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Abstract 

A new heavy quark potential is proposed which incorporates the two 

concepts of asymptotic freedom and linear quark confinement in a unified 

manner. It is shown that this potential reproduces thespectroscopy of 

the triplet c: system charmonium and the triplet bg system upsilonium. 

The only parameters other than a scale size A, are the quark masses. 
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Many authors l-6 have proposed various potential models, with varying 

degrees of success, of the strong quark-antiquark interactions. Here we 

propose such a model with the added feature of a minimal number of para- 

meters. We impose two restrictions upon such a potential: (1) asymptotic 

freedom7 and (2) linear quark confinement. 8 We impose these constraints 

in such a way that the only parameter which enters into such a potential 

is h, a scale size. 

We construct the coordinate space potential V(r) by Fourier trans- 

forming the single dressed gluon exchange amplitude which is proportional 
4 4s2> to Y(q2> = 3 

q2 l 

To impose constraint (1) we recall that asymptotic 

freedom (with SU3(color) @ SUnf(flavor)) requires that for large space- 

like momentum transfers that the strong effective color coupling constant 

behave as 

lim ash21 'L 
127T 1 

Rn (-q2/A2) ' 
(1) 

2 2 
-q >> A 33- 2nf 

Constraint (2) is imposed by requiring that for large distances that 

lim V(r) % const x r 
nr>> 1 

or equivalently 

lim %q2:, + 1 const - 

-q2 << n 2 (q212 l 

(2) 

A simple interpolating form which invokes both of these constraints, 

takes the simple form 

G2> 4 = -- 
3 

12v 
33- 2nf 

1 

Rn (1+<2/A2) 
. (3) 
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Equation (3) forms the basis of this note. 

-We shall investigate the low-lying spectrum of the effective 

Hamiltonian 

+-2 
H = 2m+k+V(r) (4) 

where V(r) is the Fourier transform of Eq. (3). We notice that the 

Hamiltonian (4) depends on the minimal number of parameters. The two 

parameters m and A which appear in Eq. (4) are the QCD analogs of the 

two parameters m and c1 which appear in QED. 

Upon performing the Fourier transformation of Eq. (3) we find that 

V(r) may be written in the form 

V(r) = 33 Fi;n 
f 

(5) 

where 

f(t) = $ dq 
sin (qt) [ 

1 1 -- = q 
0 

Rn(l+q2) q2 1 [ 

03 
l-4 I 

&L e-9t 

1 ' [!Ln(q2-1)12+n2 I . 
(6) 

A graph of V(r) versus the dimensionless variable Ar is shown in Fig. 1. 

Note that V(r) is softer than a coulomb potential near the origin; that is 

lim V(r) s - 33 8T2n 
1 

Arc<1 f r Rn (l/Ar) (7) 

For the purpose of studying the spectra of the 'I', J/$ systems we 

shall choose nf =3, since the effect of heavier quarks should be small at 

the distances we are studying (using the Appelquist Carazzone theorem'). 

As a consistency check we compute <p2 > to insure that <p2 > < 4m2. 
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We have computed the spectrum of the Hamiltonian Eq. (4) numerically. 

mc a$ A were chosen to obtain M(J/$) = 3095 MeV and M($') = 3684 MeV. We 

found that mc = 1491 MeV and A = 398 MeV. With this choice of parameters 

we found that M(x c o g ) = 3514 MeV and M($") = 3799 MeV. These and a few . . . 
other excited states are shown in Fig. 2 which also compares them with the 

experimental values as reported in Ref. 10 and references contained therein. 

For the purpose of studying the T system we use the same value of A 

as obtained from the J/G data. The only parameter left is mb which can 

be chosen so that M(T) = 9452 MeV, that is mb = 4883 MeV. We then find 

that M(T')-M(T) = 555 MeV which is in remarkable agreement with the 

experimental splitting of 5572 5 MeV. l1 We also find that M(TII)-M(T) = 

886 MeV in this model. These and a few other excited states are compared 

with the experimental values 11 in Fig. 3. 

Usually when comparing potential models with experiment, one computes 

the leptonic decay widths using the Van Royan and Weisskopf formula 12 

r(V + e+e-) = (8) 

where mcr is the mass of the vector meson, e 
Q 

is the quark charge and $ is 

the q{ wave function. It has been pointed out by Celmaster 13 and Barbieri 

et al. 14 that this Oth -- order expression (in us) is subject to QCD radiative 

corrections and should be replaced (to first order in us) by 

r(v -f e+e-) = * 1$(0)12 [l - $+cisbnQ)] , (9) 

"G 

which tends to strongly suppress the widths as computed using Eq. (8). 

Since these corrections are so large, we conclude that we may reliably 
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compute only ratios, such as 
-h 

r(v' + e+e-) = 
r(v -f e+e-> 

(10) 

where V and V' are vectormesons of the same q< system. Using the previous 

parameters we find that 

N$’ + e+e-) 
3 e+e-) 

= .45 and wr' + e+e-) = -42 

W r(T -f e+e-) 

to be compared with the experimental values of .4 + .l and .3 + .2 res- 

pectively. 10,ll 

In summary, we have presented a new quark-antiquark potential which 

incorporates the concepts of asymptotic freedom and linear quark confine- 

ment in a simple manner. This potential has the added -feature of a 

minimal number of parameters. Fairly good agreement has been found between 

the model and with the experimental measurements for the T and $ systems. 

We have not treated spin-dependent effects in this simplified treatment 

but hope to do so in a future discussion. 
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FIGURE CAPTIONS 

1. A graph of the potential V(r) versus the dimensionless variable Ar. 

2. A comparison of the experimental cc spectrum (experimental values 10 

are shown in figure with appropriate error bars) versus the potential 

model prediction (large horizontal lines) with nf=3, A=398 MeV, 

m c=1491 MeV. The model predictions are M(S-waves)= (3095, 3684, 

4096, 4440), M(P-waves)= (3514, 3950, 4308), M(D-waves)= (3799, 4172, 

4498) MeV. 

3. A comparison of the experimental bi spectrum (experimental values 11 

are shown in figure with appropriate error bars) versus the potential 

model prediction (large horizontal lines) with nf=3, A= 398 MeV, 

mb=4884 MeV. The model predictions are M(S-waves)= (9452, 10007, 

10338, 10598), M(P-waves)= (9888, 10241, 10512), M(D-waves) = (10137, 

10421, 10660) MeV. 
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Fig. 3 


