 19.37 cm, -10.827 kg) 

drift: 0.962 m 

l/2 of dipole 381 (z = 1.8135 m, $ = 7.5O, 19.274 kg, n = 0) 

aperture (-19.21 cm <y< 34.47 cm) 

l/2 of dipole B81 (z = 1.8135 m, $ = 7.5O, 19.274 kg, n = 0) 

drift: 0.3863 m 

swing mask (normally out) 

drift: 0.5387 m 

dipole B82 (z = 3.627 m, $ = 7.5O, 19.274 kg, n = 0) 

drift: 0.762 m 

aperture #2 (octagon: lyl < 16.5 cm, 1x1 < 14.5 cm, 

and \yI < (24.6 cm) (1-A)) . 
drift: 0.243 m 

quadrupole 483 (z = 1.334 m, a = 19.37 cm, -7.332 kg) 

drift: 4.198 m 

theta--focal plane 

drift: 0.555 m 

momentum focal plane 

total path length ztot = 21.861 m 
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Table XXIII. Magnet field strengths used in TRANSPORT 

Magnet P = 3.0062 P = 6.0091 P = 8.0051 P = 9.0026 

Q81 2.788 (-2.1) 5.620 (-1.3) 7.488 (-1.3) 8.365 (-2.0) 

Q82 -4.013 (2.0) -8.116 (0.8) -10.827 (0.6) -11.986 (2.0) 

B81 7.238 (0.0) 14.468 (0.0) 19.274 (0.0) 21.675 (0.0) 

B82 7.238 (0.0) 14.468 (0.0) 19.274 (0.0) 21.675 (0.0) 

Q83 -2.703 (-0.7) -5.442 (-1.4) -7.332 (-2.4) -8.428 (-4.7) 

(units are kg) 

(quadrupole fields are given at pole tip) 
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momenta; the numbers in parentheses represent the percentage 

deviakion from the measured field strengths ( 83 1 , assuming 

linearity. The reason for the deviations in the quadrupole 

strengths is discussed in the following paragraph. 

The principal first-order transport coefficients mea- 

sured in the optics tests are listed in Table (XXIV ); their 

estimated accuracy is 1%. ( 83 > When the measured magnet 

field strengths were used in the above TRANSPORT model, we 

could not reproduce these measured coefficients. We felt 

that these discrepancies were caused by the proximity of the 

magnets to the steel frame of the spectrometer and to each other, 

resulting in distortion of their fringing fields. ( 83 1 In 

addition, the field strengths and effective magnet lengths 

were not known better than 1%. Consequently, we made an ex- 

tensive study of TRANSPORT models, in which several of the 

available parameters (e.g., field strengths and pole-face 

rotations) were varied in different combinations until a selected 

set of transport coefficients agreed with the measured values. 

We hoped we could simulate the non-ideal behavior and better 

approximate the measured transport coefficients with such an 

adjusted TRANSPORT model. The final TRANSPORT model chosen 

had varied the three quadrupole field strengths so that <x1x0>, 

<xleo>, and <Y]&~> (where the subscript o denotes values at the 

target) reproduced the measured values, The best-fit values 
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Table XXIV. Measured transport coefficients 

Coefficient 

<XIX > 
0 

<x/B0 > 

a31xo > 

+30 > 

<Y140 ' 

<YPo ' 

+$I@ > 0 

<4+. ’ 

P = 3.0062 P = 6.0091 P = 8.0051 P = 9.0026 

0.0385 0.0206 0.0277 0.0153 

4.5170 4.5468 4.5750 4.5902 

-0.1868 -0.2157 -0.1936 -0.2043 

4.7907 4.8245 4.8576 4.8805 

0.0007 -0.0014 -0.0041 -0.0047 

-2.9591 -2.9389 -2.9067. -2.8439 

-1.0740 -1.0757 -1.0769 -1.0787 

0.0789 0.0857 0.0935 0.1130 

(lengths are in cm: angles in mrad; 6 in percent) 
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of the.quadrupole field strengths are those listed in Table (XXIII). 

'Jhe criterion for an acceptable TRANSPORT model was that 

it reproduce solid angle maps measured in the optics tests (29) . 

Solid-angle maps were generated from each model using a ray- 

tracing program developed by E. Taylor (84 1 r' they were then 

compared with the measured maps. All TRANSPORT models examined 

were capable of reproducing some subset of the measured trans- 

port coefficients; these were usually chosen to include the 

two dispersions <xl e. > and <YIPS>, as they directly influence 

the acceptance. But the various models predicted fairly dif- 

ferent results for the solid-angle maps and could be distinguished 

by this criterion. Comparisons of solid-angle maps were attempted 

only at P = 8 GeV; the choice of TRANSPORT model was assumed 

independent of momentum, We ascertained that the model that best 

approximated the measured solid-angle maps was the model used 

in all previous calculations ( 41, 85 ) of the 8 GeV acceptance: 

the field strengths of Q81, Q82, and Q83 were varied independently 

to fit the transport coefficients <x1x0>, <xleo>, and <Y(&~>. 

Table c XXV ) lists the principal first-order transport coef- 

ficients as obtained using this canonical TRANSPORT model at 

P = 3.0, 6.0, 8.0, and 9.0 GeV/c; these coefficients should be 

compared with the measured values from Table (XXIV). 

A Monte-Carlo program used matrices of transport coefficients 

to calculate the solid-angle acceptance AeA$AP/P of the 8 GeV 
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Table XXV. Transport coefficients from the TRANSPORT model 

Coefficient P = 3.0062 P = 6.0091 P = 8.0051 P = 9.0026 

<XIX0 >* 0.0385 0.0206 0.0277 0.0153 

<xpdo >* 4.5170 4.5468 4.5750 4.5902 

<e/x0 > -0.1805 -0.1980 -0.1889 -0.2014 

<e[eo > 4.8004 4.8449 4.8942 4.9459 

<YI4, > 0.0066 -0.0064 -0.0139 -0.0139 

<Ypo ‘* -2.9591 -2.9389 -2.9067 -2.8439 

<+I+ ’ -1.0900 -1.0830 -1.0921 -1.1375 0 

<opo > 0.1106 0.1479 0.2074 0.3230 

(lengths are in cm; angles in mrad; 6 in percent) 

*the values for this coefficient are equal to the measured 

values by definition. 
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Spectrometer. Acceptances were calculated for each P-B bin, 

defiwd as the intersection of two adjacent B-counters and 

two adjacent P-counters in the spectrometer focal planes; 

these acceptances were then summed to get the total accep- 

tance. Scattered rays (x0, Bo, y,, $I,, zo, 60) were generated 

randomly at the target position; for large N, they were dis- 

tributed uniformly over a segment ABo A$o A6o that completely 

overlapped the spectrometer acceptance. The initial volume 

Ax0 Aye Azo reflected the target length and beam spot size. 

The rays were propagated through five successive segments of 

the spectrometer according to the transport coefficients for 

that segment. Each ray was required to clear 13 different 

apertures within the spectrometer or was rejected. Actually, 

only two lead apertures, one behind Q81 and the other behind B82, 

determined the solid-angle acceptance. For each P-8 bin, A6 

and A0 were determined solely by the edges of the counters 

themselves; A,8 and A0 were therefore directly related to the 

measured dispersions <xleo> and <YIPS>, The A$ for each P-8 

bin was determined by the lead apertures behind Q81 and B82. 

The acceptance (AeA$A6)ij of the i-jth P-8 bin was taken to be 
N 

(AeA+A6Lj = N --$A00~~o~60) (A.l.1) 

where N.. 
17 

is the number of events falling into this bin and N 

is the total number of Monte-Carlo events, 

Three-dimensional computer models of the P- and e-hodoscopes 
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permitted a more accurate calculation of acceptances. Each 

hodoscope xas modelled by two parallel, segmented planes that 

represented the two rows of scintillation counters. Monte 

Carlo events were binned at each focal plane according to 

the segments (read counters) of the two planes through which 

the event passed. In this way "shadowing" effects, which arose 

from the non-zero divergence and convergence of scattered rays 

at the focal planes, were adequately simulated. This more 

faithful representation of the hodoscopes allowed a much more 

accurate calculation of the acceptances of each P-6 bin. 

These shadowing effects were quite severe (~20%) for a single 

bin. Errors of about 1% in the total acceptance resulted if 

one did not account for these effects. Consequently, this 

three-dimensional computer model of the hodoscopes is felt to be 

the primary advantage of the present acceptance calculation. 

Monte Carlo acceptance calculations were made at P = 3.0, 

6.0, 8.0, and 9.0 GeV/c using the TRANSPORT model of Table ( XXII) 

with the appropriate magnet field strengths from Table ( XXIII). 

Samples of 4 x lo5 Monte Carlo events were used, insuring that 

100-500 events fell into each of the 20 x 54 P-0 bins. The accept- 

ances of the individual bins were somewhat inaccurate statis- 

tically, but the total acceptance was well known. The results 

of these calculations are shown in Table kxVI ) for two defini- 

tions of the spectrometer acceptance. ACCP2 is the nominal 
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Table XXVI. Acceptance of the 8 GeV spectrometer 

P ACCPl ACCP2 A 

(GeV/c) (X 10-3msr) (x 10v3msr) (%I 

3.0062 27.01 24.69 -0.92 

6.0091 27.37 24.89 -0.12 

8.0051 27.32 24.95 +0.12 

9.0026 26.76 24.69 -0.92 

Average 27.35 24.92 
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acceptance definition used in experiment A; it includes only 

P-bins 2-19 and B-bins 2-53. The optics measurements at 

3 GeV/c were somewhat in doubt due to the effects of multiple 

scattering(83), and we felt that saturation might be setting in 

at 9 GeV/c. Consequently the acceptance for experiment A was 

taken to be the average of ACCP2 from the 6 and 8 Gev/c calcu- 

lations. A is the percentage difference of ACCP2 from the 

average value. No significance is attached to the P-dependence 

of the acceptance evident in Table (XXVI). Calculations with 

different TRANSPORT models, which simulated the solid-angle 

maps almost as well, showed different momentum dependences. 

We only conclude that the possible error due to momentum 

dependence of the acceptance is about 2 1.0%. 

Tests of the solid-angle acceptance of the 8 GeV Spectro- 

meter were made using the tungsten slits in front of the 

spectrometer entrance window, before the first quadrupole 

magnet Q81. The vertically opening $-slits can determine 

A$., 
13 

independent of the apertures within the spectrometer. 

As Ae.. and Ab.. 
17 13 

were already well-known from the optics mea- 

surements, the $-slits allowed an accurate check of the 

TRANSPORT model calculations, The solid-angle acceptance was 

calculated by the Monte Car.10 program for six different settings 

of the Cp -slits ranging from fully open to &$ = 13 mrad, where 

A$.. 
17 

was almost completely determined by the tungsten slits. 
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Experimental runs of ~10~ counts at each of these slit settings 

reveaLed that (yield/acceptance) was constant within 1%. It was 

important to correct for A$ shifts in the effective scattering 

angle in these calculations, as this effect was about 1% itself. 

Based upon the results of this solid-angle test and on the 

quoted 1% accuracy ( 83 1 of the optics measurementsc we con- 

clude that the acceptance of the 8 GeV Spectrometer is accurate 

to 1.5% and the momentum dependence accurate to ? 1.0%. 
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APPENDIX II: RADIATIVE CORRECTION FORMULAE 

ze give here the formulae used to radiatively correct 

the elastic and inelastic cross sections. Discussion of 

these equations and their application to the data may be 

found in section VI. 

The radiative tail Il(Eo,E', e,t) from elastic e-p scat- 

tering was determined from an expression derived by Friedman. (86 1 

Il(Eo,E',f3,t) = I; + I': @.II ,l)m 

where 

IB EofbRA E bRB 
1 = [l + 0.58bla,+fiB)l[(ln~) (ln$) 

C 

btARA pA . 
& of 

-E,~(Eo) + v'X(Eo,E',e) 
'A +'B 

>aCd 

IA E. bRB E' bRA 
1 = [l + 0.58b(1,+aB)][(ln~,) (In$-1 

0 

l t 

btBRB r~ (E;) 

Eo-"A 2E' (1 - M sin2e)2 
+ v'X(Eo,E',B) PAP? PB}f%l' 

z 

V' cl+ (vA+vB)($++lnn) 

PA = SA o(Eo)/(Eof-E') 

pB = sB a(~;)/ (E~-E;) (1 - qsin2$)2 

SB = 1 Eo-E; 2' $+F( E ) 
0 0 
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I21 

1 E. bRB EO 
bRB o(Eo-0.20k) 

a = E bRB [ (In 
(In+3 

Eo-O.lOk) + "B(1nEo-0.20k' o (Eo) 

C 

+ $b!LB (lnE EO 
,-0.45k) 

bRB a(Eo-0.45k) 
0 (Eo) 

+ +bRB(lnE EO 

o-0.80k) 
bRB cdEo-0.80k) 

CT (Eo) 1 

B = 
1 

E; bRA 
~~lnE'+O.lO~ bRA 

E' ) 
+ baAtlnEq+;;20~;b" '(EA;;;;;k) 

0 

(lnjp-1 

p = E' - E'; k = 
Eo-E; 

; EC = 
Eo+E' 

0 

C 2 2 
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CA(RA,E',Eof) =.{l + bRA [-0.733229 + 1.0783 ($) 
of 

1 

0.349814 (5) 
2 '3 

+ - 1) 
of 

0.636089 (8) 
of 

1.045(0.99 - 0.962(g - 0.010) 
l I 

of 0.89 0.89 I 

CB(RB,E;,Eo) = CAUB+Eo) 

CA and CB were empirical corrections ( 87 1 for approximations 

made in the solution of the diffusion equation for the straggling 

functions. 

X(Eo,E’, 8) is the exact tail from internal bremsstrahlung cal- 

culated to lowest order in a according to MO and Tsai. ( 43, 44 ) 

RA = tA + VA/b 

&B = tB + vB/b 

tB and tA are the radiation lengths before and after scattering 

discussed in section V1.B. 

vA = % = z (lng 
m2 

- 1) 

b=$ 

m = the electron mass 
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2E 
E of = Eo/(l + -$ sin2 (+)) 

CI 

E:, = El/(1 - T sin2 ($)) 

2E 
Ed = EC/(1 + * sin2 (i)) 

a(Eo) is the elastic-scattering cross section calculated accord- 

ing to the Rosenbluth equation. ( 88 ) 

a2 a(Eo,O) =- (COS28/2) ( 1 
4E; sin48/2 

1 
1+ ( 

l Cl 

G; + -cG; 2 28 
1+,r + ~TG~~ tan T) 

where T = Q2/4M2. 

1 
GE = q GM = f,(Q) (1 -I- Q2/0.71)-2 

The function f,(Q) is a modulating factor that varies about the 

value of 1.0. It is from a fit by Miller (41 > to all previous 
SLAC elastic e-p data. (2% 40 ) 

f,(Q) = $$ ai 
‘- -5 (Q - Q-1 
t-r j=O (Qi- Qj) (A.II.2) = 

where Q = /- Q2 I and the coefficients a i are equal to the value 

of the function f(Q) at Q = i. 

aO = 1.000 

al = 1.018 
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a2 = 1.056 

a3 = 0.836 

a4 = 0.687 

a5 = 0.673 

The quasi-elastic and elastic tails calculated in the 

equivalent radiator approach were from an expression derived 

by Sogard. ( 89 ) They were calculated for proton, neutron, 

and deuteron (see Section IV.D.4) according to 

IyR(Eo,E', 0, t) = (A.II.3) 

(1-W 
b'(RA+RB) -b'[Rgln(Eo/A)+RAln(E'/A) 1 d20 

e 
r(l+b'RA)I' (l+b'Lg) 

m' (EO,E'+H 

Eo-A 

+ (l+a) b"A -b'RAln(Ef/A) e / 
I'(l+b'RA) 

dE:, &, (E~,E’,B)THIe(Eo,E~,Rg) 

+ (l+a) 
"aB -b'RBln(Eo/A) 

e 

I'(l+b'RB) 

E’ 

f 

max(EA) 
d2a (E dE"dfidE u o I E",B)THIe(E",E',RA) 

J E'+A 

2 
dE"Ie (EO'E;,J$&&, (E~,E",e)THIe(E",E' ,RA) I 

where 

b't 
Ie(Eo,E',t) = (' ; a) (gla ( 

[ln(~~/~')]~'~-l 
1 

0 0 r(b't) 
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is the Eyges ( 90 1 straggling function for which a and b' are 

funct&ns of Et/E0 found by fitting the bremsstrahlung cross 

section for this straggling function to the bremsstrahlung 
( 91 ) cross section according to Bethe and Ashkin. 

A = 0.001 Eo/[l + (2Eo/M)sin 2 281 

EA min 
and ElmaX . (EA) are the minimum EA and maximum E" 

kinematically permitted. 

RA and RB were defined previously. 

d2c 
mt (EofE’ a),, is the cross section for quasi-elastic e-d 

scattering or is replaced by the elastic e-p or e-n scattering 

cross sections for the calculation of the elastic e-p and e-n 

radiative tails. Cross sections for quasi-elastic e-d scattering 

were from the method of Durand ( 52 ) using S- and D-state Hamada- 

Johnston wave functions. ( 48 > The elastic cross sections were 

obtained from the Rosenbluth equation, assuming form-factor 

scaling. 

The expression used in the inelastic radiative corrections is 

&,(Eo,E',G) = ci&l(Eo,E',O)M - I; - $1 

where 

&, (E,E',e> M is the experimentally measured cross section 

after subtraction of elastic and quasi-elastic radiative tails; 

&,(Eo,E',O) i s the radiatively corrected cross section; 
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C = [l - (0.58 + a) (tA + tB)blexp C&T + SR)l I (A.114) 

5 = btA ln(E'/AE') + btB ln(Eo/AEo), 

6, = t{ (28/g)-(13/6)ln(q2/m2) + [ln(q2/m2) - 11 [ln(Eo/AEo) 

+ ln(E'/AE')J) 

hEo 
= l/2 a bin width in Eo, 

AE' = l/2 a bin width in El, 

m = electron mass, 

a = 0.25 

and 

1; and 1; are integrals over the previously corrected data: 

IB 
bR 

2 = (1 + 0.58bL)(A/Eo) B[l + (1 - A/Eo)abRBl 

E' 

/ 

max bRA 
(Ae.II.5)~ 

. dEof[ln(Eof/E') 1 (Eof - Et)-'(btARA + vAvVsA) 

E' +AE' 

l &, (Eo,Eof,e), 

A 
I2 = (1 + 0.58bL) (Al/E') bRA [l + (1 - At/Et)abRA] 

EO 

/ 

-AEo 
bRB 

(A_. X.6) 
-1 

. 

EO 

dE’o[ln(Eo/E’o)l (E. - EA) (btBRB + vBv‘SB) 

min 

l &, (E;,E’,W 
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where 

L= tA + tB + (vA + vB)/b, 

VA 
=v = 

B f[ln(q2/m2) - 11, 

V' = 1 + 1/2(VA + VB)(l + lI$Tl)) 

‘-I = 1 + (2Eo/M) sin2 +, 

A = 1/2[E, - E'/(l - (2E'/M) sin 

A' = 1/2[~~/(1 + (2Eo/M)sin 2 8 T) - E’l, 

RA = E'/Eof + 3/4Wof - E')/Eof12, 

RB 
2 = E;/Eo + 3/4[(Eo - E;)/Eol , 

sA = E'/Eof + 1/2[(Eof - E')/Eof12, 

sB 
2 = E;/Eo + 1/2[(Eo - E;)/E,l I 

and other terms have been defined previously. 

The radiative corrections to the measured elastic cross 

sections used the formula: 
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C(AE') = ((1 + 1.103tg) (1 + 1.103tA) 1 exp[ao+bo+6(AE')] 

(A.II.7) 

where 

a 
0 

= (4/3)tA Rn(Eo/nA~') 

bO 
= (4/3)tB !Ln(Eo/q2AEt) 

2E 
ri = 1 + (+) sin' i 

and 6(AE') is calculated following Tsai. (45) AE' is the width of 

the missing energy bin to which the correction factor C(AE') is 

applied to correct for electrons lost from that bin because of 

radiative energy loss. 
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APPENDIX III: NUCLEAR BINDING EFFECTS IN THE DEUTERON 

Extraction of neutron differential cross-sections from CI 
e-d differential cross sections requires corrections for 

nuclear binding effects in the deuteron. In deep inelastic 

electron scattering processes, the most important corrections 

arise from the Fermi motion of the neutron and the proton. ( 20 1 

In the following discussion we present an outline of the cal- 

culation of the Fermi motion effects, commonly referred to 

as "smearing" effects. The method used is derived from the 

work of Atwood and West. ( 19 ) Also discussed are other bind- 

ing corrections which are expected to be small. 

Investigations of deuteron binding corrections (19,201 

primarily utilize the incoherent impulse approximation. In 

this approximation, as shown in Figure ( 42 ),'only one nucleon 

is directly engaged in the scattering process (the interaction 

nucleon) while the other nucleon (the spectator nucleon) is 

unaffected. The spectator nucleon is on the mass shell before 

and after the interaction, while the interaction nucleon is 

initially off the mass shell and is brought back on to the 

mass shell by the absorption of the virtual photon. The square 

of the deuteron scattering matrix elements is then the sum 

of the squares of the corresponding neutron and proton matrix 

elements. An evaluation of the amplitude of the process in 

the diagram of Figure ( 42 ) will yield a relationship between 
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E cf c 

“r” 
9 

Fig. 42. Feynman diagram 
foL inelastic electron- 
deuteron scattering. 
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deuteron and corresponding neutron and proton matrix elements. 

The d&teron electromagnetic tensor Wd PV 
is directly related 

to the square of the invariant matrix element for scattering 

from deuterium. Atwood and West (19 ) express the deuteron 

tensor in terms of off-shell neutron and proton tensors: 

w$) = I 0 
If($,12[W;v + qvld3'; 

where 

wp = 2 - WY (q2,W‘ ,q*p) (qpv-- 4VqV) 
PV 

I2 + W21q2;a- ,q*P) (pll 
q2 

- yq (P, - %v) 
cl cl 

(A.III.l) 

(A.III.2) 

with an analogous expression for W 
n 
VV' 

Here p = pd-p, is the off-shell four momentum of the interacting 

nucleon, and p, is the four-momentum of the on-shell spectator 

nucleon. The momentum pd is the four-momentum of the target 

deuteron. We define the 3 direction to be the direction of the - 

virtual-photon's momentum q = (0,0,q3,v) in the laboratory 

system. In the laboratory system we also have pd = (O,O,O,Md) 

where Md is the deuteron mass; and p = (p,,p Y ,p3,po) = (&PO) 
2 l/2 = (-ps,po) where PO = Md - (p: + M ) . The square Of the 

mass of the interacting nucleon's final state is (W') 2 = (p + q)2* 

The off-shell structure functions W1 and W2 in equation 

(A.III.2) depend on the three independent invariants Q2 = -q2,(W')2, 

and v1 = q.p/M (defined such that all three are positive definite). 
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The three variables are independent because the interacting 

nucleon is of,f the mass shell and p* is variable. 

The quantity If ($)I2 is the momentum distribution of the 

nucleon within the deuteron. By making a correspondence 

with elastic e-d scattering West ( lg ) identifies If($) I2 with 

the square of the non-relativistic deuteron wave function in 

momentum space I+(s) 12. The quantity /$(j$)l* is spherically 

symmetric and can be directly expressed in terms of the §-wave 

and D-wave components of the nonrelativistic deuteron wave 

function. 

1 f ($1 1 2 = l@(l;1)12 = Iup I2 + tw,(;) I2 E lf(lGl) I2 (A.III.3) 

The S-wave component is 

U(r) . 7 Jo[l$lr)r2dr; 

the D-wave component is 

The Hamada-Johnston wave function (48 ) was used in the calculation 

of smearing connections for these experiments. 

The tensor equation (A.III.l) yields 16 separate dependent 

equations, one for each component. Examination of the various 

tensorial components yields the following two equations: 

+ W2(Q2,W'2,v') 

(A.III.4) 
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p3Q2 
pm I21 Cl - -- 

Mv 'q3 
12(F12 

+ 

where Wys and WI, are smeared proton structure functions. 

Similar expressions are obtained for the smeared neutron 

structure functions \cs and ss. The deuteron structure 

functions are taken to be the sum of the corresponding smeared 

proton and neutron structure functions. 

Wd(Q2 v) 1, = wys (Q2,v) + vj;ls(Q2,v) (A.III.5) 

Wd(Q2 v) 2, = wgs (Q2,v) + $s(Q2,v) 

We define the following "smearing ratios" of structure functions: 

S 
Pl 

= wp/wP 
1 1s' sp2 = w;/wF& 

(A.III.~) 

S nl = q/$sf sn2 = $/$,. 

The smeared and unsmeared structure functions can be combined 

according to equation (1.1) to form smeared and unsmeared dif- 

ferential cross-sections (~ps,cns,ap,an). The smearing ratios 

(or smearing corrections) for the cross sections are defined in an 

analogous way: 

S (A.III.7) 
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and U = S,/S 
P 

is defined as the unsmearing correction. 

A.IIX.A. Identification of Off-Shell Structure Functions 

The off-shell structure functions are identified ( 20 1 

with the on-shell structure functions for the same Q2 and 

(WV2 = w2. The Fermi motion does not change the effective 

Q2 of the interaction because the four-momentum transfer is 

determined by the electron's kinematics and is independent of 

whether the initial nucleon is on or off the mass shell. However, 

conservation of energy requires that the effective W is dependent 

on the off-shell kinematics, as energy is required to bring 

the nucleon back on to the mass-shell. Some distinct features 

of the structure functions are directly dependent on the final 

state mass. For example, the distinction between quasielastic 

and inelastic electron-deuteron scattering is determined by 

whether the final state of the interacting nucleon is a single 

nucleon or contains pions. The off-shell structure functions 

must vanish at pion threshold (WI = M + rnT where mXis the pion 

mass). Also, the resonance spectra are described by functions 

of W for on-mass-shell structure functions. They should be 

described by the same functions of WI for off-shell structure 

functions if the resonance masses are to be the same. The off- 

shell structure functions were defined in terms of on-shell 

structure functions as follows: 



- 218 - 

Wl tQ2 ,W ‘2 
rV') /off-shell ’ W1 (Q2 ,W I21 I off-shell ’ W1 (Q2 sW2) I on-shell 

4\ 

(A.III.~) 

W2 (Q2 ,W' 2 I V '1 1 off-shell ' W2 (Q2 ,W I21 I off-shell ’ W2 (Q2 tW2) l on-shell 

In our analysis, according to the above definitions, the off-shell 

structure functions were described by the universal fit (given in 

section V.C, equation ( V.l ) ), as follows: 

W210ff-shell = 
A (w’,Q2)f (zw) 

f-b% 
VW 

(A.III.9) 

Wlloff-shell = (' : f2RQ 

2 
' )W210ff-shell 

where z = 2M$+a2 ;=- 2M; W' - Q2 - M2 
W Q2 + b2 

I 
Q2 

, and 5 = 2M ; for R, 

we used R = Rn = 0.18. 
P 

These structure functions correspond to the case of no off- 

shell corrections. 

In order to get some idea of possible off-shell corrections, 

the smearing expressions (eq. A.III.4) were investigated ( 20, 63) 

in the limit QL+O, where the longitudinal virtual photoabsorption 

cross section for the deuteron, CT LD must vanish according to 

gauge invariance. It has been shown (20, 63) that the smearing 
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expressions do not yield a vanishing cLD as Q2 + 0 unless 

small off-shell corrections are applied to the structure 

functions.-As Q2 + 0, equation (A.III.4) become 

W;(Q2,v) = 
/ 

[f(;)j2{W;(Q2,W') + W;(Q2,W')} d3; 

(A.III.lO) 

Wd(Q2v) = 
/ 

2 
2 1 fc6)l2 (;') {W;(Q2,W’) + W;(Q2,W')} d3; 

Now, from equation ( I.3 ) in the limit Q2 -t 0, 

41~~9 v2 d 
OLD = v -z W2(v,Q2) 

Q 
- W;(v,Q2)} (A.III.ll) 

Combining equations (A.III.lO) and (A.III.ll) we get 

lirn 
Q -to 
v fixed 

aLD = +-I If($) I2 (&W;(Q',W')- W;(Q2,W'j 

(A.III.12) 

- W;(Q2,W')} d3; I 

The above expression does not yield a vanishing cLD 

as Q2+ 0 because the off-shell structure functions as defined 

by equation (A.III.9) do not vanish for that particular 

combination of off-shell variables. The necessary limiting 

behavior is 

lim 
Q -4 

OLp a W$Q2,v') - W;(Q2,v') = 0 1 
v fixed 

or 

l$m G2 

Q -to 
OLp a ii2 

W;(Q2,W') - Wy(Q2,W') = 0 
1 

v fixed 

(A.III.13a) 

So it appears that a simple correspondence between on-shell 

structure functions and off-shell structure functions does 

(A.III.13b) 
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not yield a physical result at Q2 = 0. This defect can be 

correS;;ted by the application of off-shell corrections. 

However, the W dependence of the off-shell structure func- 

tions must remain invariant in order to maintain the proper 

threshold and resonance positions. One method to accomplish 

this end is a mixed variable approach wherein we factor out 

the resonance and threshold behavior in the A(W,Q2) part of 

the fit to the structure functions, as was already done in 

equation (A.III.9). In the mixed variable approach the off- 

shell A(W,Q2) is then A(W',Q2) while 5 is replaced by v' in 

equation (A.III.9). The constraint at Q2 = 0 is satisfied 

as implied by equation(A.III.13a). Another way to satisfy 

this constraint is to apply multiplicative off-shell correc- 

tions to the structure functions which will make cLD vanish 

at Q2 = 0 by yielding equation (A.III.13b) in that limit. 

For example, we define two possible off-shell corrections. 

Off-shell correction A. 

W~(Q2,W’tV’) Ioff-shell = 
% 

(5’ 2W; (Q2 ,W) 1 on-shell 

(A.III.14) 

W~CQ2rW' rv') Ioffmshell = $(Q2,') Ion-shell 

Off-shell correction B. 

Wi(Q2,W' rv' ) Ioff-shell = W5(Q2,W) Ion-shell 

WI(Q2,W'tV') joffwshell = (<I2 $(Q2,W) Ion-shell 

(A.III.15) 

V 
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Note that any definition which yields off-shell correction 

A or off-shell correction B, or a linear combination of them, 

will also work. The three off-shell corrections that were 

discussed (mixed variables (MX), A and B) vanish as Q* -t ~0 

because in that limit $ -t v'. 

The nominal smearing ratios used in our analysis were the 

average between the ratios obtained from the calculation 

using no off-shell corrections (A.III.9) and the ratios ob- 

tained using the mixed variable approach. The error in the 

smearing ratio due to the uncertainties in the off-shell 

corrections was taken to be the difference between the nominal 

smearing ratio and the ratio obtained with no off-shell 

corrections. The uncertainties in the extracted o,/a values 
P 

due to uncertainties in the off-shell corrections are given 

in Table ( X ) along with the other errors. Values , 

of the nominal smearing ratios for Wl and W2 for the neutron 

and proton are presented in Table (XXVII) for the kinematic 

points (x,Q*) used in the extraction of R and the structure 

functions. Smearing ratios for various off-shell corrections 

are presented in Table(XXVII1) for representative values of 

(x,Q*) 4 

A.II1.B. Deuteron Wave Functions 

There are phenomenological non-relativistic wave func- 
tions( 65,” ) other than the Hamada-Johnston wave functions (48) 
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Table XXVII. Nominal smearing ratios 

S 
P2 

S Ill S n2 x Q2 S 
Pl 

s 
P2 x 

0.100 1.0 1.015 1.012 1.017 1.014 
0.100 1.25 1.015 1.012 1.017 1.014 
0.100 1.5 1.015 1.013 1.017 1.015 
0.100 2.0 1.015 1.013 1.017 1.015 
0.100 2.5 1.015 1.013 1.017 1.015 

0.150 1.0 
0.150 1.25 
o.i50 1.5 
0.150 2.0 
0.150 2.5 
0.150 3.0 
0.150 3.5 

1.016 
1.016 
1.016 
1.016 
1.016 
1.017 
1.017 

1.013 1.018 1.015 
1.013 1.018 1.015 
1.014 1.018 1.016 
1.015 1.018 1.016 
1.015 1.018 1.017 
1.015 1.018 1.017 
1.016 1.018 1.017 

0.200 1.0 1.019 1.016 1.021 1.018 
0.200 1.25 1.018 1.016 1.020 1.018 
0.200 1.5 1.018 1.016 1.020 1.018 
0.200 2.0 1.018 1.016 1.020 1.018 
0.200 2.5 1.018 1.017 1.020 1.019 
0.200 3.0 1.018 1.017 1.020 1.019 
0.200 3.5 1.019 1.018 1.020 1.019 
0.200 4.0 1.019 1.018 1.020 1.019 

0.250 1.0 1.024 1.022 1.026 1.024 
0.250 1.25 1.021 1.019 1.023 1.021 
0.250 1.5 1.021 1.019 1.022 1.021 
0.250 2.0 1.020 1.019 1.022 1.021 
0.250 2.5 1.020 1.019 1.022 1.021 
0.250 3.0 1.020 1.020 1.022 1.021 
0.250 4.0 1.021 1.020 1.022 1.021 
0.250 5.0 1.021 1.020 1.022 1.022 

0.333 1.5 1.029 1.028 1.030 1.029 
0.333 2.0 1.025 1.025 1.026 1.026 
0.333 2.5 1.025 1.024 1.026 1.025 
0.333 3.0 1.025 1.024 1.025 1.025 
0.333 4.0 1.025 1.024 1.025 1.025 
0.333 5.0 1.025 1.025 1.025 1.025 
0.333 6.0 1.025 1.025 1.025 1.025 
0.333 7.0 1.025 1.025 1.025 1.025 

Q2 S 
Pl 

0.400 2.0 1.032 1.032 
0.400 3.0 1.028 1.028 
0.400 4.0 1.028 1.028 
0.400 5.0 1.027 1.028 
0.400 6.0 1.027 1.028 
0.400 7.0 1.028 1.028 
0.400 8.0 1.028 1.028 
0.400 9.0 1.028 1.028 

1.032 
1.028 
1.028 
1.027 
1.027 
1.027 
1.027 
0.027 

1.033 
1.029 
1.028 
1.027 
1.027 
1.027 
1.027 
1.027 

0.500 3.0 1.033 1.035 1.032 1.034 
0.500 4.0 1.031 1.032 1.029 1.031 
0.500 5.0 1.030 1.031 1.028 1.029 
0.500 6.0 1.030 1.030 1.027 1.028 
0.500 7.0 1.029 1.030 1.026 1.027 
0.500 8.0 1.029 1.029 1.026 1.026 
0.500 10.0 1.028 1.029 1.025 1.025 
0.500 12.0 1.028 1.028 1.024 1.024 

0.600 5.0 
0.600 6.0 
0.600 7.0 
0.600 8.0 
0.600 10.0 
0.600 12.0 
0.600 14.0 

1.025 
1.026 

1.027 1.019 
1.028 1.019 
1.027 1.017 
1.025 1.016 
-1.023 1.013 
1.020 1.010 
1.020 1.009 

1.021 
1.021 

1.025 
1.024 
1.022 
1.020 
1.019 

1.019 
1.017 
1.014 
1.011 
1.010 

0.667 6.0 1.014 1.017 1.003 1.006 
0.667 7.0 1.013 1.013 1.000 1.003 
0.667. 8.0 1.012 1.014 0.998 1.001 
0.667 10.0 1.009 1.011 0.994 0.995 
0.667 12.0 1.006 1.007 0.989 0.991 
0.667 14.0 1.003 1.004 0.986 0.987 
0.667 16.0 1.001 1.002 0.983 0.984 

0.971 
0.976 
0.970 
0.967 
0.962 
0.957 

0.800 12.0 0.915 0.918 0.871 0.874 
0.800 14.0 0.906 0.909 0.858 0.862 
0.800 16.0 0.900 0.903 0.850 0.853 

0.968 
0.973 
0.968 
0.965 
0.960 
0.955 

S I-d 

0.943 0.947 
0.946 0.950 
0.939 0.942 
0.933 0.936 
0.926 0.929 
0.920 0.922 

S n2 
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x 

0.100 

0.150 

0.200 

0.250 

0.333 

0.400 

0.500 

0.600 

0.667 

0.750 

0.800 

1 

1 

1 
1 

1 
1 
1 

_-I 

1.0 1.027 1.017 
3.0 1.023 1.019 
5.0 1.023 1.020 
1.5 1.033 1.026 
4.0 1.027 1.024 
7.0 1.027 1.025 
2.0 1.036 ' 1.031 
5.0 1.031 1.028 
9.0 1.030 1.028 
3.0 1.040 1.036 
7.0 1.033 1.031 

.2.0 1.030 1.029 
5.0 1.033 1.031 
8.0 1.029 1.028 

.4.0 1.022 1.022 
6.0 1.023 1.022 

.o.o 1.015 1.015 
L6.0 1.006 1.005 
8.0 0.978 0.978 

Table XXVIII 
I Various 

SP"X 

WJ: 

1.013 
1.014 
1.014 

1.014 
1.015 
1.016 

1.016 
1.016 
1.017 

1.014 
1.014 
1.015 
1,017 
1.016 
1.016 
1.020 
1.018 
1.019 

1.021 1.027 
1.018 1.021 
1.020 1.021 

1.025 1.031 
1.022 1.025 
1.023 1.025 

1.027 1.033 
1.024 1.027 
1.026 1.027 

1.027 1.034 
1.025 1.028 
1.025 1.027 

1.018 1.024 
1.018 1.022 
1.015 1.018 

1.005 1.012 
1.002 1.007 
0.996 0.999 

0.957 0.964 
0.956 0.961 
0.948 0.952 

0.903 0.910 
0.896 m - 

Smearing ratic ,s for off-shell 
f-shell correc ki .ons 

1.028 1.037 
1.023 1.025 
1.023 1.024 

1.033 1.042 
1.027 1.031 
1.027 1.029 

1.037 1.046 
1.031 1.034 
1.030 1.032 
1.040 1.048 
1.033 1.037 
1.030 1.033 
1.033 1.040 
1.029 1.034 
1.022 1.025 
1.023 1.031 
1.016 1.020 
1.006 1.009 
0.979 0.986 
0.974 0.979 
0.962 0.967 
0.926 0.933 
9.917 0.97.l 

( HJ) 

1.007 1.009 1.008 
1.010 1.011 1.009 
1.012 1.013 1.011 
1.005 
1.011 
1.014 
1.004 1.012 
1.013 1.016 
1.016 1.017 
1.006 1.017 1.014 1.018 
1.016 1.019 1.014 1.019 
1.018 1.020 1.018 1.021 

1.015 
1.021 
1.023 
1.021 
1.024 
1.026 
1.027 1.036 1.033 1.037 
1.028 1.031 1.029 1.032 
1.027 1.029 1.027 1.030 

1.023 1.031 1.029 1.032 
1.023 1.028 1.027 1.029 
1.019 1.022 1.021 1.022 

1.014 1.022 1.021 1.023 
1.010 1.015 1.014 1.015 
1.002 1.005 1.005 1.005 

0.970 0.978 0.979 0.973 
0.967 0.973 0.975 0.973 
0.958 0.962 0.964 0.961 

- 
0.919 0.926 0.929 
0.910 p91l Jo.921 

SP; 

(HJ) 

1.009 
1.013 
1.015 

1.026 
1.024 
1.025 
1.031 
1.028 
1.028 

xmrections 
I Various wave fun&mm 

1.008 
1.011 
1.013 
1.010 
1.013 
1.015 

1.023 
1.021 
1.022 
1.028 
1.026 
1.026 

SP; 

(mm 

1.010 
1.012 
1.014 

1.010 
1.014 
1.016 

1.012 
1.016 
1.018 

1.026 
1.025 
1.026 

1.032 
1.029 
1.029 
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which can also be used. These wave functions should describe 

all kwwn properties of the deuteron such as its binding 

energy, magnetic and quadrupole moment, the n-p phase shifts 

and the measured elastic e-d form factors. ( 49 1 The elastic 

e-d measurements (49 1 indicate that the Hamada-Johnston 

wave function (48 1 (HJ) and the Reid soft-core (RSC) and 

hard-core (RHC) wave functions ( 65 > are in best agreement 

with the measured form factors. The Feshbach-Lomon (FL) and 

the Hulthen hard core (HHC) wave functions are in lesser agree- 

ment with the measured form factors. The Hulthe; (no core) 

wave function is in poor agreement with those measurements. 

The momentum distributions obtained from some of these wave 

functions are shown in Figure ( 43 ). The smearing ratios 

calculated using these wave functions are presented for com- 

parison in Table (XXVII.1). 

A.II1.C. Effects of Smearing on R 

As is evident from Table (XXVII), the smearing correc- 

tions for Wl and W2 are nearly the same, i.e., S 2s 
Pl P* 

and 

S nl 2 s n2. A straightforward derivation ( 20) shows that 

in that case the smeared and unsmeared values of R are equal and 

Rn can be directly extracted from the measured hydrogen and 

deuterium data by the following expression: 

Rd = Rp& t Rn& (A.III.16) 
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i^06 - I I I I I I I 

IO4 
P(P,)=4~{[jomjo(PSr)U(r)rdr]*+ 

[L’ j&P,r)W( r )rdr]*} 

1-79 

a. Reid Soft Core 
b. Hult hen Hard Core 
c. Reid Hard Core 
d. Hamada Johnston 
e. Feshbach-Lomon 

\ 
b ‘J c :,” 

4 
a 

\ 

2 

P, (GeV/c) 

3 

3353A49 

Fig. 43. Momentum distributions in the deuteron 
for five different wave functions. 
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cr 

42 
6 =Rd+Z (A.III.17) 

where 8 = Rd-Rp and Z = Wls n /w;, = (WY /WT 1 (Snl/Spl) is the 

smeared neutron to proton ratio for the W structure function. 

The above expression implies that if we find that Rd = R P( 
i.e., 

6 = 0) then it follows that Rn = R . It also follows that the 
P 

uncertainty in the extracted Rn is largest at small w because 

in that region the neutron to proton ratio is small. 

On the other hand if S # S Pl P2 
then smearing affects R and 

the smeared value of Rp(Rps) will not be equal to R . As was 
P 

discussed in section (A.III.A), possible off-shell corrections 

to the structure functions could be different for Wl and W2 

and yield values of S Pl 
which are different from S P2' 

The 

difference between the smeared and unsmeared values of R is then rl P 

yP Ps P 
(“pl =R -R=S 

P2 
- 1) (1 + RP) 

and 

Rd ps( =R 11+ Z) + Rns(l +" Z) (A.III.19) 

Representative values of y 
P' 

calculated using our fit to 

the proton data under the assumption R = 0.18, are given in P 
Table (XXIX) along with various possible off-shell corrections. 

These values can be taken as the estimate of the possible changes 

in Rp due to off-shell effects in the deuteron. Uncertainties 



X 

0.100 

0.150 

0.200 

0.250 

0.330 

0.400 

0.500 

0.600 

0.667 

0.750 

0.800 

Q2 

1.0 
1.5 
2.5 

1.0 
2.0 
3.5 

1.0 
2.5 
4.0 

1.0 
3.0 
5.0 

1.5 
4.0 
7.0 

2.0 
5.0 
9.0 

3.0 
7.0 

12.0 

5.0 
8.0 

14.0 

6.0 
10.0 
16.0 

8.0 
12.0 
16.0 

12.0 
14.0 
16.0 
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Table XXIX. Typical values of y 
P 

nom 0 MX A B 
yP yP yP yP yP 

0.004 
0.003 
0.002 

0.004 
0.002 
0.001 

0.004 
0.002 
0.001 

0.003 
0.001 
0.001 

0.001 
0.001 
0.000 

-0.001 
-0.001 

0.000 

-0.001 
-0.001 
-0.001 

-0.003 
-0.002 

0.001 

-0.004 
-0.002 

0.002 

-0.005 
-0.004 
-0.003 

-0.005 
-0.004 
-0.004 

0.009 -0.002 -0.002 -0.003 
0.006 -0.001 -0.001 -0.002 
0.004 -0.001 -0.001 -0.001 

0.011 -0.003 -0.004 -0.005 
0.006 -0.002 -0.002 -0.002 
0.003 -0.001 -0.001 -0.001 

0.012 
0.005 
0.003 

-0.005 
-0.002 
-0.001 

-0.007 
-0.003 
-0.002 

-0.009 
-0.003 
-0.002 

0.012 -0.006 -0.010 -0.013 
0.005 -0.003 -0.003 -0.003 
0.003 -0.002 -0.002 -0.002 

0.008 -0.007 -0.010 -0.012 
0.004 -0.003 -0.004 -0.004 
0.002 -0.002 -0.002 -0.002 

0.006 -0.007 -0.010 -0.011 
0.003 -0.004 -0.004 -0.004 
0.002 -0.002 -0.002 -0.002 

0.004 
0.002 
0.001 

0.002 
0.001 
0.001 

0.001 
0.001 
0.001 

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

-0.007 
-0.004 
-0.002 

-0.010 
-0.004 
-0.002 

-0.010 
-0.004 
-0.003 

-0.007 -0.008 -0.009 
-0.005 -0.005 -0.005 
-0.003 -0.003 -0.003 

-0.008 -0.008 -0.009 
-0.005 -0.005 -0.006 
-0.004 -0.004 -0.004 

-0.009 
-0.007 
-0.005 

-0.009 
-0.007 
-0.005 

-0.009 
-0.007 
-0.005 

-0.009 -0.008 -0.009 
-0.008 -0.008 -0.008 
-0.007 -0.007 -0.007 
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in the wave function do not affect R because they influence 

Wl and W2 in the same way. 

A.II1.D. Other Deuteron Corrections 

Other deuteron corrections which were neglected in our 

incoherent impulse approximation are the subject of this 

section. The incoherent impulse approximation is expected 

to work best at large values of Q2. Most corrections to the 

impulse approximation are expected to be small in the Q2 range 

of this experiment (1 to 20 GeV2). Similar discussions of 

corrections to the impulse approximation in the case of in- 

elastic e-d scattering are given in references (19) and (20) - 

1. Glauber type ( 92 1 shadowing corrections. This is 

a multiple scattering correction which occurs because one 

nucleon may shadow the other. it is important in hadronic 

scattering where cross sections are large, In hadronic reac- 

tions this correction is typically (19 ) 5% even at asymptotic 

energies. In electron scattering the double scattering is pre- 

sumably electromagnetic and therefore suppressed (lg )bya 

factor of a. Calculations (20 ) show that in that case the 

correction is less that 0.1% at an incident electron energy 

of 20 GeV. The vector dominance 
(13, 913) allows a virtual photon 

to propagate as a hadron such that the second scattering is 

hadronic and therefore not suppressed. However, simple vector 

dominance models(13' g4) also predict large shadowing in 
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electron scattering from high A nuclei. These predictions 

are ti disagreement with experiment. ( 93 1 Experimentally, 

no shadowing was observed in the electroproduction experi- 

ment even at Q2 values as low as 0.25 GeV2. These experi- 

ments indicate that shadowing will also be small in the 

deuteron. Further refinements( g5 ) of the vector dominance 

model yield shadowing corrections for high A nuclei markedly 

smaller than those of the old vector dominance model. The 

new theories predict little shadowing at high Q2 and small v. 

Therefore, even within vector dominance theories the shadowing 

correction in deuterium is expected to be small in the Q2 range 

of this experiment. 

2. Interference terms and coherent effects. These correc-- 

tions have been estimated (20 ) to be on the order of Fi(Q2), 

the square of the wave function part of the deuteron form factor, 

which is negligible in the Q2 range of this experiment. 

3. Meson currents in the deuteron. These corrections arise 

from the fact that the deuteron wave function probably contains 

a small amplitude for the deuteron to exist as two nucleons 

and one or more pions, a nucleon and a nucleon isobar state 

and other such states. These corrections are known to be small 

in elastic e-d scattering (50 1, and in quasielastic e-d 

scattering C 96 1, and probably contribute only at large w. 

4. Off-mass-shell corrections to the nucleon structure 
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functions. Some estimates of these corrections have been 

made in this appendix. The error arising from uncertainties 

in these corrections has been included in our final errors. 

5. Final state interaction effects. These effects are 

known to be small at large Q2 for quasielastic e-d scat- 

tering. (50,52,97,98) These effects are only important when 

the relative momentum between the outgoing final particles is 

small. In the deep inelastic case, these effects are expected 

to be small (20) because of the large energy and momentum 

transfers that are involved. 

6. Relativistic corrections to the deuteron wave function. 

The practical relativistic bound state problem is still in a 

rather crude state. It is possible that the phenomenological 

non-relativistic deuteron wave functions that we use may in- 

clude relativistic effects in a phenomenological way because 

they are fitted to data. There have also been suggestions (19) 

that the deuteron wave function contains high momentum com- 

ponents in larger than expected amounts. The existence of a 

large amplitude for high momentum means that if those high- 

momentum wave functions were used in the extraction of on from 

present deuterium data then cm would be smaller than the cross 

section extracted with standard deuteron wave functions. The 

extracted neutron cross section is small in the small w region; 

therefore, the inclusion of a large amplitude for high momentum 
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components will result in a neutron cross section which is 

extregely small (i.e., 0,/6 % 0) or even negative. There 
P 

is no convincing evidence at present for the existence of a 

large amplitude for high momentum components in the deuteron 

wave function. Experiments in which the spectator momentum 

distribution in deuteron quasielastic hadronic processes is 

measured' " ) can account for the observed distribution 

within models based on conventional wave functions and including 

Glauber and final state corrections. 

Recently, theoretical studies(lOQ,lO1) of the deuteron 

wave function in the infinite momentum frame have indicated 

that relativistic corrections may decrease the smearing ratio 

S = 
P 

u /a 
P Ps 

by a small fraction which varies from 1.5% at x = 0 

to 3% at x = 0.8. These corrections are such as to decrease 

the final extracted neutron cross section over the entire 

range Of xI and bring the ratio o,/cs 
P 

down closer to the quark 

model limit of 0.25. 


