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ABSTRACT 

A series of experiments has been carried out on the flux trapping and 

shielding capabilities of a flat strip of Nb-Ti/Cu composite material. A circu- 

lar piece of material from the strip was tested in a uniform field directed per- 

pendicularly to the surface of the sample. Profiles of the normal component of 

the field along the sample diameter were measured. The critical state model 

was adapted for this geometry and proved capable of reproducing the measured 

field profiles. Model curves agreed well with experimental field profiles gen- 

erated when the full sample was in the critical state, when only a portion of the 

sample was in the critical state, and when profiles were obtained after the di- 

rection of the rate of change of the magnetic field was reversed. The adaptation 

of the critical state model to the disk geometry provides a possible method ei- 

ther to derive values of the critical current from measurements of field pro- 

files above thin flat samples, or to predict the trapping and shielding behavior 

of such samples if the critical current is already known. This method of deter- 

mining critical currents does not require that samples be formed into narrow 

strips or wires, as is required for direct measurements of J 
C’ 

or into tubes or 

cylinders, as is usually required for magnetization-type measurements. Only 

a relatively small, approximately circular piece of material is needed. The 

method relies on induced currents, so there is no need to pass large currents 

into the sample. The field profile measurements are easily performed with in- 

expensive Hall probes and do not require detection of the resistive transition of 

the superconductor. 

* Work supported by the Department of Energy, contract No. EY-76-C-03-0515. 
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1. INTRODUCTION 

Beani first introduced the concept of the critical state, in which a super- 

conductor responds to any change in applied field with shielding or trapping 

currents that flow at the level of the critical current, Jc. These currents flow 

in the material to whatever depths are required to shield out the field change, 

and at amplitudes which generally depend on the value of the local field. The 

concept of the critical state has proved extremely useful in understanding the 

magnetic behavior of a wide variety of samples. It allows a connection to be 

made between the microscopic pinning forces of a material, its critical cur- 

rent, Jc, and its macroscopic magnetic behavior. 29 3 In particular, the postu- 

lates of the critical state, together with Maxwell’s equations and information 

on Jc(B), have been used to derive expressions for the field distribution and the 

magnetization of slab-shaped or cylindrical samples in parallel fields. I’ 4~ 5 s6 

In a few cases, critical state models have been applied to other geometries.?, 8* g 

However, in these cases Jc(B) has usually been approximated by Jc= constant, 

or the configurations have been limited to semi-infinite strips or tubes. In a 

case involving a flat strip formed into a large 10op,~~*~ 1 difficulties were en- 

countered in accounting for results with a critical state model. The present 

work suggests that the concept of the critical state can be successfully extended 

to the disk geometry. This extension allows the magnetic behavior of disk- 

shaped samples to be modeled, and the critical currents of such samples to be 

determined. 

II. CRITICAL STATE MODEL 

The magnetic behavior of a disk-shaped sample is somewhat more difficult 

to analyze than the usual case of a long cylinder in an axial field, where the 

high degree of symmetry ensures a particularly simple form of the critical 
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state. In the case of a flat disk in an axial field, the critical currents all flow 

I in the azimuthal direction since the relation par= V x greduces to 

( > 

8Br 8BZ 
E*oJ(p= Z-F (1) 

For samples with a large diameter-to-thickness ratio it was possible to use an 

iterative procedure to obtain self-consistent solutions for the magnetic field 

and current distribution of a model disk consisting of an array of N coaxial 

current loops lying in the z = 0 plane. Each current loop of the model disk had 

an effective width, Ar, of 22.86/N mm, and thickness, AZ, of 0. 10 mm, equal 

to the thickness of the superconductor in the sample disk. N was typically 

greater than 180, resulting in Ar values of less than 0.13 mm. The current 

I(ri) flowing in the 1 Sth loop was determined by 

I(ri) = J (r.)ArAz, 
+ 1 

where J .th 
cp 1 

(r.) is the current density at the radius ri of the 1 loop. A closed 

form expression for the z-component of the field at an arbitrary point above a 

current loop is I2 

BZ = 2x10-51 

r (ri + r)2 + 22 
I 

3 
(2) 

where r. = 
1 

radius of the current loop, 

(r, z) = location of the observation point, 

I = current in the loop, 

K, E = complete elliptic integrals of the first and second kind 

with argument k, 

k 
4rir 

=: 
l (pi ~ r)2f Z2 
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This expression was used to calculate the contribution of the series of nested 

curr”ent loops to the field at a distance of 0.76 mm above the plane of the cur- 

rent loops, this being the approximate location of the active area of the Hall 

probe used to measure the experimental field profiles. 

In the first iteration of the model calculation, the field profiles produced 

by a uniform current distribution, J4(ri) = constant, or by other simple, arbi- 

trarily specified forms of J (r.) were calculated using Eq. 2. 
$1 

The shape of the 

field profiles generated by a uniform current distribution was in good agree- 

ment with the shape of experimental profiles measured at higher fields. In 

such cases estimates of the critical current level can easily be obtained from 

the,shape of the field profiles or from the maximum field difference maintained 

across the disk. However, at lower fields where J aJc c, a~, and the total field 

difference across the disk face are larger, the correspondence between the 

profiles calculated by assuming Jc = constant and the experimental profiles 

was not as close. In such cases agreement between model and experimental 

curves was improved by carrying out further iterations in order to include the 

effect of the dependence of Jc on B. 

In the full form of the model (Figs. 1 and 2), the current distribution in 

the disk was adjusted iteratively until the current density in every portion of 

the disk satisfied the criterion of the critical state 

J$(ri) = f Jcbz(ri3 

where Bz(ri) = z-component of the field at r = ri, 

Jc(B) = an assumed form for the relation between the critical current 

and the local magnetic field. 

It was possible to use either an analytic form for Jc(B) or a form of Jc(B) 
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specified by a small table of Jc, B values. For convenience, 5 = o/B f B, 
C 

(Kim5 ) was generally employed in the calculations described here. The calcu- 

I 
, I 
! 

I - 

lation proceeded using Eq. 2 to obtain the contributions to ABZ(ri), the field 

produced by the currents J (r.) flowing in the model disk. The effect of an ap- 
+ 1 

plied field was included by adding a uniform bias field, Ba, to the field gener- 

ated by the circulating currents. Either trapping or shielding currents were 

simulated by choosing the appropriate direction of the bias field in relation to 

the direction of J 
6 

In the iterative procedure (Fig. 2), the set of field values, 

Bz(ri) = ABZ(ri) + Ba, from the nth iteration was used to determine the J 
6 

values for the n+lth iteration 

J$(ri) = Jc(ABZ(ri)+Ba) . (3) 

Starting with an initial estimate of J4(ri) = constant, the final self-consistent 

solution, in which Eq. 3 was satisfied for all ri, was usually obtained within 10 

iterations. Changes in the Jc(B) relation caused clearly related changes in the 

shape of the model field profiles, and the manner in which the trapping or 

shielding ability of the model disk varied with applied field, For instance, 

when modeling the flux trapping process, a decrease in or and B. resulted in 

profiles with steeper gradients above the low field outer portions of the disk 

and flatter gradients above higher field regions near the center of the disk. 

Smaller B. values also resulted in a more rapid decrease in the trapping and 

shielding ability of the disk with increasing field level. 

The generated profiles were insensitive to changes in N, for N > 100, as 

long as z was large compared to the spacing of the loops. The profiles were 

sensitive to changes in z only near the center and outer edge of the disk; in 

these areas the magnitude of BZ increased somewhat with decreasing z. In the 

procedure, the field in the superconducting material is approximated by the 
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field 0. 76 mm above the disk, the location of the scanning Hall probe. In 

cases where trapping currents are flowing, the effect of this approximation is 

to underestimate slightly the field used to determine J+ near the center, and to 

overestimate it slightly near the edge. The reverse effect occurs when shield- 

ing currents are flowing. The overall effect of such approximations on the 

generated field profiles is not expected to be large, since corrections to field 

values are appreciable only over a limited portion of the disk. Complete ver- 

ification of the method now requires either more detailed field measurements 

and analysis to demonstrate the uniqueness of the current distributions, or a 

careful comparison of disk model results with Jc values derived with conven- 

tional critical current measurement techniques. 

HI. EXPERIMENT 

Measurements were carried out in a 63 mm i. d. glass dewar with the 

sample immersed in liquid helium at 4.2K. The dewar was inserted into a 

large, water-cooled, 2 T transverse dipole magnet with 0.46 x 0.91 m pole 

faces, and a 0.10 m gap. As shown in Fig. 3, the disk-shaped sample (A) was 

clamped in a sample holder (B), supported within the dewar by a long, 12.7mm 

diameter, thin-walled stainless steel tube (C). The sample was oriented so 

that the applied field was normal to the plane of the disk. The magnetic field 

was measured by a 3.2mm square x 0.5 mm thick Bell FH-301-040 Hall effect 

probe (D), with a 1. Omm x 2. Omm active area. I3 The probe was recessed 

into a thin epoxy-fiberglass strip (E), one end of which was attached to a 

6.4mm diameter stainless steel tube (F) concentric with the larger sample 

support tube. The tube (F) passed through a simple sliding O-ring seal (G) at 

the top of the support tube. The probe was driven across the face of the sam- 

ple by a driving mechanism consisting of a 60 rpm reversible motor (H) 
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connected through a slip clutch (J) to a 104:16 reduction gear (K) and rack and 

pini& drive (L). The probe position was monitored by a lo-turn potentiometer 

(M) coupled to the driving mechanism. The probe was calibrated by measuring 

the field produced by the magnet with a Bell #660 gaussmeter, I3 and then re- 

cording the output of the probe as a function of magnet current, either at tem- 

peratures above Tc or with the probe moved away from the sample. The probe 

produced a signal of approximately 140 mV/T at the field levels of interest. 

The 45.7mm diameter, 0.25mm thick sample consisted of a sandwich of 

three layers of copper interleaved with two layers of Nb- 7Oat% Ti. I4 The sand- 

wich had been roll-reduced until the layers were approximately 0.05 mm thick 

and metallurgically bonded to each other. This particular sample was given a 

24hr treatment at 355°C to improve pinning and critical current levels. 

Flux trapping experiments were carried out by establishing a magnetic 

field in the sample while its temperature was above Tc, cooling the sample to 

4.2K (or below) while the applied field remained constant, and finally reducing 

the applied field to zero. Shielding experiments were carried out by cooling 

the sample in zero field before gradually applying a field. Further data were 

obtained by cycling the field to its full value and back to zero after a trapping 

or shielding test was completed. During the experiments, the steady increase 

or decrease of the applied field was periodically halted and a field profile ob- 

tained by moving the Hall probe across the face of the sample. This procedure 

generated a series of curves of the normal component of the field just above 

the sample as a function of radial position, at a series of values of the applied 

field (solid curves in Figs. 4, 5, 6a, and 7). 
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IV. RESULTS 

X series of measured and calculated profiles for cases in which the Nb-Ti 

disk was in the full critical state is shown in Figs. 4 and 5, In these cases, 

the procedure of Fig. 2 was used to obtain the fits by modifying the parameters 

in the Jc(B) expression until good agreement between the model-generated 

curves and the experimental field profiles was obtained at several field levels. 

The model field profiles calculated at the lower values of the applied field (par- 

ticularly the profiles obtained for Ba = 0) were quite sensitive to variations in 

CY and B, and good fits to the experimental data could be obtained only for 

(Y Y 1.2 f 0.2 x 109, B, = 0, 27 & 0. 1. At higher fields variations in the shape 

of individual profiles with changes in 01, B0 were less prominent, although it 

was possible to constrain the values of 01 and B, further by requiring agreement 

between model and experimental profiles obtained over a range of field of sev- 

eral times B,. As shown in the figures, field profiles observed in both in- 

creasing and decreasing fields have been reproduced quite well by the model 

with one set of values for the two adjustable parameters, The disagreement 

near r = 0 was probably due to a small off-center shift in the path of the Hall 

probe. 

Modeling of the curves taken before the field changes had penetrated to the 

center of the disk (Fig. 6a) required further assumptions about the critical 

current pattern. It was evident that the entire sample did not enter the critical 

state until the flux front penetrated to the center of the disk. However, the 

samples behavior could not be reproduced by allowing currents to flow only in 

regions where large scale flux penetration was apparent. Field profiles were 

calculated for a wide variety of trial current distributions, but good agreement 

with the experimental curves was obtained only with a current distribution in 
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which J 
@ 

was nonzero at small values of r. The fits to the data shown in 

Fig? 6a were obtained by interactively modifying the current distribution after 

each iteration according to the correspondence between the experimental and 

model curves. This procedure led to current distributions in which I(ri) was a 

monotonically decreasing nonzero function of r across the inner portion of the 

disk. The results of these model calculations were brought into correspon- 

dence with the postulates of the critical state by assuming that the shielding 

currents flowed at J= Jc(B) in a thickness of material that decreased with de- 

creasing radius 

Wi) 
Z = Ar J&ABZ(ri)+Ba) ’ 

Because of this additional variable it was possible in the partially penetrated 

case for J(r) and Jc(B) to be varied independently and still obtain fits to the 

data. However, in practice Jc(B) was first determined by fitting the model 

curves to data for the fully penetrated case, and then z(r) was determined from 

the I(ri) distribution obtained as described above. Figure 6b shows plots of the 

depth of penetration of the critical state currents as a function of radius ob- 

tained with this procedure. 

A third type of situation arose when profiles were recorded after the di- 

rection of dBa/dt had been changed, An example of this situation is shown in 

Fig. 7, where the experimental curves were obtained by applying an increasing 

field to the sample after a field had been trapped. In such cases, the experi- 

mental curves were reproduced by assuming that the change in dBa/dt caused 

the critical currents near the outer surface of the disk to reverse direction, 

while currents flowing in the interior of the material remained unchanged. 

Good agreement between experimental profiles and model-generated profiles 
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was obtained when all the currents in the region where dBZ/dr had changed 

signFeversed direction, and a decreasing proportion of the current flowing at 

smaller radii was reversed. For example, good correspondence was obtained 

between the model-generated curve (dashed curve in Fig. 7) and the experi- 

mental curve by assuming that all currents at r > 7.9 mm and currents flowing 

in the region lzl > 0.06 mm, r < 7.9 mm reversed direction, while currents in 

the remaining portion of the interior of the sample flowed in the original (trap- 

ping) direction. In this configuration all currents still obeyed the criteria of 

the critical state (Eq. 3). As Ba continued to increase, the current distribu- 

tion changed in a continuous manner from one in which the disk was filled with 

trapping currents + Jc, to a configuration with shielding currents -Jc. 

V. DISCUSSION 

For cases in which the sample is exposed to a monotonic increase or de- 

crease in the’applied field, and is fully in the critical state, a relatively simple 

critical current distribution can account for the experimental,results. In such 

cases, azimuthal currents at a value determined by the local value of B flow 

throughout the sample, and a straightforward procedure can be used to find the 

values of these currents from the measured field profiles. The only adjustable 

parameters required in this procedure are the constants in the Jc(B) expres- 

sion. 

In cases where only a portion of the sample is in the critical state, the 

distribution of the critical currents is more complicated, and the extent of the 

sample carrying critical currents as well as the parameters in the Jc(B) ex- 

pression must be varied in order to reproduce the experimental data. The 

model calculations indicate that currents must flow in an extended region in 

the disk above which the axial field is less than 5% of the applied field. These 
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currents cannot be attributed to the reversible magnetization of the material, 

since similar behavior was observed when an applied field was decreased after 

the disk was cooled in a 340 mT field. Jn such cases, the reversible magneti- 

zation acts in opposition to the flux trapping process. Equation 1 can therefore 

be satisfied only if there is a change in Br in the material of the order of a few 

tens of millitesla. Apparently, before the disk enters the full critical state an 

appreciable radial field is present in those central portions of the disk in which 

the critical currents are flowing. The critical state is also complex after the 

direction of the field change has been recently reversed. However, the experi- 

mental curves can be reasonably well reproduced by assuming that the change 

in dBa/dt causes a total reversal of the currents at the outer radii of the sam- 

ple, and a partial reversal at smaller radii. 

It should be noted that since the radial component of the field was not mea- 

sured it is not possible to show that the current distributions deduced here are 

the only possible solutions. The results obtained so far show that current dis- 

tributions consistent with the postulates of the critical state can provide good 

correspondence with experimental data on the normal component of the field 

above a disk sample in the full critical state. By assuming that the current 

distributions change with changes in the applied fields in a manner similar to 

the evolution of current distributions in the well-known case of cylindrical sam- 

ples in axial fields, good correspondence is also obtained with the-sample in the 

partial critical state and after the sample is subjected to changes in the sign of 

ma/a. 

The correspondence between the model and experimental profiles indicates 

that the analysis of measured field profiles by means of the critical state model 

provides a prospective method for accurate measurement of critical currents 
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in disk-shaped superconductors. The method described here offers several 

potential advantages over customary techniques. It can be used with thin flat 

samples of almost any size, and, since the method relies on induced currents, 

it does not require the passage of large transport currents into small samples, 

or the measurement of small voltages across them. As a result, it is also un- 

necessary to make a distinction between induced and transport currents. The 

technique should be particularly useful for determining the critical current 

level of material used to fabricate flux trapping and shielding devices, I5 t lg 

since these materials are not usually in shapes suited to customary methods of 

critical current determination. One possible limiting feature of the technique 

is the occurrence of flux jumps in the material before the full critical state is 

established. However, in most cases it should be possible to stabilize the ma- 

terial by surrounding it with additional copper, improving cooling conditions, 

or performing measurements at higher temperatures or fields where stability 

is improved. 
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FIGURE CAPTIONS 

1. -Critical current model for a thin disk in an axial field. 

2. Iterative procedure used to determine the critical current from the field 

profile measurements. 

3. Experimental apparatus used to measure the field profiles of the disk- 

shaped sample. 

4. Field profiles obtained in decreasing applied fields (solid curves), and 

the corresponding model-generated curves (dashed) obtained with 

Jc(B) = 1.2 x 10g/(B + 0.27). 

5. Field profiles obtained in increasing applied fields (solid curves), and 

the corresponding model-generated curves (dashed) obtained with 

Jc(B) = 1.2 x 109/(B + 0.27). 

6. (a) Field profiles obtained in increasing applied fields after the disk was 

cooled in zero field (solid curves), and the corresponding model- 

generated curves obtained using the interactive procedure with 

Jc(B) = 1.2 x 10g/(B + 0.27). 

(b) Form for the distribution of the critical currents in the sample that 

produced the fits shown in (a). 

7. Sequence of field profiles generated by applying an increasing field to the 

sample after a field had been trapped by cooling the sample in a large field 

and reducing the field to zero. 
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