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ABSTRACT 

We present a semi-classical method for calculating the potential 

energy of a heavy quark-antiquark pair. Our method preserves the 

operator charge structure of the quark and antiquark. The operator 

structure of the gluon fields is approximately maintained by truncating 

the gluon degrees of freedom to a minimal set, a set which preserves 

the operator charge structure of the quark-antiquark-gluon system. The 

energy of this truncated system is determined using a variational 

principle. The potential thus determined accurately reproduces the 

results of renormalization group improved perturbation theory up to 

and including effects of at least order a 4 Rn a. 
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1. Introduction 

>erhaps the simplest manifestation of the forces which bind quarks 

is to be found in the structure of heavy quark bound states, for which 

dynamics are relatively unclouded by the intricacies of the relativistic 

bound state problem. Fortunately, nature has provided us with such states 

in the Y 1-6 and T7-' families of particles. Early attempts to fit the 

Y spectrum provided an adequate description using a combination of Coulomb 

and linear potentials. 10-12 More recently, attempts have been made to 

systematically reconstruct a phenomenological potential using the inverse 

scattering method. 13 

A challenge to our understanding of these bound states is the problem 

of relating phenomenological potentials to QCD, the candidate for a 

fundamental theory of strong interactions. Unlike the corresponding 

calculation in an abelian gauge theory, the determination of such a 

potential in QCD is non-trivial. In an abelian theory, the interaction 

between massive point charges is simple. It is governed by the Coulomb 

potential, and this potential is the energy of the unique static classical 

field configuration in the presence of stationary charged sources of given 

separation. Neither of these statements is known to hold in the non- 

abelian case. 

Perturbative analysis of the quark-antiquark Bethe Selpeter equation 

in QCD in the limit of large quark mass 14-17 indicates that a description 

of the interaction in terms of an effective potential is appropriate in 

the color singlet channel. In this channel the potential can be written 

in the form 

V(t) = - F F(a(t)) T2 , (1.1) 
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where t is the momentum transfer, T N*-1 = ~ 2 2N is the quadratic Casimir 

operator of N'(N), and a(t) is the running QCD coupling constant deter- 

mined from the Cell-Mann-Low equations. 18-20 For small coupling, F is 

of the form 

F(a) '4 1 -i- 3a2 (1.2) 

SO that at short distances (corresponding to small a) the potential is 

Coulombic. At large distances, a confining potential can arise only by 

virtue of the dependence of cx on the momentum scale and the non-trivial 

dependence of F(a) on ~1. Evaluation of such a confining potential must 

necessarily be non-perturbative. 

This paper attempts to address the question of what we can learn 

about the quark-antiquark force from classical and semi-classical analysis 

of Yang-Mills theory. Analogy with the abelian case suggests finding 

static solutions of the classical Yang-Mills equations in the presence 

of stationary external quark charges. However, the non-Abelian nature 

of the theory complicates the classical problem and prevents a straight- 

forward interpretation of classical solutions in a quantum context. 

Since the classical theory has no ultraviolet divergences and thus 

no need of renormalization, the classical interaction energy of two 

charges separated by distance r must be of the form 

Vca(r> = - ; T2FcRbJ) , (1.3) 

where T represents the classical color dependence of the interaction. The 

dependence of V on r is necessarily Coulombic on dimensional grounds. The 

essential content of the theory is contained in the function Fca(~>. 

Ultimately our semi-classical analysis will be aimed at determining FcR 
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as an approximation to the F(a) occurring in Eq. (1.1). This treatment 

shedSno light on the scale dependence of c1 arising from the renormalization 

group in the full quantum theory. Such a non-perturbative approximation to 

F(o), when combined with conventional perturbative renormalization group 

analysis of a(t), will perhaps allow a reasonable extension of (l.l), from 

the short distance Coulomb region to intermediate distance scales. We 

shall see that this semi-classical approximation agrees very well with 

QCD perturbation theory, 3 at least to order a Rna. 

It is clear that a purely classical description of quark charges 

does not in general offer an adequate approximation. In the quantum theory 

the charge operators of a quark or antiquark satisfy 

[Qa 9 Q,] = ifabc Q, 3 (1.4) 

whereas classical Yang-Mills charges are simply c-numbed N2-1 component 

vectors in the adjoint representation of SU(N). Classical treatment of 

the charge operators would be a good approximation only in a limit in 

which quarks lie in a very large representation of SU(N). As we are 

interested rather in the case in which the quarks lie in the smallest 

representation of SU(N), the fundamental representation, our analysis 

must be semi-classical, at least insofar as the commutation relations 

(1.4) must be maintained. This point has been noted before by Adler 21 

and by the authors 22 and provides part of the motivation for the intro- 

duction of Adler's "Algebraic Chromodynamics". 

The semi-classical model we shall introduce here keeps not only 

these quantum effects due to quark charges, but also some of the effects 

due to gluons. The necessity of retaining these effects reflects the 

color charge structure of the quantum theory. The quark-antiquark pair 
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must be allowed to make transitions between the singlet and(N2 -1)-plet 

quark states, accompanied by the emission or absorption of a(N2 -I)-plet 

gluon. We treat quark and antiquark in the large mass limit as stationary 

point charges. Our approximation involves truncating the infinite- 

dimensional Hilbert space of transverse gluon states in Coulomb gauge 

QCD to a space of gluon states in which all gluons share a single spatial 

wavefunction. This wavefunction is determined by a self-consistent 

variational principle, applied to the expectation value of the Hamiltonian 

in the resulting state. The semi-classical model of the quark-antiquark 

state thus obtained is very similar to the static model of nuclear 

physics; 23-26 our truncation of the QCD Hamiltonian to a single set of 

gluon modes is the analog of the Tomonaga approximation in the theory 

of P-wave pion-nucleon interactions. 27 

The organization of this paper is as follows: in the second 

section, we briefly review the classical two-charge problem in non- 

abelian gauge theory. We discuss the problems and ambiguities 

associated with static solutions of the equations of motion and 

describe the resolution of these ambiguities in perturbation theory. 

The third section concerns the quantum mechanical quark-antiquark 

system. We introduce the radiation gauge QCD Hamiltonian. We apply 

the Tomonaga approximation to this Hamiltonian. We then proceed to a 

mean-field approximation to this truncated Hamiltonian and-arrive at an 

effective model Hamiltonian describing a simple, tractable system of 

color charges interacting with (NL-1) harmonic oscillators. We describe 

the diagonalization of this effective Hamiltonian in the singlet sector. 

Tn section four, we compare the results of our semi-classical ap- 

proximation to known results in QCD perturbation theory. We see that our 
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model reproduces perturbation theory up to terms of order c? 9,n IX in F(a). 

Section five is devoted to concluding remarks on the implications of 

our results for physical systems such as the Y/J and T. In a later paper 

we shall present detailed numerical analysis of the effective Hamiltonian. 

2. The Classical Potential 

Let us consider the classical system of stationary point-like charges 

interacting with an SU(N) Yang-Mills field. By a stationary point charge, 

we mean a point charge the spatial position of which is time independent. 

The Yang-Mills equations appropriate to the description of this system 

are 

Du Fpv = Jv , (2.1) 

where 

F = 3A 
I.lV lJ v 

- aVAp + gAIXA v - 

In these equations, the covariant derivative is 

DuU 3 aplJ + gAuxU , 

(2.2) 

(2.3) 

with the cross-product of any two vectors, Ua and V a' in the adjoint 

representation of SU(N) defined to be 

(uxV)a z fabc Ub vc . (2.4) 

For an assembly of k stationary point charges located at the positions 
-+ -f 
rl' . . ..r k' the corresponding color current, .Jv, is of the fbrm 

k 

JV(&t) = 6" c e Q(") (t) cSc3) (s- ") (2.5) 

CY,= 1 

We have written the charges as eQ (')(t> where Q(u) is a dimensionless SU(N) 

adjoint vector. In the quantum theory, these dimensionless charge vectors 

satisfy SU(N) commutation relations and form the basis of a charge algebra. 
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The parameters e and g, and the fields A , have dimensions which are 

easiIS, determined by inspection of the classical Hamiltonian 

N 

Hz+ d3x Fy(;,t) Fy(:,t) (2.6) 

The dimensions of e, g, and A' are, respectively, ?i (energy-length) , (energy- 
-% 

length) , and (energy/length) % . In the quantum theory, gauge invariance 

relates particle and gluon charges and requires that e be equal to gk 

In the classical theory, there is no such requirement. The dimensionless 

parameter which characterizes the strength of interactions in the 

classical theory is eg. 

Our objective is to determine the lowest energy, non-radiating con- 

figuration of gluon fields in the presence of specified charges. In the 

abelian theory, these configurations are simply the Coulomb field solution 

appropriate to the charge distribution. Several complications, however, 

arise in the non-abelian theory. 

A primary problem is that the values of the external charges are gauge 

dependent. Under a gauge transformation, G(x) e SLJ(N), the charges trans- 

form as 

Q;') (t) -f Dab@@) Q;') (t> , (2.7) 

where Dab(G) is the matrix representation of G in the adjo-int representation. 

Although each charge vector has N2-1 degrees of freedom, this equation implies 

that only N-l of these are gauge invariant. These N-l correspond to the N-l 

(a), independent eigenvalues of the traceless matrix Q, a, where ra is a 

generator of SU(N). 
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The problem of gauge invariance is manifest in the extended current 

cons&vation condition, 

DP Ju = 0 . (2.8) 

For stationary charges, this equation becomes 

dQ;:t) - gA'(:,,t) x Qo(t) = 0 , (2.9) 

2 and the N -N gauge dependent degrees of freedom of Qa process in time. 

Whether or not these gauge dependent degrees of freedom, combined 

with a complete specification of gauge, correspond to distinct field con- 

figurations is an open question. In perturbation theory, this correspond- 

ence is the case. It is not known, however, whether these perturbative 

solutions converge to a well behaved, unique solution of the Yang-Mills 

equations. 

In addition to ambiguities arising from gauge degrees of freedom, 

we must consider those ambiguities arising dynamically from the Coulomb 

instability. Mandula has shown that for a sufficiently large charge, 

eg/4lr > 3/2 in SU(2), the Coulomb solution describing a single charge is 

unstable. 28 The lowest energy configuration for eg/4n > 3/2 may prove to 

be a static solution involving non-trivial chromomagnetic fields, or 

perhaps a time dependent finite energy screening solution such as that 

discussed by Sikivie and Weiss. 29 

We will consider the problem of finding static perturbative solutions 

to the Yang-Mills equations in the presence of two charges. Static field 

configurations are those for which all gauge invariant quantities are time 

independent. A gauge can be found in which such static configurations 
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are represented by time independent potentials. 30 As we shall soon see, 

thesetime independent potentials are such that A0 is finite and, in 

general, non-zero at spatial infinity. After requiring that the fields 

be static, we still have the freedom to make a time independent gauge 

transformation, and can therefore impose an arbitrary gauge condition on 

the spatial components of the vector potential. 

The Yang-Mills equations are 

-V2Ao = J"+gvj (AjUo) + gAj x VjAo + g2Aj x (A. x A') 
J 

(2.10a) 

$x ($ x Tt) = gA" x $A'+ gok(A!X 2, + gAk x Vkl 

- gAk x ;SAk + g2Ao x (2 x A') + g2Ak x (Ak x ;I, 

(2.10b) 

and the extended current conservation condition is 

A’(;,) x Q (a) = 0 . (2.1Oc) 

Assuming no background field, the perturbative solution begins in 

order e. In this order, the fields are of the Abelian Coulomb form, 

-p = 0 (2.11a) 

(2.11b) 

In this order, the field energy 

E+ d3i?{s2+s2) = E. + e2 m Qc1)*Qc2) . (2.12) 
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The quantity E. is the divergent self-energy of the point sources. The 

inter%ction energy is the familiar Coulomb energy. 

We should note that this leading order contribution to the fields 

depends on all N2-1 parameters which specify each charge. If the pertur- 

bation series converged, we would expect that solutions which differ in 

leading order would be independent, except for equivalence under overall 

global SU(N) gauge rotations. 

The leading non-zero contribution to i is of order e2g. Using Eq. 

(2.1Ob), we find 

?x(;SxA -t(3) ) = $3) , (2.13) 

where 

93) = gAT1) x ?A;l) 

(2.14) 

-f (3) The current J is transverse, We observe that this current generates 

a non-zero chromomagnetic field whenever the charges are not parallel, 

Q(l) x Qc2) f 0. 

The inversion of V x (V x A(3)) = J(3) to find A(3) is ambiguous in 

that we may add to it a solution of the homogeneous equation. To eliminate 

this ambiguity, and to facilitate comparison of the classical results with 

the results of the next section as well as with the results of QCD computed 

in radiation gauge, we impose the radiation gauge condition 1 ' 4 = 0. To 

the extent that we are working in perturbation theory with small fields 

we are insensitive to the Gribov-Mandelstam ambiguities. 31,32 
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-t(3) The contribution of A leads to a correction of order e3g2 to A'. 

Usin; Eq. (2.10a), we find 

-V 2Ao = gVjAj 
. 

(5) (3) x Ayl) + gA:3) 
X ‘YjAo 

(1) ' (2.15) 

Again, the constant term in A0 
(5) 

must be determined so that (2.10~) is 

satisfied. 

The vector potential (Eq. (2.14)) and the contribution to A0 (Eq. 

(2.15)) give an order e4g2 contribution to the energy of the form 

E(a = -e4g2 h(lrl-r21) (Q(1) X Q(2))2 

The coefficient h(lrl-r,[) may be written as 

d3;: d3? 5,(G) ' 
4nIS-P'] 

3i(G', 

where 

3(Z) l 1 1 1 1 E G 
[ - -7 - (r-r11 jrl-r2( I [ /r-r21 (rl-r21 1 

(2.16) 

(2.17) 

(2.18) 

The function h is encountered in evaluating the "H-graph" contribution to 

the quark-antiquark potential in QCD. In this feature, the QCD"H-graph" 

reflects a classical effect. It is interesting to note that in QCD this 

graph represents the dominant contribution to the coefficient of the g6 

color-singlet potential, by at least two orders of magnitude. 33 

Indeed, there is a general parallelism between the classical per- 

turbation expansion of the energy and the corresponding expansion in QCD. 

If we introduce h in the QCD perturbation theory and introduce e's rather 

than g's at charge-Coulomb vertices, we see that the QCD expansion for the 

potential will consist of terms of the form e2(eg)n(g2h)m. The terms 
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which correspond to the classical perturbation expansion are those which 

surviv? the formal limit h-+0 with e and g fixed. Topologically, these 

are graphs containing no gluon loops (see Figs. 1 and 2). 

Despite the similarities between some important sets of Feynman 

diagrams and classical tree graphs, there is a fundamental obstacle to 

straightforward application of classical results to the quantum problem. 

This obstacle is posed by the charge structure of the two theories, a 

point which has been discussed at length elsewhere. 22 In the quantum 

theory the charge of a particle is an operator in a space of color states, 

and satisfies the equal time algebra 

C Q(~) , ()(‘) 1 = 
a ‘b 

i& 
a& 

f Q(“) 
abc c (2.19) 

In small representations (e.g., the fundamental representation appropriate 

to quarks), the commutator of two charges is of the same order of magnitude 

as the charges themselves, and cannot be reasonably neglected. 

The approximation discussed in the next section is inspired by the 

parallels between classical and quantum chromodynamics. We shall retain, 

however, the essentially quantum nature of the quark charge operators. 

Our approximation represents a truncation of the full set of states of 

quarks and gluons to a set of states appropriate to the description of heavy 

quarks, and of gluons in a single spatial wavefunction. These states are 

similar to the gluon coherent states which are appropriate to the 

description of classical gluon configurations. 

3. The Semi-Classical Approximation 

We now turn to the problem of developing a semi-classical approxima- 

tion to the quank-antiquark interaction which takes into account the charge 
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structure of QCD. In the infinite quark mass limit, quark recoil and spin 
4. 

effects are completely suppressed. In this limit, we may therefore intro- 

duce one-dimensional fermionic operators, q,(t) and q,(t), a=l,...,N, 

which describe a quark and antiquark at the fixed positions r 
q 

and r-.15y33 
4 

The Lagrangian for this system is 

L = F 
lJV 

- gT .A"(:q,t) 

* 
, (3.1) 

where the matrices T are the matrix generators of SU(N) in the fundamental 

representation. 

The quark charge density is expressed as 

where 

t> = Q,(t) d3)(:-:q) + G (t) d3)(;-$-) , (3.2) 
a q 

Q,(t) = q?(t) -ca q(t) (3.3a) 

and 

(3.3b) 

The quark and 

We shall work 

antiquark number operators, qiq and yl-q, are conserved. 

exclusively in the sector of the theory where qtq and iti 

have eigenvalue 1. In this sector, the charges Q, and Ga satisfy the 

algebraic relations 

(3.4a) 

f 6ab - dab& ’ ifabc (3.4b) 
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It is convenient to work with the Hamiltonian form of the theory in 

radiziion gauge, 

c da=0 . (3.5) 

In this gauge, the separation between the independent degrees of freedom 

of the transverse gluon field and the constrained nature of the longitudinal 

electric field is particularly clear. 

The radiation gauge Hamiltonian is 15 

H = s d2f: l (3.6) 

In this equation, the chromomagnetic field is s, the transverse chromo- 

electric field is gL, and the longitudinal electric field is defined in 

terms of the independent degrees of freedom by 

= $13:' -$ Gab&; ; tl$ J;(:; t) . (3.7) 

The charge density, Jo, generated by quarks and transverse quanta is 

Joa&) = &,,(:,t)+gf abc @,t) * F&t, . (3.8) 

The Greens function Gab <iT,i? ; tld> satisfies 

aa' - gfaca' 
xc&t) . $jQb(:,:' ; tlx, = 6ab6(3)(-) * 

(3.9) 

The operators Etr and A satisfy the canonical radiation gauge commutation 

relations, 

E :',&t) , E;rb $,t)] = bi,a(:,t) ,Aj,b(:',t)] = Q (3.10) 
3 

, I 
1 

E ira(c ,Aj,b(:',t) _~2 VJ * (3)(&g') . 1 6 
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Mandelstam and Gribov have pointed out difficulties in properly 

defiAng a quantized Yang-Mills theory in radiation gauge. 31,32 These 

difficulties stem from the non-uniqueness of the construction of G in the 

solution of Eq. (3.9). This non-uniqueness is known to arise if 2 is a 

sufficiently singular function of G. In the analysis we shall perform, 

the vector potentials we consider are sufficiently non-singular that the 

Mandelstam-Gribov ambiguities would appear to give no problem. Whether 

or not these ambiguities appear outside the analysis we present is a 

question we shall not address. It seems possible to adopt our techniques 

to other gauges, if radiation gauge is singular. 

A representation of A" and ztr in terms of plane wave creation and 

annihilation operators is 

La(r’,t) = d3k 1 .ik.,x 2 (2) + e-ik.x -+-F 11 

(2T)32k I a aa (k) j 

(k) _ .-ik*x t + 1 aaW) . (3.11) 

The operators '(k', are transverse, with 

k’ . a3,(Z) = 0 , (3.12) 

and satisfy the commutation relations 

[ 

. 
a:(C), a:(P) = 0 I 
[at(Z) ,4+(P)] = gab ($j -!$.$) (2T)3 2k6(3)(k-k’) . (3.13) 

This plane wave oscillator basis is not, however, the most profitable 

basis in which to begin making approximations. From analysis of the classical 

external field problem, we expect that a coherent chromoelectric and chromo- 
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magnetic field will develop in the presence of charges. This observation 

suggests we transform to a different basis which is better tailored to 

suit such a situation. We therefore write 

a:(%) = ’ 
c 

Y:(Z) a: . 
n 

(3.14) 

. 
The wavefunctions Y:(z) are transverse, 

(3.15) 

and complete 

c 
n 

sij _ - kikj 
k2 

(2~)~ 2ksC3)(iZ-i?) . (3.16) 

This completeness condition guarantees the orthonormality condition 

I d3k y*&) 
(2r)32k n 

l Pm(C) = 6 nm ' 

and the commutation relations 

[az,ai] = 0 

[a: , a:+] = gab 6m . 

(3.17) 

(3.18) 

We can now insert Eq. (3.14) into Eq. (3.6) and attempt to diagonalize 

the Hamiltonian. A full diagonalization would, of course, be extremely 

difficult, because of the non-linear couplings of the infinite set of 

coherent modes. We shall proceed by truncating the Hamiltonian to the 

sector which involves only one family of excitations with wavefunction 

Y; (ic) . A truncation to such a small number of modes could directly offer 

a good approximation if modes of high excitation are relatively unim- 

portant in the dynamics of the qi interaction. We know, on the contrary, 
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that highly excited modes control the high momentum (short distance) 

structure of the field theory. This short distance structure is important 

for converting an expansion in a into an expansion in a scale dependent 

charge, a(R). For the two charge problem, we attempt to take into account 

the effect of these high modes by expanding in a coupling appropriate to 

the momentum scale given by R. The dependence of a(R) on R may be estimated 

by solving the Gell-Mann-Low equation. Put another way, we use the re- 

normalization group to minimize the effect of highly excited coherent modes, 

and thus allow for a consistent truncation to a small number of coherent 

modes. In the next section, we shall compare our truncated calculation to 

renormalization group improved perturbation theory. We shall find good 

agreement. 

The procedure we employ was first devised by Tomonaga in the context 

of the static model of p-wave pion nucleon interactions. It yields a 

variational estimate of the ground state energy of the normal ordered 

Hamiltonian. In the implementation of the Tomonaga approximation, we 

first consider a Hamiltonian, E, obtained from the original Hamiltonian 

by truncation to the sector of states involving only gluon excitations 
. 

in n=O modes of the basis Y1 n' We next diagonalize this Hamiltonian and 

find its lowest energy, &,, as a functional of the wavefunction Y i 
0’ 

We 

then compute the optimal '4': * by minimizing go[Yt] over the space of 
. 

normalized, transverse Yi's. 
0 

This procedure yields a variational estimate 

of the minimum energy of the system of gluons and quarks. 

We note that this procedure preserves the charge structure of the 

theory. The truncated Hamiltonian depends on the quark and antiquark 

charge operators and one set of N2 -1 gluon creation and annihilation 
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operators, a a- a 
= a*+ a=1 ,...,N2-1. The total charge, 

QT = iaxa++Q+g , (3.19) 

is conserved. 

Before proceeding to an explicit calculation, we make one further 

approximation. The Hamiltonian of Eq. (3.7) in the Tomonaga approximation 

still describes a complicated, non-linear system. The non-linearities 

arise from the non-polynomial, dependence of EL on A'. We have not succeeded 

in diagonalizing this non-polynomial Hamiltonian, even in the n= 0 sector. 

The truncated Hamiltonian can, however, be diagonalized in a mean field 

approximation. The mean field approximation we employ linearizes the Et 

contribution to H with respect to Etr and A. For a system of a quark at 

position PI and an antiquark at c2, 

1 1 1 

. [ 7 1 l 4n&- ;"I 4+- ;;I 
(3.20) 

This mean field approximation retains those contributions to H which shift 

local gauge invariant operators from their values in the absence of sources 

to non-zero average values. The approximation ignores distortions of gluon 

wave propagation due to interactions with quarks, and ignores inter- 

actions of transverse gluons among themselves. The region of validity of 

this approximation is briefly discussed in the next section. 

The second term in Eq. (3.20) for Et may be interpreted as a chromo- 

magnetic contribution to the energy generated by a current source J'. Since 

only the transverse part of this current contributes to the integral, we 
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can write 

+2 N 2 

EL - 
g Qd 

4n( zl- g2[ 
- g3(Qx I,>, / d? xa(;,t) l r;(;) , (3.21) 

where 

Ki=o , (3.22) 

and, explicitly, 

3(Z) 1 1 = ( - 

4+q 4?Tl$-~I 

i -7 ( 1 1 

4alC-G2j - 4alyG2( i 

(3.23) 

The current generates chromoelectric and chromomagnetic fields, and 

induces a cloud of transverse virtual gluon radiation. This current is 

represented by the graph of Fig. 3. 

The Hamiltonian in the Tomonaga mean field approximation is 

ii = goa+ l a + BQ l q + Q l 0 l (ay + a+y*) (3.24) 

The parameters go, 6, and y are functionals of 'f'~&); 

and 

so = / 
d3k 

(27032k 

/ 

d3k 
Y = -g3 

(2a)32k 
3(ii> * $o(it) . 

(3.25) 

(3.26) 

(3.27) 
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The truncated Hamiltonian, g, describes a complicated system. We 

know of no analytic solution to the equations describing this system. 

The numerical diagonalization of z, together with the numerical solution 

to the Tomonaga-mean field Hamiltonian for color singlet states, comprise 

the subject of a later paper. In the appendix to this paper, we briefly 

discuss the procedure by which H" is diagonalized for singlet states. 

The procedure described in this appendix is applied to the perturbative 

calculation of the quark-antiquark potential in the next section. 

The wavefunction Y:(g) is determined by the minimization of the 

smallest eigenvalue of R, subject to the renormalization and transversal- 

ity constraints on Y:(C). The minimization becomes 

where X is the Lagrange multiplier which imposes the normalization constraint. 
. 

The variation ofEmln is determined by first order perturbation theory in 

H" about its state In> . We obtain 

3 
Y & = y*(g) = 5 CR (a+a+) * (Qx@Ifi> J(g) 

<nla+ * alS2> 
' - , (3.29) 

k+A 

with the parameter A defined as 

(3.30) 

The transversality condition is satisfied by Eq. (3.29). 
m 

The functional form of Y:(Z) is completely specified by the known 

current, J(z) and A. The parameter A must be chosen so that Yi has norm 
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one. Because of the implicit dependence of Y, and therefore A, on the 

ground"state In>, the solution of this system of equations, Eqs. (3.29) 

and (3.30), is not straightforward. For each g there is some A which 

solves the system of equations. The parameter A(g) may be determined 

numerically. In the next section, we discuss the solution to this system 

of equations in perturbation theory. 

4. Perturbation Theory 

In this section, we compute the energy of our effective quark- 

antiquark Hamiltonian to order g81ng2 in perturbation theory. The result 

of our computation agrees with the result calculated from corresponding 

QCD Feynman graphs. 

It is very difficult to disentangle analytically the relationships 

between the parameters G,, b, y, and A, and g and R as given by Eqs. 

(3.25-3.27) and (3.30). This difficulty arises from the implicit de- 

pendence of ao, 6, y, and A on the ground state wavefunction of our 

effective Hamiltonian. 

The structure of this problem can be clarified by a few algebraic 

manipulations. First, we scale the R dependence out of all dimensional 

quantities. We can then measure &,, 6, y, and A in units of l/R, which 

units correspond to setting R= 1 in all equations for these parameters. 

Next, we define integral functions of A as 

cncn> - I d3k 1 
- 
(27r) 3 

I(7i>2 . 
(k+A)n 

(4.1) 

For small A, C,(A) becomes a constant, while C,(A) is proportional to lnh. 
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We further define the ratio of ground state expectation values which 

occuf in Eq. (3.29) as P, 

p f <nl (-a+a+) l (Qxij)(Q> 

2<Rla+ . alR> 
. (4.2) 

The normalization condition on Y, which implicitly defines A, becomes 

g6C2(A)P2 = 1 . (4.3) 

Finally, we write a resealed effective Hamiltonian, h, as 

h - $ = a+ .a+~Q.~+~Qx~*(a+a+) 
0 

If we combine Eqs. (3.25)-(3.27) with Eq. (4.3), we have 

CT0 = 
cl - AC2 

c2 
, 

2 
~=$=& c2 

0 
l-AC2 ' 

and 

k 
Y- = -g3 c1c2 

Y = E 
0 c1 -AC2 * 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

We see from Eqs. (4.5)-(4.7) that for any g, A determines go, B, and 

7. Given g and 7, we can determine the ground state wavefunction of h, 

from which we can then determine the ratio P. The parameter A is then 

obtained as a function of g by the normalization condition of Eq. (4.3). 

The explicit determination of A analytically for arbitrary g2 appears to 

be an intractable problem. We shall present a detailed numerical analysis 

in a later paper. We consider only perturbation theory for small g2 in this 

paper. 
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We begin the perturbative analysis by observing that 3 is of order 

g2, aa 7 is of order g3 for small g. The Hamiltonian h can be written as 

h = ho + h I ' (4.8) 

where 

h = a+ 
0 

l a+EQ*Q , (4.9) 

and 

hI = YQXo - (a++a) . (4.10) 

We shall find the ground state wavefunction and energy in perturbation 

theory in h,. 

The structure of h and the eigenstates of ho are discussed in some 

detail in Appendix A. The unperturbed color singlet ground state is 

denoted by IO>, 

(a) (Q+qla IO> = 0 

(b) aa I o>= 0 . (4.11) 

In first order perturbation theory, this state mixes only with the first 

radial excitation, 

I 1> = 
J 

8 t 
N(.N2-1) 

a * CQ"@b > 

and the ground state wavefunction is 

(4.12) 

1 l y> = 111 + o(U2> . (4.13) 
l+N8/2 

The first order correction to the ground state energy appears in second 

order perturbation theory. We find 
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E = N2-1 B + y2N2 + acy4) -- 
2N 

1 i 
. 

4(1. +@/21 

The quantity P, defined in Eq. (4.7), is 

p = I+& (.1+0(Y2)) . 

(4.14) 

(4.15) 
Y 

We can now solve for A as a function of g2. The normalization condi- 

tion of Eq. (4.8) is 

1 = g6 (I+ %N?j2 
v2 

C2(A) (l+C(;")) . 

Using Eqs. (4.4) and (4.5) to express B and 7 in terms of A, Cl, and C2, 

we find 

l = (1 + ($- A)$q2 (l+o(g6)) . 

We have, therefore, 

2 
A = F + O(g6) . 

(4.17) 

(4.18) 

The energy corresponding to the scaled energy 6 is 

2 N2 6 & + + Cl(A) (4.19) 

The expansion of Cl for small A is performed in Ref. 33. We find that 

C,(A) = 3 
2(4d3 

Alnh + O(A) . (4.20) 

Equation (4.19) becomes, therefore, 

(4.21) 
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where 

N2- 1 
T2 = 2N 

and 

(4.22) 

c2 = N , (.4.23) 

T2 and C2 being the quadratic Casimir operators of the fundamental and ad- 

joint representations of SU(N). 

The first term in Eq. (4.21), of order g', is the Coulomb interaction 

in a color singlet state. The correction term 

AE = - (4.24) 

is the sum of all "H-graphs" containing arbitrary numbers of Coulomb 

exchanges (Fig. 4). This fact is most easily seen by evaluating the 

Feynman graphs for the four point amplitude at zero external momentum 

in a mixed momentum-relative time basis. The bare quark-antiquark pair 

propagator over relative time t is O(.t) (Fig. 5). The effect of summing 

Coulomb exchanges is to produce a phase proportional to the Coulomb inter- 

action energy, a phase which modifies the pair propagator 

o(t) -+ O(.t> e 
-ias/R Q * @/R 

. (4.25) 

The sum of these Coulomb exchanges is represented graphically in Fig. 6. 

The time dependent part of the integral representation for the sum 

of graphs shown in Fig. 4 arises from the transverse gauge field propagator, 

and from the ratio of phase factors between the singlet and N-plet states 

given by Eq. (4.25). 
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The integrals over t and the gluon energy give 

dt 

0 

NaS -i- t - ik t 
e 

k2 r s2 + <co 
0 

= 
1 

k(k+?) 

(4.26) 

When this result is combined with all relevant factors from the Coulomb 

gauge Feynman rules, we find precisely the result of Eq. (4.19), with Cl 

expressed in the integral form given by Eq. (4.1). 

We have seen that, in perturbation theory, the Tomonaga-mean field 

approximation has left intact the Coulomb interaction and the entire sum 

of Coulomb modified "H-graphs", That this should be so is not surprising. 

Our approximations have dropped only two of those effects which are in- 

cluded in QCD perturbation theory. We have truncated the longitudinal 

electric field, % L' to a linear term in ;5. This term gives the "H-graph". 

The Tomonaga approximation excises all fluctuations of the gluon field 

save those in the single mode with wavefunction ?(z). The "H-graph" in- 

cludes only a one gluon intermediate state, and the operator which creates 

this state is of the Tomonaga form. The Coulomb modifications of the 

"H-graph"are also included in the truncation of zL, and involve a one 

gluon intermediate state. 

5. Summary and Conclusions 

The object of this paper has been to develop an approximation to the 

description of the interaction of heavy quarks and antiquarks in QCD, an 

approximation stressing the classical aspects of the Yang-Mills theory 

while retaining the operator charge structure of the quantum theory. Our 

efforts have been motivated by the observation that the dominant O(g6) 

"Hrgraph" contribution to the color singlet quark-antiquark potential arises 
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from a classical effect, and by the hope that information about the 

class$al quark-antiquark interaction will be applicable to the descrip- 

tion of the quantum interaction. Our result is an approximation of the 

interacting quark, antiquark, and gluon system as a simple quantum 

mechanical system in which all gluons share a single classical wave- 

function. The validity of this approximation depends, however, on a 

variety of assumptions and simplifications which we shall now review. 

We have described quarks in the infinite mass limit as stationary, 

pointlike objects which are entirely characterized by a N2-1 component 

charge operator. This description is appropriate to the lowest order 

contribution to the QCD interaction in inverse powers of the quark mass, 

*Q- 
Whether the l/MQ expansion is valid in QCD for non-singlet states 

is unclear. 15,34 The only state we consider is a color singlet. 

In our analysis, we have not addressed the interesting problems of 

including quark kinetic energies and spin dependent forces. These con- 

tributions appear in the lowest order l/M2 
Q 

corrections to our results. 

Our procedure is based on an essentially variational analysis of the 

normal ordered QCD Hamiltonian. The solution to our equations gives an 

approximation to the difference between the energy of the lowest state 

in the presence of a quark and antiquark and the energy of the vacuum. 

To calculate this energy difference, we consider QCD in a Hamiltonian 

framework. The interpretation of this Hamiltonian appears simplest in a 

physical gauge, such as the Coulomb gauge which we have used in this paper. 

(We have not fully addressed the problems of properly fixing the gauge and 

of resolving potential problems arising from Gribov-Mandalstam ambiguities.) 

In Coulomb gauge, the Hamiltonian is a complicated non-polynomial function 

of the transverse gluon field. Normal ordering of the Coulomb operator, 
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J ' 
'+ Et is related to renormalization of the theory. For example, the 

dominaTit contribution to the B-function in one loop comes from the normal 

ordering term shown in Fig. 7. The proper implementation of the normal 

ordering of the Coulomb gauge Hamiltonian, and properly interpreting the 

Hamiltonian as a finite operator to all orders in g, appear to be very 

complicated problems. 

In the discussion of this paper, we have sidestepped these problems 

by considering only the mean field approximation to the Hamiltonian, and 

by assuming that a running coupling constant, a(R), can be defined at a 

momentum scale of 0(1/R), chosen so that the finite normal ordering terms 

such as that of Fig. 7 can be ignored. Although we can easily imagine 

going beyond the mean field approximation, in practice it seems difficult 

to achieve a better approximation than a-+a(R) and dropping of finite normal 

ordering terms. 

Finally, we note that there appears to be no obvious way in which the 

Tomonaga approximation might include the effects of a complicated phase 

structure for the vacuum. In the mean-field approximation, the gluon wave- 

function contains contributions from low momentum gluons. We expect, however, 

that in a confining theory these low momentum contributions will be drasti- 

cally modified because of a non-trivial vacuum phase structure. If these 

low frequency gluons give important contributions to the quark-antiquark 

potential, then our model would not accurately represent the true structure 

of the quark-antiquark system. 

Despite these reservations, and our dependence on numerous assumptions 

and simplications, it is interesting how accurately our approximation 

reproduces the results of QCD perturbation theory. It is particularly 

reassuring that our method'is sufficiently sensitive to treat accurately 
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the non-analyticity in the coupling reflected by g81ng2. 

I% a forthcoming paper, we will present the results of a numerical 

diagonalization of H and the solution of the coupling constraints of 

Eq. (4.3) and Eqs. (4.5)-(4.7). Our hope is that these results, combined 

with the scale dependence of a(R), will give a reasonable approximation 

to the quark-antiquark interaction for intermediate coupling strength. 
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APPENDIX A 

In this appendix, we discuss some properties of the scaled Hamiltonian 

of Eq. (4.41, 

h = at -a+ibQ+~C~xQ) * (.a+at) . (A.11 

This Hamiltonian is invariant order global SU(N) color rotations generated 

by the operator 

QT = iaxa'+Q+G . (A. 2) 

It is also symmetric under charge conjugation. 

+ -a 

a' +- -ai . (A.3) 

The ground state of this system is expected to be a color singlet state. 

In the color singlet sector, h may be written in a simple and natural basis. 

We construct this basis by operating on the state [O>. This state is the 

ground state of h for q= 0, and is formed using a product of ground state 

harmonic oscillators and the singlet state of the total quark charge: 

a(O> = 0 

(.Q + G) 1 O> = 0 . (A.41 

The set of color singlet states is generated from IO> by operating with 

arbitrary integer powers of at l Qx& These radially excited states of 

have even and odd occupation numbers and can be written as 

CA. 54 
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I 2K+1> = 
J 

CN2 - 3)! ! 

(.2K)!! (2K+N2-1)!! 
(a'2)K& a' l (Qx@(O> . 

CA.=) 

The orthonormality of these states is easily verified by use of the identity 

, (A. 6) 

where [L? > is any color singlet state. 

In the basis given by Eq. (A.5), the first two terms of h are diagonal. 

The interaction term proportional to v mixes only states of adjacent 

occupation number. The non-vanishing matrix elements of h are 

2- 1 < 2Klh12K > = 2K - +-- (A.7a) 

< 2K+l/hl2K+l > = 2K+1+ i & . (A.7b) 

< 2K+lIhl2K > = :~N(K+$J-~ (A.7c) 

< 2K-lIh[2k > = ; fi . (A.7d) 

Equations (A.?) form the basis for the perturbative diagonalization of h 

discussed in Section 4. 

Although in general h must be diagonalized numerically, for a special val 

value of g the ground state may be exactly determined& To find this state, 

we define an operator Z as 

Z = J 
i7 z a'. (Qxq) . CA.@ 

We easily compute 

ZSZ12K+1 > = 2K12K > Gz.9d 
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and 

ZfZ[2K+1 > = (2K+N2-l}j 2K+l > , 

so that, operating on these states, 

Z'Z = at l a + N2-2 
--g-- (.Q+G12 

The Hamiltonian, h, may therefore be written as 

-( (N2-1) (N2-2) 

N2 

If 

i = 2(H2-2) 
N , 

this Hamiltonian is 

_ (N2-1) (N2-2) 23 
N2 8 ' 

(A.9b) 

CA. 10) 

(A.ll) 

(A.12) 

(A-13) 

The product term in this equation is a non-negative operator whose 

minimum eigenvalue corresponds to the state I'+!> such that 

z+ . (A.14) 

The ground state energy is 

E. = - (N2-2)(N2-1) _ j-2J 
N2 8 CA. 15) 
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FIGURE CAPTIONS 
h 

1. The elements of Feynman and classical tree graph perturbation theory. 

2. A correspondence between Feynman graphs and classical tree graphs. 

3. The classical current 3. 

4. The H-graph and its modifications arising from Coulomb exchange. 

5. The quark-antiquark pair propagator. 

6. Modifications of the pair propagator arising from Coulomb exchanges. 
7 

7. A normal ordering correction to h. 
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