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Abstract 

We study the phase diagram of lattice gauge theories 

coupled to fixed length scalar (Higgs) fields. We consider 

several gauge groups: Z2, U(1) and SU(N). 

We find that when the Higgs fields transform like the 

fundamental representation of the gauge group, Higgs and 

Confinement belong to the same phase of the theory. There 

is no phase boundary between them, and all operators have the 

same qualitative behavior. When the Higgs fields transform 

like some representation other than the fundamental, a phase 

boundary may exist. This is the case for SU(N) with all 

the Higgs in the adjoint representation and for U(1) with 

all the Higgs in the charge N(N>l) representation. 

We present an argument due to Wegner that indicates 

the stability of the pure gauge transition. Another phase, 

free charge or Coulomb, is generally present. In this regime, 

the spectrum of theory contains massless gauge bosons (for 

continuous groups) and finite energy states that represent 

free charges. 
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1. Introduction 

1.1. T%e problem of matter fields 

The formulation of gauge theories on a lattice by Wilson and Polyakov' 

allows us to study these theories outside of the realm of weak coupling 

expansions. In particular, in the strong coupling regime, they are known 

to exhibit confinement of static sources. 192 

It is hoped that for non-Abelian groups in four space-time dimensions 

confinement persists for all couplings, 3 allowing one to make a continuum 

theory weakly coupled 4,5 at short distances, confining at large. The 

Abelian U(1) theory, that is Polyakov's compact photodynamics, 6 in four 

dimensions is thought to be confining only down to a finite critical 

coupling gc. 2,7,8,9 At gc a phase transition occurs, leading to a weak 

coupling phase (g< g,) characterized by the existence of-massless photons 

and Coulomb-like forces between static sources. This picture (hopefully) 

allows one to define a continuum theory where charged particles are free, 

like conventional electrodynamics. 

The above comments apply to pure gauge theories, possibly in the 

presence of static sources. Any attempt at realistic theory will 

necessarily include dynamic matter fields (e. g., quarks for QCD; Higgs 

scalars, leptons and quarks for Weinberg-Salam, etc.). In certain regimes 

these matter fields can exert a dramatic effect on the behavior of the 

gauge theory. A prime example is the Higgs mechanism, where scalar fields 

interact with the gauge bosons rendering them massive and the forces they 

mediate short ranged. It is important, therefore, to have some understand- 

ing of the combined matter-gauge system, in particular its phase diagram. 

Dynamic matter fields immediately create a problem in classifying the 

phases of the theory. The criterion used for diagnosing confinement in the 
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pure gauge theory, the energy between static sources, no longer works. 

Even if the energy starts increasing as the sources separate, it eventually 

becomes favorable to pop a particle-antiparticle pair out of the vacuum. 

This pair shields the gauge charge of the sources, and the energy stops 

growing. So even in a theory that "looks" very confining our signal fails. 10 

There are ways around this. In a non-compact Abelian theory, one can 

introduce fractionally charged sources that cannot be shielded by integer 

charged particles. For compact groups, however, charge is quantized, 
11 

and this trick is out. One can still imagine using matter fields in 

other than the fundamental representation; 12 more precisely, matter fields 

that cannot shield sources in the fundamental (e. g., fields in the adjoint 

representation). However, this still leaves open the question of the 

behavior of the theory when the matter fields carry the fundamental 

charge, 

1.2. The models 

We shall restrict ourselves to lattice gauge theories coupled to 

scalar (Higgs) fields. To simplify the problem (without, we feel, throwing 

away any important physics) we freeze out the radial mode of the Higgs 

fields, working with fields with fixed norm R. Thus we shall be dealing 

with fields that are strictly compact. 

The action of the model, on a d-dimensional hypercubic'lattice with 

finite lattice spacing (set to be one), reads 

V,(F) Uv(:+eV) U~(:+ev)U~(~) + h.c. 

(1.1) 
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where, 

(0 (:,p) labels the link with endpoints at the lattice sites ; and 

+ ,-. 
r+e 

?J' 
(ii) (F,uv) labels the elementary plaquette defined by the links (Z,P) 

and (%,v), 

(iii) $(T) is the Higgs fields at site s and transforms like some M- 

dimensional irreducible representation of a compact gauge group G, 

(iv) UP($) are gauge group matrices residing at the link (;,u), 

(VI D{Uu (;)) is an M-dimensional representation of lJu(:). 

The dimensionless coupling constants B and K are related to the gauge 

coupling constant g and to the Higgs length R through the relations K=l/g2 

and @=R2. 

The action (1.1) is invariant under arbitrary local' gauge transformations 

(v&t such that 

up (3 -+ up 

4 (3 -+ c$‘(Z, = D(V(;)) $(;) (1.2) 

where D(V) is the same matrix representation given above. For instance, 

if the gauge group G is the Abelian group U(1) the model reads as follows: 

= exp(i Au(g)\ ; 0 2 Au(:) < HIT (1.3) 

The action (1.1) takes the form 

Sq[&); AP( = B c 

(5 l-d 

cos(AuQ(~) -qA$:)) + K c cos(R,$)) 

G, l-N> 

(1.4) 
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"The integer-valued parameter q is the charge carried by the Higgs field. 

In Eq. (1.4) the field-strength FPv(:) is defined by 

F,,v (G) = APAv(:) - A$(;) (1.5) 

The gauge transformation for this Abelian example are 

$, (;I -f A;(:) = A$:) + APa 

0 (3 -t e’(G) = e(?, + qc.& (1.6) 

with V(?) = exp{ia(:) 1 . 

1.3. Limit models 

The pure gauge theory and the Higgs model are recovered as limit 

situations of the model (1.1). 

(a) The Higgs-Heisenberg model (K=m) 

When the gauge fields are frozen to pure gauge configurations (K==) 

a family of models is obtained. This models have a global G invariance 

and are generalized Heisenberg-sigma models. 
13 Their action, in an axial 

gauge Uu(:) = I (identity of G) (p= 1, for instance) is 

s[&] = $ x, ( +G, * &:+eFi) + C.C.) (1.7) 

G,lJ) 

In particular if G=Z2 we get the Ising model; if G=U(l) the XY model 

and if G=O(N), the Heisenberg model. If the space time dimensionality 

d is high enough two phases will be present. 
14 When @> 6, the global I. 

symmetry G is spontaneously broken. The Higgs field develops a non-zero 

expectation value <$I > and the correlation function (propagator) 

< @(.O) l $ (-7 r > has the asymptotic behavior 

< 4(O) l &a > ,:,zm <+ >2 ' const* exp (1.8) 
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The kehavior (1.8) is actually valid for continuous symmetry groups and 

it is obtained in the spin-wave (linearized) approximation. The l/\;ldV2 

behavior is a consequence of the existence of goldstone modes (spin-waves) 

in the model. For discrete groups the excitations are always massive and 

the correlation function behaves like 

< $(O) 4%) ’ 
(rl:m 

<t$ >* + const. exp 
( 1 
XL 

5 (1.9) 

where 5 is the correlation length. 

On the other hand, if 8~ B,, the symmetry is restored. That is 

<(P(O) $G) > - const. exp - 
( ) 

EL 

Irl ja3 
5 

(1.10) 

for all the models. Note that, even though the length of the Higgs has 

been kept fixed (R= B4), the symmetry here is normal (i.e., < $ > = 0). 

(b) The pure gauge theory (B= 0) 

In this limit the Higgs fields decouple. The action now has the form 

~~~~~~~~~~~~ = $ C TrpU(:) uv(:+eU) u:(:+$) U:(S) + h.c.] 

G, I.lv) 

(1.11) 

The model (1.11) has been studied by a number of authors with different 

techniques. 1,2,3,7,8,9,14,15,16 If the dimensionality is'high enough 17 

two phases are found. 

If KC Kc (g>gc) we are in the strong coupling regime. The 

behavior of the theory is characterized by the Wilson loop integral for 

sources in the fundamental representation 

(1.12) 
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whereT is a closed path of links. In the strong coupling regime C 

decays like 

CP N exp -Area of P 1 (1.13) 

for asymptotically big loops. The energy of two static fundamental 

sources W(R) separated a distance R during a time T is given by 

W(R) = - + log cp (1.14) 

For a rectangular loop (1.13) and (1.14) give a linear potential 

(confinement). 

are 

and 

the 

In the weak coupling phase, KrKc (g<gc), static fundamental sources 

no longer confined. The Wilson loop obeys a perimeter law 

Cr - exp 
-i 

-Perimeter of I? 
1 

(1.15) 

the force between the sources is weak. If the gauge group is discrete 

force is exponentially damped (massive photon) while if the group is 

continuous the force is Coulomb-like (massless photon). 

1.4. Phases of the theory 

The phase diagram of the full theory depends crucially on whether 

the Higgs fields transform like the fundamental representation of G or 

not. For instance, if the gauge group G has a non-trivial center C 

(like ZN for SU(N)) it is possible to introduce Higgs fields that transform 

trivially under the center of G(e.g., in the adjoint representation). If 

we introduce enough Higgs fields so that the gauge invariance G/ C is 

completely broken in the unitary gauge ($ = constant vector), a leftover 

local C-invariance will still survive even at 6 = a. In the SU(N) example 

the result will be a Z N gauge theory. 18 In general, The Higgs fields may 
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leave S,ome subgroup of G unbroken. Now a phase transition, of the type 

discussed in (1.2), may occur depending on which subgroup survives and on 

the space-time dimensionality. If this is the case we find that three 

distinct phases may generally occur: 

(a) A Higgs mechanism-type phase. Here the gauge bosons are massive. 

The force law is short ranged and the Wilson loop exhibits a perimeter 

law (6 and K large). 

(b) A free Charge or, for continuous groups, Coulomb phase. Here 

there is neither Higgs nor Confinement. For continuous groups, the gauge 

bosons are massless giving a Coulomb force between static sources. In 

general we shall see that in this phase there are finite energy states 

that represent free charges (6 small, K large). 

(c) A confinement phase. In this regime the Wilson loop for funda- 

mental sources has an area law. The gauge bosons are massive and there 

are no free charges in the spectrum. 

When the Higgs fields are in the fundamental representation, however, 

the situation is drastically different. In this case, the unitary gauge 

completely breaks the gauge symmetry. Ix B = 03 the gauge variables are 

locked at Ull(;) = I (Identity). Even if f3 is finite but very large, 

not much can happen. Excitations are strongly suppressed and, in this 

limit, can be considered to be dilute. On the other hand, if K g 0, 

the theory represents a set of weakly coupled degrees of freedom living 

at the links of the lattice. Thus no phase boundary between the Higgs 

(B , K large) and confinement (B , K small) can exist in this situation. 

These arguments can be made precise. We shall show in the appendix 

that, applying a result obtained by Osterwalder and Seiler, 19 the ground 
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state (vacuum) energy and all the Green's functions of the theory are 
h 

analytic functions in a region of the (B,K) space that includes both 

Higgs and Confinement (Figs. 1 and 2). These two phases are continuously 

connected. If the gauge group is continuous the argument will say that 

the analyticity region shrinks into a point at the Higgs-Heisenberg model - 

(P="). However, if d> 2 regular perturbation theory in the broken 

phase should apply. Therefore, in the entire region the theory is well 

behaved for all compact groups. 

At first glance this result looks quite surprising. We should keep 

in mind, though, that most of what we know about Higgs and Confinement 

comes from an approximate picture where one of the fields is either 

decoupled or frozen. In fact all products of local operators that are 

candidates for distinguishing the two regimes turn out to have the same 

qualitative behavior in each (see Section (11.2)). Furthermore, gauge 

invariant operators like 

(1.16) 

creates a "meson"- like state in the strong coupling regime, while in the 

Higgs regime it creates a state with a massive photon (this is clearest 

in the unitary gauge). Thus the spectrum of the theory seems to be 

created by the same kind of operators in both regimes. For these and 

other reasons, L. Susskind has speculated that these two phases are 

continuously connected. 20 

In general, if the Higgs are in the fundamental and all the gauge 

invariance has been broken no phase boundary will exist between Higgs 
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and Confinement. Due to the analyticity we expect that the spectrum of 

the theory will evolve continuously from one regime to the other. Higgs 

and Confinement are compatible phases. A theory can, at the same time, 

be confining and exhibit some sort of dynamical Higgs mechanism. 

The pure gauge transition will be shown to be stable. The arguments 

are based in a study that Wegner 21 presented for the Z-? model but that 

generalizes for any compact group and dimension (higher than the critical). 

A line of second order transitions emerging from the pure gauge critical 

point (f3=0, K=Kc) is expected. 

Generally, two phases will be present in this case: 

(a) A Higgs-Confinement phase; 

(b) A free charge or Coulomb (continuous groups) phase. 

The two possible phase diagrams discussed above are, naturally, 

prototypes. They may change if, for instance, one of the pure transitions 

does not exist (generally the pure gauge transition). It is also possible 

to find more complicated situations depending on the structure of the 

Higgs sector. 

Our analysis is done on a lattice with fixed, finite lattice spacing. 

The question of the continuum limit of these theories is still an open 

question. This problem has to be answered by means of a renormalization 

group analysis. 

The paper is organized as follows. In Section II, we study the 

discrete Z2 group. There we discuss most of the consequences of having 

the Higgs field in the fundamental representation since the calculations 

are much simpler. In Section III, we consider the U(1) model (Abelian 

Higgs). The results are generalized to non-Abelian groups (mainly SU(N)) 
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in Section IV, which also serves as a conclusion. In the appendix, - 

we sketch the proof of analyticity referred to in the text. 

II. The Z, Model 

II.l. The model 

In this case the variables are Ising like 

Y& = UG, 

lJp) = +1 

= ?l 

i 

(2.1) 

The action (1.1) now looks like an Ising model coupled in a gauge 

invariant manner to an Ising gauge theory. 

S Ising [ 
a&, u,(T) 1 = B c 

G,l.d 
+K c cp,, (3 

(LJVI 

where the field strength +uv (?) through the plaquette (G,uv) is 

The action (2.2) is invariant under Z2 gauge transformations 

(2.2) 

(2.3) 

(2.4) 

where s(z) = +l. 

The generating functional (or partition function) for this model 
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is defbed by 

2 Ising (' ,K) = _ .+. c f. 
t Q (r) ,Up (r) 1 

Ising 1 
co. (3 , up (3 

If 
(2.5) 

and the ground state (vacuum) energy density by 

AT Ising(B,K) = - + 1% ZIsing(B,K) (2.6) 

The limit models of this theory have been discussed in Section (1.3). 

The only distinctive characteristic of this model is the absence of 

massless modes (Goldstone and photons) in both limits because the symmetry 

is discrete. There are massless modes only at the phase transition (if 

it is second order). 

11.2. Higgs and Confinement 

(a) Analysis of the order parameters 

First of all, it should be noticed that since the Z2 group has only 

one non-trivial representation, the matter fields will be, by force, in 

the fundamental representation. Thus, the model will exhibit most of 

the general features produced by this situation, despite the simplicity 

of the Z2 group. 

What happens to the signatures of the pure phases when both fields 

are dynamical? Consider first the small K ("high temperature") expansion 

of the Wilson loop in the pure gauge theory. For a square loop of linear 

dimensions R and T the result is 

Cr % (tanh K)RT + . . . = exp C-TRTI (2.7) 

at the lowest order in K. Here r = -log tanh K is the "string tension" 

and RT is the area of the square loop. 
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Now let B be finite but small. In this case a kind of "high 
-h 

temperature" expansion in R can be performed. We find 
22 

5 = (tanh fi)2(R+T) + . . . + (tanh K)RT + . . . (2.8) 

For a loop as ymptotically blAthe "area" decaying term (tanh K)RT is 

always exponentially smaller than the "perimeter" decaying term 

(tanh 8)2(R+T). Thus the long distance behavior of the Wilson loop, 

for B # 0, is given by the perimeter law 

% 
% (tanh 8) 2(R+T) + . . . y exp C-API (2.9) 

where P = 2(R+T) is the perimeter of the loop and X = -g log tanh 6. 

We see a sudden crossover from an area to a perimeter decay for any 

finite value of 6. This perimeter dependence reflects the fact that a 

pair popped out of the vacuum can shield the external sources. In fact, 

perimeter behavior for all non-zero B is a rigorous consequence of a 

Griffiths inequality. This crossover does not imply a singularity in the 

thermodynamic functions because the theory depends on two parameters, 

B and K. In the pure gauge theory, however, there is only one parameter, 

K, and a change in the behavior of the loop signals a phase transition. 

Now let us consider what has happened to the order parameter of the 

Ising model. The two point function <a(d) o(z),6 K is not gauge invar- 
, 

23 iant, so it vanishes identically for all values of the coup-ling K. 

A possible way to make it gauge invariant is to insert a product of 

gauge variables along some path of links T between 6 and ;. 

The new operator reads 

c,(l;l) 2 <a(O) pJ$? d3> 
( > 

(2.10) 
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atK=- ,the gauge variables can be set to be one in a suitable gauge 

(see Section 1.3) and we obtain the correlation function of an Ising 

Model. 

lim <o(O) 
( ) 

lJUu(:.) a(& = W(0) c&> 
K- 

Ising 
(2.11) 

We can now compute C,(l;l> h w en K is large but finite by means of an 

excitation expansion valid when B and K are large. This expansion is the 

analog of the low temperature expansion of the Ising Model. 

For very large K, the smallest excitation of the gauge fields (d>2) 

has U 
lJ 

= 1 at all the links of the lattice except one where U,, = -1. 

This flipped link variable gives field strength to all the plaquettes 

that share that link. In three dimensions this is a loop of field 

strength. 24 

In a dilute gas of excitations (or first cumulant approximation) 

C,(l~~) has the behavior 

<a(O) l-l cd)> = exp -2]G/ expC-4K(d-1) - 2f31 

r (5,:) 

(2.12) 

We see that the gauge invariant correlation function (2.10) decays 

exponentially for any finite value of K. It is important to note that 

the product of gauge variables is the source of the decay. Whenever one 

of the excitations crosses the string of gauge variables, the operator 

changes sign and the "gas of excitations" disorders the correlations. 
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MOwever, it is in principle possible to write an operator that is 

invariant under gauge transformations but does not single out a given 

path as (2.10) does. The operator <a(O)*a(T)> is not invariant, but 

its expectation value in a fixed gauge can nevertheless be non-zero. 

A suitable gauge to study this operator is the "minimal gauge". 

It is defined as follows: given a configuration of field strength 

r@U,(h, we choose Uu(:) such that (i) it is consistent with the 

prescribed (@ Pv) and (ii) h as a minimum number of links with U,,=-1. 

For certain configurations IQ pv(T)l it is possible to find more than 

one configuration that satisfies the minimal gauge prescription. 

This gauge degeneracy is not important if K is very large but gets 

worse and worse as K becomes smaller. This is a simple example of 

topological entropy 25 common in compact gauge theories. In our case, 

it is closely related to the impossibility of distinguishing between 

Higgs and Confinement. 

Unlike C,(l~l), (2.10), the correlation function in the minimal 

gauge does not develop an exponential decay in the dilute excitation 

limit. The important difference is that the string of U variables is 
1-I 

absent. The result, to lowest order in e 
-2K , is 

<u (0) ‘CJ (:)>minimal M <u (0) ‘& X 
Ising 

x exp[-4K(d-l)-BWB)] 

(2.13) 

where <a(d) l a(:> > (:,p) is the correlation function of an Ising Model 
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with a flipped bond at (z,p) and W(B) is the change in the free energy 

due toThe flipped bond. 24 But the effects of a flipped bond are 

important only within a correlation length from the defect. Thus 

<a(d) l a(z) > (g,u) can be different from <a(d) l o(:)>Ising if the 

flipped bond is close to c or g and (2.13) is stable as R + 0). Then, 

to lowest order, it is possible to find a non-zero value of <a> given 

by 

<a> z <a> Ising - -$ exp C-4K(d-1) - Pm) I} (2.14) 

Therefore we expect some sort of long range order in the system. This 

operator is able to distinguish between Higgs and disorder, since (2.14) 

is valid when K is very large. However, the gauge degeneracies will 

spoil this long range order and this operator will fail to distinguish 

between Higgs and Confinement. 

(b) Higgs and Confinement belong to the same phase. 

We now want to show that Higgs and Confinement belong to the same 

phase. That is, we need to show that there is no phase boundary 

separating these regimes. Following the lines of the introduction, we 

first notice that if such a phase boundary is really present, the vacuum 

energy (free energy), as well as all the possible Green's functions, 

should exhibit a line of singularities. The strategy is thus to show 

that ~(B,K) and all the Green's functions are analytic functions in a 

strip of the (e,K) plane that includes both Confinement (K<Kc, B small) 

and Higgs (fi> Bc, K large). 

In the particular case of discrete gauge groups, this result can 

be shown by transforming the model (2.2) into a lattice gas. 
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1-the unitary gauge the action of the model is 

U,,(:) + K c $,$) 

(LJV) 

(2.15) 

and it turns into a lattice gas (with degrees of freedom on the links) 

by setting the occupation number of the link n,(:) 

1 
n,(G) = 

- uJ3 
(2.16) 

2 

When fi is large, the configurations of gauge fields that contribute 

the most to the partition function are those with the fewest links with 

up = -1. Thus the lattice gas is very dilute in this regime. On the 

other hand if K is small, the gas is not dilute. but the interaction 

energy is very small. The system is a set of weakly interacting degrees 

of freedom. These comments can be stated formally through the construction 

of a set of Kirkwood-Salzburg equations. 13,26 Gallavotti and Miracle- 

sol826'27 have proven a theorem on the analytic properties of the free 

energy and correlation functions of lattice gases that, with minor changes, 

applies to our case. The theorem, when applied to our model, establishes 

the analyticity of the free energy and all the Green's functions in the 

strip of interest. This result also follows from the more general proof 

discussed in the appendix. There is no phase boundary between Higgs and 

Confinement. It is also interesting to note (see appendix) that the 

analyticity region has a finite width in the Confinement regime and in 

the Higgs regime. Then there are no transitions "off-the-axis". 

It is now clear that Higgs and Confinement are continuously connected. 

This proof indicates that it is not possible to construct a test to 
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distinguish between these regimes. It is usually assumed that the 

existence of such a test would imply a non-analytic behavior along some 

line (phase boundary) between these regimes. We have just shown, however, 

that this is not the case. There are certainly quantitative differences 

between Higgs and Confinement, just as there are between liquid and gas. 

11.3. Stability of the Transitions of the Pure Models. 

(a) Stability of the transition of the pure gauge theory. 

In the last paragraph, we have studied some analytic properties of 

the vacuum energy. We found that there is a domain in the (B,K) plane 

where g(.p,K) is analytic. What about the rest of the diagram? 

In (2.15) we wrote down the action for the model in the unitary 

gauge (CT(;)= 1, all r',. Formally (2.15) is analogous to -the action 

of an Ising Model in a uniform magnetic field, h 

(2.17) 

The Ising Model has a global Z2 invariance and h is a symmetry breaking 

field. When h= 0 and B> Bc (the Ising critical point), the global 
+ 

symmetry is spontaneously broken and the local order parameter <o(r)> 

is non-zero. At the critical point, the fluctuations of the order 

parameter become long ranged and the spin spin correlation <U(G)o(;)> 

decays as a power of the distance I?[. However, if there is a symmetry 

breaking field acting on the system, the connected part of the correla- 

tion function becomes short ranged for all 6. Quantities like the 

susceptibility x(B,h) that in the absence of a symmetry breaking field 

are singular at the critical point, become analytic functions of B and 



h as spoon as the magnetic field is turned on. Thus a symmetry breaking 

field has destroyed the transition. 

But, in the case of a gauge theory, we have a local symmetry, 

and a local symmetry is never spontaneously broken. 23 Thus, gauge 
-t 

non-invariant operators, such as UP(G) or UN(0)*UU(G), have zero 

expectation value for all values of the coupling constant K no matter 

what boundary conditions are imposed. Therefore, even though the 

coupling S to the matter fields formally breaks the local invariance, 

it is not coupled to an order parameter, i.e., to a field with some 

sort of long range order. We conclude that the physics of this term 

should be very different from that of a symmetry breaking field in a 

model with a global symmetry. Wegner 21 has analyzed this model and for 

reasons explained above, he concludes that the transition of the pure 

gauge theory should be stable. Thus, he predicts the existence of a 

line of phase transitions starting at the pure gauge critical point 

(@= 0; K = Kc). 

We now present a slightly different version of Wegner's arguments. 

Consider the behavior of the model when S is small but finite. In order 

to understand the 

out and construct 

exp Seff 

effect of the matter fields, we shall integrate them 

an effective action S eff Up Cl for the gauge fields. 

o(:)nll(?)u(;+ eII) + K c Q,,\)(:) 

(ho 
(2.18) 

If fi is small it is possible to expand Seff in a power series in S (this 

is in fact equivalent to computing the free energy of an Ising Model in 

a fixed distribution of bonds {Vu(?)} by means of the high temperature 

expansion). 
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= 2N(cosh B) 
Nd 

c (tanh S)L(r) 

r 

where I' is a closed p.?th of links of the lattice and L(r) is the length 

of that path. 

The leading contribution to Seff will be given by the smallest 

loops, i.e., elementary plaquettes. Thus, to lowest orders in 0, 

S eff will have the form 

SeffpV] =(K+tanh-'(tanh S)4) c @,,v(:) + (2.20) 

<h-d 
interactions 

Thus, at lowest orders in S, the effect of matter fields is a finite 

renormalization of the coupling K into an effective coupling Keff 

given by 

K eff 
ZK-I- S4 (2.21) 

The higher order terms will produce interactions involving many plaquettes. 

However, there will be interactions only between linked plaquettes (i.e., 

plaquettes that share at least one vertex) and, at lowest order, they 

contribute to the effective action with a coupling of the order of 

(tati f3jn where n is the length of the loop that encloses the group of 

plaquettes. 28 Interactions at long distances will be exponentially 

damped by a factor e-nllog 'I(6 small). Scaling arguments (assuming a 

second order transition) suggest that such finite ranged interactions 

are unable to destabilize the system. Hence, in the neighborhood of 
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S= 0, the system can be approximated by a pure gauge theory with an 
-h 

effective coupling Keff given above, Thus the curve in the (R,K) plane 

given by the equation 23 

KC 
= K+S4 (2.21a) 

represents a line of second order transitions starting at the pure 

gauge critical point (O,Kc). Notice that as B increases the coupling 5 

decreases. Thus for finite 8, the coupling g 2 21 
( > 
g =K necessary to confine 

the matter fields is shifted to stronger values. 

(b) Stability of the Ising transition. 

The singularity of the pure Ising Model is stable against fluctua- 

tions of the gauge fields. In the particular case of d= 3, this result 

follows immediately from a duality transformation. 21 The model (2.2) 

is self-dual in three dimensions. The duality transformation maps a 

model with couplings (B,K) onto a model with couplings (S*,K*), where 

exp (-28*) = tanh K 

exp (-2K*) = tanh f3 

(2.22) 

Note that the duality transformation not only exchanges large with small 

couplings, but matter and gauge couplings as well. In particular, the 

pure gauge model is dual (d= 3) to the three dimensional Ising Model. 15,21 

The line of transitions given by (2.21a) has as its dual image another 

line of transitions starting at the d= 3 Ising critical point. To lowest 

order, in the large K regime, the effect of the gauge fields is a finite 

renormalization of the Ising coupling 8 21 

B eff z B -sinh 26 * exp (-8K) (2.23) 
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In higher orders other effects appear. In the previous sections, we 

point;leh out that larger plaquettes couplings are in fact generated. 

The dual image of those couplings, by simple topological arguments, 

can be seen to be many spin interactions. But the important fact is 

that the interactions that are generated only involve an even number 

of spins, and are finite ranged. Interactions of these types do not 

break the global symmetry of the Ising Model. They can change the 

value of the critical point (as in (2.23) but are unable to destabilize 

it, at least if K is large enough. 

The stability of the Ising critical point is not a special feature 

of three dimensions. The duality argument can be generalized to any 

dimension. The difference is that if dZ3, the model is no longer self- 

dual. Wegner 21 
has studied the dual transformation of-this model in 

any dimension. The dual model is, in general, a higher gauge theory. 

The link interaction dualizes into an interaction on a hypercube (d- 1 

dimensional simplex) and the plaquette term into an interaction on a 

d- 2 dimensional simplex, In four dimensions, for instance, links go 

into cubes and plaquettes into plaquettes. The couplings are related 

by the usual duality relations. In any event, the arguments formulated 

about the stability of pure gauge theories also generalize to the higher 

gauge models. Hence the stability of the transition near the Ising 

regime (K=m) follows from the stability of the transition of the higher 

gauge theory. The result (2.23) is then essentially valid in any 

dimension. The only change is that the small parameter exp (-8K) is 

now exp 
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(c) Spectrum of the Theory. 

?he results of the previous paragraphs, summarized in Fig. 1, 

suggest the idea that there is a closed region of the phase diagram 

characterized by the absence of both Higgs and Confinement. In the 

case of a continuous gauge group there is a simple test for such a 

regime: the existence of a massless photon (see Section III). The 

discreteness of the Z2 group rules out this possibility. In this 

theory, the photon is always massive, except at the phase transition 

points. 

In order to understand the physics of these regions, we find it 

useful to discuss the qualitative nature of the spectrum in each of 

them, We introduce here the Hamiltonian formulation of this theory. 

The Hamiltonian of this model can be constructed by means of the transfer 

matrix formalism. Using the methods of reference (8) we find that this 

theory on a d- dimensional space- time lattice is equivalent to a d- 1 

dimensional quantum mechanical system with Hamiltonian 

(2.24) 

where the U'S and the T'S are two sets of Pauli matrices residing on 

sites and links respectively. The o's represent the Higgs fields and 

the 'c's the gauge fields. The states of the theory are subject to the 

constraint of gauge invariance. If II/J> is a physical state, it must 
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satisfar, 

at each vertex ; of the lattice. Here (;,P) labels all the links that 

emerge from site g. The new (renormalized) couplings X and w play a 

role analogous to that of B and K (see Ref. 8). In the Confinement 

regime ( A and w small > the (perturbative) spectrum is made up of: 

(2.25) 

(a) boxitons, which are created by the operator I-I r is a 
r 

closed path of links , and (b) mesons, whose creation operators are 

is a path of links that joins G and R . 

In the Higgs regime, the (perturbative) spectrum is made of (a) Higgs 

excitations, whose creation operator is al(z), and (b) mqnopole strings. 

In two space dimensions the monopoles are created in pairs by the operator 

I-l TV) , 
+* 

4-l 
where l'(r,R) is a set of links in a direction perpendicular 

r (:,R) 
-f 

to a path between the points G and R, located on the sites of the dual 

lattice. In 3+ 1, we find instead a "bed of nails" and the monopoles 

arrange in closed loops, The operators that create the perturbative 

spectrum on the Confining and Higgs regimes share a common property: 

they are gauge invariant local operators. Thus there is no room in 

these regimes for states that represent free charges. This is not the 

case of the A small, w large regime (large K, small 8 in Fig. l), the 

Free Charge regime. In addition to states that are created by gauge 

invariant local operators, there are other states that represent free 

charges. In this regime the operator a,(:) measures the charge residing 

at site ; and, in this limit, is a conserved quantity. 
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Here the unperturbed Hamiltonian is 
4 

HO = - c UJ) - w 

13 (2.26) 

Let I$(;)> represent a free charge residing at z. It is defined by: 

ul(;)/&> = I$&> , 3; 

ulG)lJ,G)> = -I&)> 

+(;I I+&> = IS&> all 6,~) 

(2.27) 

Notice that this state is not gauge invariant. It is possible to 

construct a gauge invariant state out of it by considering a (normalized) 

linear superposition of I$(;)> with all the states that are obtained by 

gauge transformations of it. This superposition is a gauge singlet and 

obeys (2.27), i.e., represents a free charge. This state can be shown 

to have finite energy and, after symmetrizing under space translations, 

it is stable (i.e., its energy changes smoothly). States like this one 

cannot be created by a gauge invariant local operator. 

Therefore, it seems plausible that there are states in the Free 

Charge regime that may not exist in the Higgs- Confinement regime. The 

qualitative differences in their spectrum lead us to speculate that the 

lines of phase transitions depicted in Fig. 1 may meet at some point in 

the f3,K (A,w) plane separating Higg- Confinement from a Free Charge phase. 

II.4 Summary 

In summary, we argue that this model (d23) has the following phase 

diagram (Fig. 2): 

(a) Higgs- Confinement phase, 

(b) Free Charge phase, 
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with a line of transitions separating both regimes. In three dimensions, 
- 

the model is self-dual and the line of transitions is symmetric under 

duality. However the dual transformation does not map one phase into the 

other. 

In two dimensions the Free Charge phase does not exist. The model 

is dual to an Ising Model in a magnetic field H with the correspondence 

tanh 6, = exp (-26) 

(2.28) 

tanh H = exp (-2K) 

where 6, is the inverse temperature of the dual Ising Model. It is a 

well established fact that this dual model has no singularities other 

than the pure Ising transition (H=O). Then the free charge phase 

cannot exist. Nevertheless, Higgs and Confinement still belong to the 

same (only!) phase, since the proof of analyticity still applies. 

III. The Abelian Higgs Model [U(l)]. 

We want to discuss the Abelian-Higgs CU(l)l model. We shall show 

that most of the results exhibited in Section II are not related to the 

discreteness of the Z2 group. In particular, the connection between 

Higgs and Confinement when the Higgs fields transform like the fundamen- 

tal representation of the gauge group persists. 

The action for this model was given in Eq. (1.4). If the matter 

field $(:) carries q units of charge, we have 

sq[e@l ; A$a] = B c cos(A@ -A$)) + K 

(5 JJ 

(~~v)cos(FI'vq (1.4) 

, 

with the notation defined in the introduction. 
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This model has been analyzed by several authors. 12,29,30,31 *.fter 

recogzizing the failure of the Wilson loop as a test for confinement 

if q is one, they argue that only the confining properties of fractional 

test charges can be meaningful. But if the fields are compact, like 

they are in (1.4), the only consistent way of introducing fractional 

test charges is to let the charge of the Higgs fields q be bigger than 

one. Then we may ask what is the force between static sources with 

q = 1. However, incrementing the charge of the Higgs field is a drastic 

change in the theory. The problem of Higgs fields with the fundamental 

charge remains. 

The general properties of the limit models - the XY model (K =a> 

and Abelian gauge theory (B = 0) - have already been discussed in the 

introduction. In contrast to what happens in the Z2 model, the U(1) 

model has Goldstone modes ("spin-waves") and massless photons for 

certain values of the couplings. In particular, the mass of the photon 

will provide a simple signature for the Coulomb phase. 

111.1. Matter fields with the fundamental charge (4 = 1) _I- 

For simplicity we shall assume that the dimension d is high enough 

so that both the Abelian gauge theory and the XY model have transitions. 

This means d 24. The analyticity results, however, are valid for d 22. 

(a) Higgs and Confinement 

The Wilson loop and the gauge invariant correlation function behave 

as in the Z2 model. The Wilson loop decays like the perimeter for all 

Bf 0 and fails as a signature of Confinement. 

The gauge invariant correlation function decays exponentially even 

close to the ordered phase of the XY model. This result can be seen by 

means of a free field approximation valid for large K and f3. Here, too, 
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we fail to find order parameters to distinguish between Higgs and 

Confinement. Again, we will show that this failure is due to the fact 

that there is no phase boundary between Higgs and Confinement. In the 

unitary gauge (0 (z) = 0) the action (1.4) reads 

S fund Au(') [ 1 = B c cos All(:) + K c cos FJ:) . (3.1) 

G, I.4 G, WI 

This model has the required form for the theorem discussed in the 

appendix to apply. There is a strip in the (B,K) plane where the 

vacuum energy and all the Green's functions are analytic. However, 

since U(1) is a continuous group, the strip collapses into a point 

at the limit K =a. - The reason is that the region where B and K are 

large (d 22) the partition function is dominated by the low-lying 

excitations of the linearized theory, i.e., massive photons. Their 

mass is m 2 B = - . K So as K increases the mass gets smaller. The cluster 

expansion techniques used in the appendix rely on localized excitations 

and naturally do not apply for m2 small, Nevertheless, in the entire 

neighborhood of B = K = 03, ordinary perturbation theory in the broken 

phase is expected to be well behaved. It is easy to check that the 

topological excitations 29 of this model do not destabilize this 

expansion (d> 2). 

We conclude that since the vacuum energy is analytic in 6 and K 

in that strip, there are no transitions. There is no phase boundary 

separating Higgs and Confinement. 

Notice also that the strip has a finite width in the strong 

coupling regime (g2 > gt). Thus the strong coupling expansion is convergent 

and there is no transition "off-the-axis". 
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(b) The pure gauge transition is stable 

WTgner's arguments can be generalized for an arbitrary (compact) 

gauge group. Indeed, these arguments do not depend even on the statistics 

of the matter fields (bosons or fermions). Rather, they are a consequence 

of local gauge invariance. 

As in the Z2 model, it 

The result is a model whose 

is possible to integrate out the matter fields. 

effective action S eff '1-1 [ 1 is determined by 

(3.2) 

+ B(&+,e(f) - Ay(:)ij 
, 

The arguments of Section II give here the result that at lowest order in 

B the effect of the matter fields is a finite renormalization of the 

gauge coupling constant 

K 84 
eff 

rK+ 8 (3.3) 

Naturally, there are higher corrections that involve bigger plaquette 

interactions (which are exponentially damped) and interaction with higher 

symmetries like cos pF 
pv cp integer). As in the discrete case, we can 

also argue that these additional operators are irrelevant, that is, they 

do not destroy the transition.Eecause the critical behavior.of this model 

is not as well understood, these arguments are not as solid as in the 

Z2 case. So we also expect to have a line of transitions starting at the 

pure gauge critical point. For this analysis to hold, however, it is 

essential to have in the pure gauge theory a transition at finite 

coupling (dz 4). In three dimensions Polyakov 639 has shown that the 
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transit&on occurs at K =a. In this case our analysis says that it 

stays at K = 05 to all orders in 6. 

(c) The XY transition 

For d24 the pure gauge theory has a phase where there are massless 

photons (large K). It seems reasonable to analyze the stability of the 

XY transition in this case by treating the gauge field in the non-compact 

free field approximation. This type of model has been studied by Coleman 

and Weinberg, 32 Halperin, et al., 33 and Peskin. 34 They find that the 

transition becomes first order. The mass of the photon has a finite 

jump across the phase boundary. 

The mass of the photon provides a natural way of distinguishing 

between the Higgs-Confinement phase and the Coulomb phase. A simple 

way to study it is to consider the connected field strength correlation 

function cqq 1 

CClCl) = < exp [i(Fpv(o) -FIIV(:))I > - < exp(i Fpv(0)) >2 (-3.4) 

If C(/GI) decays like exp (-ur),the photon is massive. Conversely, if 

C(s) decays like l/(rlX the photon is massless. 

The quantity 

FUV(0) -Fu,(:) > (3.5) 

is the energy of two small static loops (i.e., dipoles) at a distance r. 

The effective potential between the dipoles is given by -C(G) where IGl 

is much larger than their size. It depends on their relative separation 

and orientation. 
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Let us consider the behavior of C(T) (face-to-face loops) in the h 

different regimes of the theory. 

(i) Coulomb Phase (K>K 
C’ 

B small) 

In this regime, we find massless photons. Indeed, C(z) is not 

directly sensitive to the matter fields. They only enter, to lowest 

order, through the B dependence of the effective gauge coupling. In the 

free field approximation, we get the result 

W int(c) 2 -c(Z) = - l 
K eff rd 

. (3.6) 

The minus sign in (3.6) shows that oppositely oriented dipoles attract 

each other. This is clearly the magnetostatic interactions between two 

loops of current. We conclude that for K large and 6 small there is a 

long range static force between the loops. There is a massless photon 

in this phase and it stays massless to all orders in B. We call this 

regime the Coulomb phase. 

(ii) Confinement Regime (K, B small) 

In this regime the photon is massive. A strong coupling expansion 

shows that C(r) behaves like 

C(g) x exp (3.7) 

for two face-to-face loops, 
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Notice that the effect of the matter fields is only a coupling 

constant renormalization. The reason is that the effective action 

(3.2) does not have interactions between disconnected loops. Then 

higher orders in @ cannot destabilize the low order results. 

(iii) Higgs Regime (K,B large) 

In the Higgs regime we also find a massive photon. Here the 

mass of the photon comes from the Higgs mechanism. Again in the 

free massive field (linearized) approximation (m2 = B/K) we find 

C(r) z 
m@ - I)/2 exp (-mr) 

K ,&d+l)/2 ' (3.8) 

In the Higgs regime the photon is massive and the force 

between dipoles exponentially damped. 

In summary, in agreement with the results of (a) and (b), if 

dr 4, we find two phases (Fig. 2). For K large and B small there is a 

Coulomb phase. Here the photon is massless and the forces are long 

ranged. As in the Z2 model it is also possible to find states in the 

spectrum that behave like free charges. In the Higgs-Confinement 

phase the photon is massive and the forces short ranged. The only 

states in the spectrum are created by gauge invariant local operators. 

111.2. Matter fields with multiple charge 

The situation is completely different if the matter fields carry 

more than one unit of charge. The introduction of the matter fields 

in some higher representation generates a phase boundary (.i.e., singular- 

ities!) between the Higgs and Confinement regimes that does not exist 

otherwise. 



-34- 

The reason is that if the matter fields carry q units of charge at 

the limit 8 = m the system is non-trivial. If we write the action in the 

unitary gauge we get 

Sq [API = R c cos (qAu(:)) + K c cos(FUv(:)) 

(h (h) 

(3.9) 

If @=m the only configurations of A fields that survive are those 11 

such that 

Au(:) = , nil(g) integer 
9 

(3.10) 

The constrained model (S =a) is just a Z 
4 

gauge theory. The Wilson 

loop for sources in the fundamental provides a test for confinement of 

this Z 
9 

gauge charge (q- ality). For K small, the Wilson loop decays 

like the area. In this regime we get Confinement of static sources 

with the fundamental charge. This phase exists for all values of B and 

K small (see Fig. 3). On the other hand, if K is large enough, the 

Wilson loop has a perimeter law: static fundamental sources are not 

confined. 35 

There is still the transition associated with the massive or massless 

character of the photon. This transition has already been discussed in the 

model with q=l [Eq. (3.1)l and the same arguments are valid for qz 1. 

In summary, when qpl three phases are expected to occur(d>4)(Fig. 3): 

(a) Confinement of static sources with the fundamental charge 

(K>K=, allB). The spectrum is made of gauge and q-ality 

neutral states. The gauge boson is massive. 

(b) Higgs phase (k> Kc, S > 6.). The gauge boson is still massive but 

q-ality is not confined. Static sources in the fundamental are 

free, with an exponentially damped force law. 
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(C) Coulomb phase (K>Kc,B > Be). The gauge boson is massless and static 

murces in the fundamental are free with a Coulombic force law. There 

is no Confinement of gauge charge. There are states in the spectrum 

that represent free charges and have finite energy (like the Ising case). 

111.3. Three dimensions 

We have pointed out above that the argument on the stability of Abelian 

gauge theory does not apply in d= 3 where there is no transition at finite 

coupling. Indeed, the stability argument shows that the transition occurs 

at K 
-C 

= OJ to all orders in 6, We have no evidence for a Coulomb phase in 

d=3. Nevertheless, the analyticity arguments apply here too. So, for 

charge one Higgs fields, Higgs and Confinement still belong to the same 

phase. The situation might be analogous to the Z2 model in d= 2. However, 

we cannot rule out the existence of a "pocket" of Coulomb phase. Another 

possibility is a line of transitions terminating at an interior point of 

the diagram. When the Higgs fields carry q units of charge, we still 

expect a phase boundary between Higgs and Confinement to occur. 

IV. Conclusions: Non-Abelian groups 

In the previous sections, we have seen certain general features of the 

phase diagram that are the same for Z2 and U(1) gauge groups. We want to 

show now that these features persist for the more general case of a 

compact non-Abelian group. 

Let us begin with the case in which the Higgs fields transform like 

the fundamental representation of the gauge group G. In order to be 

definite let us consider G to be SU(N). In this case the gauge fields 

U (?!) will be Nx N SU(N) matrices, 
!J 

There are a variety of ways to introduce Higgs fields, One possi- 

bility is to let Higgs field D(G) be an N component complex vector 
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transforming like the fundamental representation of SU(N). However, 

-one Eggs is not enough, in general, to break completely the gauge 

symmetry. Thus we shall add as many Higgs fields as necessary to 

totally breakdown the local symmetry. This scheme has the unwanted 

(for us). feature of generating pseudo-Goldstone bosons, 

Another possible way is to introduce Higgs fields Q(z) that behave 

like a group element, namely SU(N) matrices. By going to the unitary 

gauge @,d> = I, where I is the identity 

completely broken. No Higgs degrees of 

choose this scheme. 

matrix, the gauge symmetry is 

freedom are left. We shall 

The action of the non-Abelian model reads 

O(:) u,tc:j O'(: + eu) + h.c. 

Uv(z + Gu) U:(: + gv) UT(:) + h.c. 

(4.1) 

where O(G) and UP(?) are SU(N) matrices. 

The analytic properties of the model (4.1) can be examined by the 

same methods of the previous sections. In the proof sketched in the 

appendix, we show that the region of the (S,K) plane where the vacuum 

energy is analytic extends to the whole strip of interest. The only 

difficulty, as in the U(1) case, arises in the vicinity of @=K=m 

where the strip shrinks into a point. Here too, conventional continuum 

perturbation theory should be well behaved if there is no transition at 

j3 =K =,(d>2) . 
> 

Thus, if the Higgs fields transform like the 

fundamental representation of SU(N>, Higgs and Confinement belong to 

the same phase of the theory. 
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In addition, all the Green's functions, i.e., products of local 
4 

operators, are analytic functions of the coupling constants in that strip. 

This means that the spectrum evolves smoothly in the whole strip. The 

type of excitations is the same although the energies will generally be 

different. The Higgs - Confinement phase is characterized by a completely 

massive spectrum. We expect all the states in the spectrum to be created 

by gauge invariant local operators. 

The pure gauge transition should be stable. Wegner's arguments 

generalize to any compact group, since it is only a consequence of the 

gauge invariant nature of the interactions. 

If d> 4, there is a second phase (K large, 0 small) characterized by 

a massless gauge boson. The forces are Coulomb-like, The gauge boson 

is massless and stays massless to all orders in 6. As in the Z2 theory 

it is possible, within the framework of perturbation theory, to find 

finite energy states in the spectrum that represent a free charge. 

Thus (for d> 4) the phase diagram is like that shown in Fig. 2. 

The situation is different if the Higgs fields transform like some 

higher representation of SU(N), for instance the adjoint. Even if there 

are enough Higgs fields to break completely the local continuous symmetry, 

a discrete ZN local symmetry, will survive, As in the U(1) case, the 

S + 00 limit is just a ZN gauge theory. 18 
In this case, for d> 2, we 

expect a phase boundary to separate Higgs and Confinement. 35 The Wilson 

loop for sources in the fundamental will be a good criterion for differ- 

entiating between these two phases. If d> 2, a transition from a phase 

where N-ality is confined to another phase where it is unconfined will 

occur. 
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As in the U(1) case, when the Higgs fields are not in the fundamental 

repres&tation, we expect three distinct phases: Confinement, Higgs and 

Coulomb. 

This situation is depicted in Fig. 3. In four dimensions, the pure 

non-Abelian gauge theory (hopefully) has a phase transition at Kc = m. 

As in the U(.l) case in d = 3, we find that the transition stays at 

Kc = 00 to all orders in B. Hence there is no evidence for a Coulomb 

(or free) phase here either, although we cannot rule out the existence 

of a "pocket" of Coulomb phase. The arguments of Coleman and Veinberg 32 

suggest here, also, that the pure matter transition persists and becomes 

first order, It is possible that this line terminates at some interior 

point of the diagram for Higgs in the fundamental. For Higgs fields in 

the adjoint a two region phase diagram (Higgs and Confinement) is likely 

to occur except for the case described in Ref. 35. 

Note Added: 

When this work was near completion, we received a preprint from 

de Angelis, de Falco, Guerra, and Marra (Salerno Preprint, 1978) where 

a similar analyticity result is proven. 

Also, T. Banks and E. Rabinovici have found similar results for 

the U(1) model independently. E. F. wishes to thank them f.or interesting 

discussions about their work. 
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APPENDIX 

We want to show here that there are no phase transitions separating 

Higgs from Confinement when the Higgs fields transform like the funda- 

mental representation of the gauge group and break - in the sense of the 

unitary gauge - the local invariance completely. Here we give a sketch 

of the proof of Osterwalder and Seiler 19 (O.S.) specialized to the case 

of fixed length Higgs fields. 

We study actions of the form 

S = K c jx(v$) Uv(:+ 

(;', !Jv) 

iip) U;l(:+$) U;'(g)) - D) 

+ B c H(U$) (A. 1) 
65 l-9 

where x(U) = $ (Tr U + c.c.), D is the dimension of the representation 

of U, i.e., x(I) =D, H(U) is the Higgs part of the action in the unitary 

gauge. We assume that all the Higgs degrees of freedom are gone in this 

gauge so that H only depends on U. Up to an (infinite) constant the 

action (A.l) is the same as (1.1). 

We want to study expectations of gauge invariant operators g, which 

in this gauge are just a finite collection of U's. 

<g> = 1 
z dUFi(:) exp {S(U)) g 

2 = dUp(;) exp {S(U)) (A.3 

We define a new measure by absorbing the Higgs part of the action 
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(A.3) 

which satisfies s dp = 1. 

For Higgs in the fundamental - assuming all gauge invariance is 

broken - H(U) has one maximum at U= I, and it is the only one. For 6 

large U= I will be strongly favored by the measure du. When U=I the 

gauge part of S reaches its maximum value, zero. We exploit this by 

defining 

exp UJ;++ U;'(:++ U,l(:)) - D]} = 1 + p,,(:) 

(11.4) 

For K small, p,,(c) is near zero. For B large the U's favored by dl-l 

make p&g) small. So the strategy is to expand in powers of ou,(:). 

Rewriting 

<g> = 
bJ ((Jy + P,,(q p 1-I 
/ du n [1 + P$)] 

(&l-lv) 

(A. 5) 

We expand the product, getting a sequence of terms corresponding to 

larger and larger blocks of plaquettes. We end up with an'expansion 

(0,s. Eq. (4.17)) 

<SF> = zl du LF r-l 
(&J) E Q 

PFivG) l 

Z{without all plaquettes in QUQ,) 

Q(Q,) 

z 

(A-6) 
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where Q denotes sets of plaquettes, Q o is the set of plaquettes where 

the op-kator g lives and Q(Q ) is the set of plaquettes connected to 
0 

Q0* 
We want to show this cluster expansion converges as the volume 

tends to infinity. We need 

(3 The number of possible sets Q connected to Q, containing n 

plaquettes grows at most exponentially with n (with constants 

independent of B and K). See 0. S. Lemma (3.4). 

(ii) .Z{without a11 plaquettes in Q ' Qo)grows at most exponentially 

z 
with the number of plaquettes in Q U Q,. The disconnected 

diagrams are controlled by this estimate. This is proved 

using (iii). See 0. S. Lemma (3.2). 

(iii) If n is the number of plaquettes in Q then 

%M J n P TV (3 < const. (const.) n 

(:,p,> E Q 

(A.7) 

where the constants are independent of 6 and K. 

If conditions (.i)-(iii) hold for suitable constants we can bound the 

series (A.6) by a geometric one, proving uniform convergence. We now 

examine for what values of B and K condition (iii), the crucial one, 

holds. By HGlder's inequality 

l/P 
dl.l LT I-l ppv(i!) < const. j~,Jq) 1' 

&IV) E Q 

(A.81 

where p is an integer independent of 6 and K. So (A.7) holds if 

II d, IIpv(~)/p/l'p < const. (A. 9) 
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For a Z2 theory we can directly compute this bound. For an action 

S =Xx mJuu-1) + BCTJ (P and L are plaquettes and links respec- 
P L 

tively) (A.9) becomes 

4ce2B + .-2B) 1,-2K _ l~ P 1" 

1 Ce 6 + e-6)4 I 
< const. (A. IO> 

This yields a region of 

area of Fig. 1. Notice 

Higgs and Confinement. 

convergence like the one shown in the shaded 

that this bound gives a finite width in both 

For continuous groups it is convenient to do a little further 

analysis. Equation (A.9) holds if (see O.S. Lemmas (4.2) and (5.4)) 

P 1/2P 
K J ’ dp X(Uo) - D12' < const. (A.ll) 

where U. is any link variable. This further analysis deteriorates the 

quality of the bound (A-9). For Z2 models (A.ll) no longer yields a 

finite width region in 6 as K+-m. For continuous models the deteriora- 

tion is minor. As discussed in the text we do not expect a finite 

width in S as K-+m for continuous groups (see Sections III and IV). 

For a U(1) model this yields the explicit bound 

27r 1/2P 

de exp (6 cos0) ICOSe- 11 2P 

K < 
2T 

const. (A.12) 

J 
de exp (Bcos0) 

0 

For K small the bound holds. For 6 large we do a quadratic expansion 
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of the cosines and the Gaussfan integrals give the result 

1 
K B < consto 0 (A.13) 

for $ large enough. This yields a convergence region like that of 

Fig. 2. Similar results clearly hold for non-Abelian groups with 

appropriate Higgs couplings. 

The convergence of such an expansion implies 

(i> Analyticlty of Kg> in K and f3, because the series converges 

uniformly and the terms are each analytic. This implies that 

the free energy is analytic. 

(ii) Exponential Clustering, If g consists of two local operators, 

gl and =5F2, separated by a distance R then 

< gl g2 ’ = 1 -z @x g> I const, exp (-const. R) 2 (A.14) 

<LF &F> - 12 < $J?Yl><g2> only gets contributions in the cluster 

expansion (A.6) from terms containing a path of plaquettes 

connecting SL to g2. These terms contain, at least, 

R factors of p,,(:) and so the bound (A.14) holds. 

For further details of these proofs we refer to the work of 

Osterwalder and Seiler 19 and references therein. 
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FIGURE CAPTIONS 

1. The phase diagram for the Z2 model (dz 3). The shaded region is 

where the bounds for analyticity hold. The full curves represent 

lines of second order transitions given by (2.18). The broken 

lines are their extrapolation into the diagram. Notice that the 

analyticity region has a finite with at both Higgs (K=m) and 

confinement (B= 0). Also note the curvature of the phase transition 

lines. The phases are described in the text. 

2. Phase diagram for the Abelian model with Higgs fields in the funda- 

mental representation (d= 4). The broken line emerging from the XY 

transition (,K=m) is a line of first order transitions. The full 

line that emerges from the pure gauge transition (B=O) is a line 

of transitions of the same order as the pure gauge critical point. 

Notice the curvature of the lines. The phases are described in 

the text. 

3. Phase diagram of the Abelian Higgs model for Higgs fields with two 

units of charge. The difference with (Fig. 3) is that there is a 

phase with Confinement (in the Wilson sense) of static sources 

in the fundamental representation. 
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