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ABSTRACT 

The combinatorial hierarchy model for basic particle processes 
h 

is compared and contrasted with the Ur-theory as developed at the - 

Tutzing Conferences. While agreeing with Ur-theory about a finite - 

basis, the "fixed past-uncertain future" aspect of physics, and the 

necessity of dropping Bohr's requirement of reduction to the haptic 

language of commonsense and classical physics, we part company at 

the point of introducing continuous groups, We retain a constructive, 

hierarchical approach which can yield only an approximate and discrete 

"space time", and introduces the observation metaphysic at the start. 

Concrete interpretation of the four levels of the hierarchy (with 

cardinals 3, 7, 127, 21z7-1 ~10~~) associates the three levels 

which map up and down with the three absolute conservation laws 

(charge, baryon number, lepton number) and the spin dichotomy. 

The first level represents +, -, and + unit charge. The second has 

the quantum numbers of a baryon-antibaryon pair and associated 

charged meson (e.g., n;, p;, pp, np, IT+, IT', a-). The third level 

associates this pair, now including four spin states as well as four 

charge states, with a neutral lepton-antilepton pair (ee or ~3) in 

four spin states (total, 64 states)- three charged spinless, three 

charged spin 1, and neutral spin 1 mesons (15 states), and a neutral 

vector boson associated with the leptons; this gives 3+15 4 3x15 = 63 

possible boson states, so a total correct count of 63+64 = 127 states. 

Something like SU2 x SU3 and other indications of quark quantum numbers 

can occur as substructures at the fourth (unstable) level. Breaking 

into the (bose) hierarchy by structures with the quantum numbers of 
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a fermion, if this is an electron, allows us to understand Parker- 

Rhodes calculation of m /m 
P e 

=1836.1516 in terms of this interpretation 

of thphierarchy. A slight extension gives us the usual static 

approximation to the binding energy of the hydrogen atom, u2mec 2 . We 

also show that the cosmological implications of the theory are in 

accord with current experience. We conclude that we have made a 

promising beginning in the physical interpretation of a theory which 

could eventually encompass all branches of physics. 

I. INTRODUCTION: GENERAL PRINCIPLES OF THE 

COMBINATORIAL HIERARCHY IN THE TUTZING CONTEXT 

In this section we explain the basic principles of a theory 

which has been presented in two successive Tutzing conferences, as a 

contribution to the corpus of thinking on the most basic issues in 

physics and in the philosophy of physics which has emerged from these 

conferences. Our theory consists in*the use of a combinatorial 

hierarchy model of basic physical interactions. 

The background to the Tutzing conferences has been one of finitism. 

The theory of Ur's - basic, discrete, - two-valued entities, proposed 

by von Weizsicker and accepted as an adequate starting point by some 

of his associates - has served to give the Tutzing conferences a 

particular orientation and framework within which discussion could 

take place. The claim made in effect by the Ur-theorists (see parti- - 
. . 

cularly von Weizsacker's 1978 paper) has been that if descreteism is 

firmly and clearly enough embraced, then the something very like the 

usual quantum theoretical formalism can be sustained as a consistent 

theory, and the paradoxes and other perplexities avoided. 
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A different position has been maintained by Finkelstein, who 

accepts the finitist part of the Ur program but considers that further - 

innov&ion in basic principles is necessary. He adopts a process 

philosophy, thinking that the elementary discrete constituents of 

nature must have a principle of concatenation, and that this principle, 

whatever it may be, must tell us a good deal about the interrelations 

of the classical and the quantum worlds. 

Our theory accords with Finkelstein's demand for innovation beyond 

the finitist assumption; we adopt the general direction of his 

"process," or sequential concatenating conjecture. We present a speci- 

fic model within the class specified by his conjecture, and can claim 

experimental backing for our model. Our model is distinct from quan- 

tum mechanics; it might become equivalent to the latter under special 

conditions. Some results which would normally be thought to be depen- 

dent upon quantum mechanics as a comilete theory appear in our model 

at a more general stage than that at which we make contact with the 

special case of quantum mechanics. 

We think that one of the very great difficulties in physical 

science at the moment - particularly at any rate from the point of 

view of the philosopher of physics - is the extremely monolithic 

character of technical physics. We are accustomed to hear lip- 

service fulsomely paid by physicists and philosophers to the impor- 

tance of having alternative theories between which the facts may be 

allowed to decide. In practice it is almost impossible to suggest a 

serious (as distinct from a science fiction) modification to basic 

physical theory. If you change one piece you change the monolith in 
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every particular. Fruitful change seems nearly impossible. The 

practical physicist behaves as though it is inconceivable. This 

schizmhrenia between the theory of the philosophy of science and 

practice seems to us very serious: we believe it an advantage that 

we have to present an "alternative" model. We are surprised that in 

the Tutzing milieu so few of the contributors have penetrated into 

these areas of discussion. 

The historical origins of the quantum theory concerned the ex- 

perimental discovery of discreteness and an attempt to explain it 

using a continuum conceptual framework (we may consider that the 

Planck radiation formula was a striking experimental ratification of 

theoretically arbitrary mathematical imposition of discreteness). 

Early quantum theory hardly claimed to be explanatory; the modern form 

of the theory has usually been seen as a.successful reconciliation of 

the continuous and the discrete, and therefore as a satisfactory 

explanation of the latter. However in view of the continuing unease 

with the conceptual foundations of the theory, it seems as appropriate 

today as ever it was to enquire a) wherein the explanation lay, and 

b) how successful it was. It is sensible to carry on our enquiry in 

the context of any of the traditional Gedankenexperimente (two slit 

experiments, photon splitting experiments, photon correlation experi- 

ments such as have been imagined by a sequence of theorists going back 

to Einstein, Podolsky and Rosen). 

As everybody knows, quantum theory has maintained that there is a 

distinct class of things in the universe called measurements or obser- 

vations and that different rules apply to these from those that apply 
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to interactions in which the acquisition of knowledge is not involved. 

In one way or another use is made of this principle to justify the 

import%zion into the formalism of a discrete principle. As everybody 

also knows, this principle has never produced peace of mind, even 

though the great thinkers of the quantum theory have concentrated 

their attention upon it. (Consider, for example, the essay by 

John Wheeler in "An Encyclopaedia of Ignorance" pl, 1977, Pergamon, 

Oxford). 

Let us review the position of this principle in the Tutzing 

milieu. When we have the assumption of discreteness to start with, 

do we need no observation metaphysic, or is the boot simply on the 

other foot with our having no continuum (instead of no discretum) 

without appeal to some observation metaphysic? We are at one with 
. 

the Ur theorists in thinking that the provision of a discrete base - 

for theory is a sine quo non for understanding the observation meta- 

physic, but how far does agreement go when we raise the question of 

what further principles dictate the shape of the quantum mechanical 

formalism properly required by the observation metaphysic? As we 

understand the Ur theorists (and again this remark is related particu- - 
. . 

larly to von Weizsacker, 1978) the Ur theorists expect the finitism - 

of quantum theory to follow from the existence of a finite number of 

Urs at any time, - They also appear to expect the existing mathemati- 

cal formalism of quantum theory to provide an adequate encapsulation 

of the observation metaphysic. Thus the ideas connected with indeter- 

minacy (traditionally the point where the observer metaphysic has its 

central impact) are derived as matters of principle from the existence 
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of only a finite number of finite alternatives ( themselves derived from 

the binary alternatives embodied by the Urs). However, the traditional - 

view of the uncertainty principle as a direct consequence of the obser- 

vation metaphysic would seem to demand an explicit connexion between 

the finiteness of the number of Urs and the existence of Planck's - 

constant (expressed in terms of dimensionless ratios of other funda- 

mental constants, of course), if we are to regard the Ur theory as - 

having such a consequence. If one didn't demand an actual value for 

it to be derived, at least one would expect an existence proof for 

it to have some value rather than any other. 

Thus, in answer to our question we find that the Ur theory claims - 

that it embraces the observation metaphysic and prbvides an explication 

of its appearance in the current quantum mechanical formalism. Again 

we agree. We find, however, that the Ur theory fails to-exhibit the - 

detailed working of the observation metaphysic at the vital point, 

and it is at this point that we find ourselves parting company with 

the Ur theorists at the level of practical thinking and theorizing, - 

though perhaps not so vitally in basic philosophy. We want to incor- 

porate an "observer-metaphysical logic" in our basic description of 

the individual Es, and believe that in this way we shall fill the 

gap we find in the Ur theory. - 

Our point of departure from the Ur theory is that at which they - 

follow a specific mathematical course of development. The specific 

point at which the Ur theorists seem to us to go wrong is in the - 

introduction of continuous group, c which need no operational justifi- 

cation since they are pure mathematical entities. We would feel that 
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the only correct way to proceed would be to build the discrete theory 

of Urs so as to define the necessary continuous groups to a sufficient - 

degree"of approximation instead of to introduce a dualism of opera- 

tional and formal mathematical entities. To pursue this argument in 

detail would take vast space and for the present purpose, we are 

content to observe that in current ideas on the foundations of math- 

ematics, both points of view exist. That is to say, there are schools 

of thought which hold that a distinction can be made between formal 

mathematical structures and interpreted structures, and there are 

schools which deny that such a distinction can be made except on an 

arbitrary and ephemeral basis. So there is no unambiguous answer to 

be had from the study of the foundations of mathematics. 

Before describing our model, we clear up a couple of matters in 

which we are in agreement with the Ur theorists. First,.the Ur - - 

theorists have departed from the position of Bohr in one vital parti- 

ular. In Bohr's attempt to achieve an understanding of the observer 

metaphysic, an absolutely central part was played by his (Bohr's) 

insistence that all theoretical formulations had to be interpreted 

through the massively consistent and pervasive haptic language which 

was at once classical physics and the common sense world. Bohr 

thought it inconceivable that any underpinning or revision of this 

language using conceptual entities less evident to the senses was 

conceivable, practicable or desirable. Indeed his philosophy made a 

virtue of the necessity of this position. 

But the Ur theorists do propose just such an underpinning as - 

Bohr thought inconceivable. So do we, though a different one. 
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A second point concerns probability and its place in a discretely- 

based quantum physics. There we find ourselves in complete agreement 
. . 

with tile analysis of the use of probability that von Weizsacker has 

undertaken (Tutzing, 1978), and need therefore to make few remarks on 

this topic. Probability is closely related to the concept of time in 

the quantum physics context. The concept of time which is commonplace 

in modern philosophical writing and which owes more to Hume than to 

any other thinker, seems to be in conflict with a good deal of the 

thinking of physicists. Starting with Galileo, the time of physicists 

is based primarily upon the analogy between time "displacement" and 

displacement in space. Our model has developed partly from discussion 

which was designed to show that in a discrete approach one might have 

the advantage of adopting the Humean point of view without outrage 

to physical theory. Then one could take the past simply.as the fixed 

domain and the future as the domain of uncertainty and of probabilistic 

inference. This point of view can be tagged "Fixed Past, Uncertain 

Future" (Noyes, 1974, 1975, 1977). 

We now return to our suggestion of how Ur theory might have been - 

developed in such a way as to avoid a dualism of formal and contingent 

entities respectively which we find a defect. This suggestion affords 

a convenient introduction to our theory, which we can regard as having 

developed out of an attempt to avoid this defect. It also enables us 

to state the main argument in favour of our theory at the foundational 

level (as distinct from successful calculations and formal deductions). 

Our claim is that in reaching a monistic picture we discover what lies 

beneath what, for want of a better term, we have called the observation 

metaphysics. 
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Let us imagine a universe containing elementary entities which we 

may think of as our counterparts of the Urs. To avoid confusion we will - 

amendJhe terminology and call them Schnurs - a term which appropriately 

suggests computing concepts, in a way that represents their most funda- 

mental aspect of concatenating strings. The Schnurs are discrete, and 

any representation they may have is two valued. Consider a definite small 

number of them. Consider an elementary creation act as a result of which 

two different Schnurs generate a new Schnur but which is again different. 

We speak of this process as "discrimination". By this process,and by 

concatenations of this process, can the complexity of the universe be 

explored. It is also necessary that a record of these discriminations 

and resulting creations be kept as a part of the structure defined by the 

Schnurs, otherwise there is no sense in saying that they have or have not, 

been carried out. Hence we consider a new lot of Schnurs which consist 

of concatenations of creation processes preserving the discriminate 

structure explored by the original Schnurs. The members of the new class 

are themselves constituents of the universe and are also free to take 

part in the creation or discrimination process, and to map up to higher 

or down to lower levels. This last requirement is the stage at which the 

necessity becomes clear for a reflexive or recursive aspect to our model 

which in current quantum theory takes the form of the "observation meta- 

physics". The construction of a hierarchy of new levels of Schnurs is 

necessary to obtain an approximation to a physical continuum, and by means 

of it we can ultimately speak of a physical entity in a background of other 

physical entities in accordance with the requirements of common sense. 

However, it makes no sense to speak of the individual entities except 
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in terms of the part they play in the construction. Everything plays 

a dual role, as a constituent in a developing process, where something 

comes in from outside to interact, and as a synopsis or concatenation 

of such a process where the external interaction becomes subsumed in 

one new entity. 

Now can a thing be both aspects at once? I do not think we are 

able at present to say clearly how it can, and we must let our model, 

which incorporates this duality, lead us forward without having a 

complete insight as earlier theorists had to do in quantum theory. 

However we are in better case than current quantum theory, for we 

can adopt a strictly process view and insist that we always view the 

process from one viewpoint - albeit a viewpoint which can, and must, 

change. Then we are freed from conceptual confusion, and we progress 

by considering stability conditions under which the limitations of 

our way of approaching the inescapable duality are compensated. 

Indeed we find in the stability of the hierarchy levels a profound 

condition under which we can be sure of a sort of automatic self- 

consistency which reflects itself in the properties of quantum objects, 

and which is the basis of our interpretation of our model. 

We do not think it impossible that a mathematical way of thinking 

will emerge in which the dual function can be comprehended without the 

device of considering the structure of the universe from one point at 

which the decision making is occurring. One might revert to a more 

classical or synoptic mathematics. However we do not think we can do 

it at present (though Parker- Rhodes, whose work has played such an 

important part in our model, and who feels uncomfortable with a process 
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philosophy, is trying to formulate something very similar in terms of 

a "mathematics of indistinguishables" which transcends the process 

aspect^). We would conjecture that if such a conceptual framework ever 

is discovered, its proper field of application would be wider than 

physics, and that the restricted process view would probably be ade- 

quate for physics. 

Our view of space time is constructive in the sense that there is 

one set of principles which gets us from the Schnurs to whatever 

approximation to the continuum of space we decide we need. It is also 

constructive in the sense that we requre that any mathematical con- 

structions that are needed to specify the attributes of any physical 

things,including the space continuum, shall also be so derived. In 

this sense the Ur theory is not constructive, and we have found our - 

vital objection to it in this lack of constructivity. This use of 

the term "constructive" is stringent. We are, however, using it as 

in its locus classicus, Brouwer's theory of mathematical intuition 

(which also stimulated the development of intuitionist logic.) 

Brouwer's basic concept was that of the free choice sequence. 

The formal need for the free choice sequence was to construct the 

continuum adequately. For Brouwer, the constructions of mathematics 

had no absolute quality, but were creations of the intellect whose val- 

idity was relative to the state of mathematical understanding at a given 

epoch. They play a part in guiding the development of the free choice 

sequences. So do other considerations which we should normally regard 

as contingent. (An example of Brouwer's was to make the development 

of a free choice sequence depend upon whether, at the particular 
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time inquestion, four successive sevens were known to occur in the 

expansion of a.) It would be possible (and Brouwer was quite open 

to this, suggestion) to regard the totality of considerations which 

could influence free choice sequences as including the contingent 

begaviour of physical systems, in which case the similarity of the 

processes in our constructive model and the basic entities with which 

Brouwer constructed his universe would be quite close. 

It would be fascinating to pursue this connexion with Brouwer's 

thought but this cannot be the place. We introduce it at all here only 

because it may be felt by some readers that our theory requires a 

mathematical entology which is just wrong, and it may reassure such 

persons to know that something very like what we propose has been 

authoritatively put forward for analogous reasons in the literature 

of the foundations of mathematics. The connexion is also-relevant to 

our present discussion, because Brouwer's constructivism has no 

separate world of mathematical entities; we recall the difficulty we 

encountered with the Ur theorists in their allowing themselves the - 

use of continuous mathematical constructions where we felt that a 

constructive development should include mathematical entities used 

in the theory. 

This last point leads on to another difference between our Schnur 

theory and the Ur theory. This concerns the question whether we locate - 

the reflexive character in the individual Ur processes or in statistical - 

assemblages of them. We hold the former view, the Ur theorists the - 

latter. The tradition is on our side, even though one is stretching a 

point in arguing as we have done that traditional quantum theory fails 



-14- 

crucially at the point where it has to appeal to an observation meta- 

physic to introduce the reflexive character of quantum processes, and 

yet cI3im support from that quarter. Still, the traditional argument 

that the essential character of quantum processes have to be defined 

for individual processes is very strong. One is accustomed to having 

to refute various facile approaches to the foundations of quantum 

theory by pointing out that the characteristic quantum- observation 

effect is individual and therefore cannot depend upon a statistical 

effect. For example, in the photon- splitting experiment, the inci- 

dent beam can be attenuated to such a degree that the incident photons 

would have to be treated individually, and therefore could not inter- 

fere. Yet interference does take place. This piece of experimental 

evidence provides a very sharp refutation of any view whose attribu- 

tion of simple atomic properties to the photons is subject to the 

restriction that one may consider only statistical distributions of 
. . 

these. Presumably von Weizsacker's distinction between possibility 

and probability would be brought in to explain why the Ur theory is - 

not in this class. (J.H.M. Whiteman, 1971, introduced a concept which 

he called potentiality to achieve a similar end.) However, this matter 

is crucial and one feels that the detailed mechanics which makes a 

statistical effect appear as an individual one should be presented. 

Certainly we feel that our model, in which individual effects appear 

directly, has a crucial advantage, and that this advantage is a direct 

consequence of our constructive approach. 

It is obviously tempting to identify the duality of function of 

our elementary discriminators or Schnurs with the duality of description 
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in complementarity. Certainly the two are connected, but the connexion 

is not simple, as must be clear from the foregoing discussion of the 

differ&ces between our view and current quantum theory. Bohr's view 

of complementar y descriptions seem to be very much a special form of a 

more general philosophy and to have had its special form dictated by 

the special form in which quantum physics has developed. It is proba- 

bly safe to say that if one could state the general philosophy without 

such special reference, it would contain the reflexive or recursive 

character which has concerned our discussions so much. However, Bohr's 

philosophy has proved notoriously difficult to state in this bare form 

in spite of the best efforts of fifty years. We conclude this section 

by stating what we feel to be the reason for this recalcitrance. 

In a discrete or finite theory it is not too perplexing to 

introduce a reflexive philosophy by using a recursive mathematical 

model which is what we do. The really perplexing difficulties seem to 

appear if we associate this reflexive character with an observation 

imagined against an objectively existing background, as is done in 

so- called "measurement theory". Two incompatible principles are 

being appealed to. One principle requires entities in the universe 

to be constructed using the observation process; the other takes a 

realist view of them. Not surprisingly, no reconciliation of the 

resulting perplexities is achieved by studies at a technical level 

where fundamental principles tend to be assumed rather than discussed. 

One question has been avoided till now. In our model the elemen- 

tary entities have a dual function. One of the dual aspects is ana- 

logous to that of an observing system. Do we imagine that this aspect 
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of its dual role would correspond to the quantum theoretical "observa- 

tion", and if so how would we react to those writers on quantum theory 

who wGh to see something irreducably mentalist in the observation? In 

reply, we would first observe that we are not compelled to answer this 

question before we can use our model. We have a model for interactions 

which are elementary (Ur) in the sense that all we know is built up - 

from them, and we have an interpretation for the model in terms of 

scattering processes. This interpretation does not have to be the 

only one. We have tacitly assumed that the conditions of high energy 

are favourable for exhibiting the simplicity of the model and hence 

the scattering situation. However, under other conditions the inter- 

acting entities might even be living organisms with consciousness. 

The model should still apply. What we absolutely are not either 

compelled or allowed to say is that the phenomenon of consciousness 

as a separable ingredient is necessary for the interaction. 

II. CONSTRUCTION OF THE HIERARCHY 

In this section we develop the specific formalism by which we are 

implementing the program discussed above. Our basic elements are the 

existence symbols "0" and "l", and our basic mathematical operation is 

symmetric difference or addition, modulo 2: (O+O=O, l+O=l, O+l=O, l+l=O). 

The symbols are grouped as ordered sets (vectors) of height. (if thought 

of as columns) n. The comparison between two such vectors is called 

"discrimination". If a vector x, whose height n we can indicate by 

writing (x),, has elements ("discriminators") x., i=l,...,n, the 1 

basic binary operation of discrimination between two vectors x, y is 
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defined by 

Dn(x,y> = (x+ y) = (xi+ Yiln (2.1) 
n 

The co;cept of such discriminators is abstracted from the more familiar 

idea of discrete quantum numbers, while the discrimination operation 

itself can be viewed, as we will discuss in another section, as an ab- 

stract model of a general scattering ("production") process in which the 

result of scattering two different systems is a third system that differs 

from either. Our mathematical model thus describes chains of atomic or 

elementary processes. Our policy for presenting the theory is first to 

establish a correspondence between the mathematical model which describes 

these chains of processes and the familiar structure of quantum numbers. 

In this way we can first view the mathematical model as providing a clas- 

sification scheme. The basic dynamics of our theory is represented during 

the construction of this classification scheme by the concept of discrim- -- 

inate closure. We introduce this concept by the following argument. 

Starting with vectors of a given height, we imagine new vectors 

formed by concatenating a sequence of them. Entities corresponding to 

the new vectors are said to constitute a new level in the hierarchy. There 

is no difference between the new and the old in logical type; the only dif- 

ference is that the boundary between the observing system and that which is 

observed has changed. The great conceptual and mathematical difficulties 

of such an idea can be handled in one special case, which is therefore of 

great importance. This case is that in which the entities at the new level 

represent all statistically possible concatenations of entities at the pre- 

vious level, starting with a given set. Hence we get a discriminately 

closed subset. 
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A "discriminately closed subset" or DCsS consists of one or more 

_ non-null vectors. If the set contains more than one vector, it is said 

to be "discriminately closed" if discrimination between any two distinct 

vector% in the set yields a third member of the set. Assume that we 

start from a basis of j linearly independent vectors, that is vectors 

for which no sum of two or more different vectors is null. Then there 

will be 2j -1 distinct discriminately closed subsets. Symbolizing a 

DCsS by 
0 

, a basis of two vectors a,b, gives the three DCsS 
Iab Ib), 

a basis of three vectors a, b, c gives the seven DCsS I a(, 

jb), {c],'{a,b,a+b), {b,c,b+c),(c,a,c+a},{a,b,c,a+b,b+c,c+a, 

a+b+c. 1 
Proof of the general result is immediate either by noting that 

the number of DCsS is simply the number of ways we can combine j things 

1,2 ' ,****J at a time, or by induction. The first step in constructing 
. 

the hierarchy is then to consider the 2J -1 DCsS so formed as the basic 

entities of a new level. 

The reason for seeking a constructive process of hierarchical nature 

that yields levels of rapidly increasing (in our case exponentiating) com- 

plexity is again abstracted from experience. We have detailed in the first 

section the reasons why we start from an elementary process (discrimination) 

which already implicitly contains the "observation metaphysic". There we 

also explained why, in our view, we adopt a constructive, process-oriented 

approach. The further requirement that the hierarchy so generated terminate 

is a basic requirement if we are to retain the principle of. finitism. We 

defer the discussion of the reflexive character of the scheme until it is 

further developed. That the combinatorial hierarchy obtained by starting 

with vectors of height n= 2 yields levels of interesting physical structure 

and sufficient ctimplexity, and terminates at the appropriate level has been 

shown previously (Bastin, 1966). We summarize the construction here. 
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We have seen that, given j linearly independent vectors, we can 
. 

always construct 2J-1 DCsS at that level. For them to form the basis 

of a n& level, however, they must themselves be representable by 

linearly independent entities which contain the same information about 

discriminate closure as the sets themselves. For this purpose we 

introduce multiplication (modulo 2) and matrices because these linear 
* 

operators preserve discrimination. We look for 2'-1 matrices which 

a) map each vector in one of the subsets onto itself, and no other vectors, 

b) map only the null vector onto the null vector, and hence are non- 

singular, and c) are linearly independent. Provided this can be done, 

and the original basis consists of columns of height n, then the matrices 

themselves can be rearranged as columns (e. g., by putting one row on 

top of another by some consistent rule), and will then provide a linearly 
. 

independent basis of 2J-1 vectors of height n2. Such mapping matrices 

are easy to find for n= 2 (see below). Explicit examples have been found 

for n= 3, 4, and 16 (Noyes, 1978) proving the existence of the hierarchy. 

A formal existence proof has also been provided (Kilmister, 1978) based 

on unpublished work (Amson, 1976) which formed the appendix to Bastin's 

paper for the 1976 Tutzing Conference that unfortunately has yet to 

appear (Bastin, 1976). 

We can now present the general situation. We have seen that if 

at some level 1 there are j(l) linearly independent vectors.of height 

n(L), we con construct immediately d(e)= 2 j Cl) -1 DCsS. Provided these 

can be mapped according to the restrictions given above, they form the 

basis for a new level with j(&+ l)= d(1) and n(l+l)= n2(C). The pro- 

cess will terminate if n2(C) < 2 j (1) -1 since at level 1 there are only 

n2(e) linearly independent matrices available (and not all non-singular); 
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clearly this will always happen for some finite n. The situation for 

n(1) = j(1) = N, i.e., when the vectors at the lowest level which span 

the s;ace are used as the basis, is exhibited in Table 2.1. 

TABLE 2.1 
The Possible Hierarchies Starting from n(1) = j(1) = N 

e 

N= 2 n (1) 2 4 
j (0 2 3 

cl(&)= 2j(')-l 3 . 7 

N=3 n(L) 3 9 
j (0 3 7 
d (8 7 127 

N=4 nC0 4 
j (0 4 

_ dC-0 15 

N> 4 

3 4 Hierarchy terminates 
because 

16 
7 

127 

256 
127 

2 2127-l = 1038 (256) < 2 127-1 

Mapping not possible 
(Amson) even though 

42 > 15 

n2(R)< 2 n CO-, 

It is clear that the case N= 3 is in some sense immersed in N= 2, and 

that this immersion is necessary if we are to reach an interesting 

level of complexity. Thus, perhaps surprisingly considering the 

simplicity of the assumptions, the hierarchy turns out to be unique. 

Although the cardinal numbers given by the hierarchy are 

unique, the specific representations used in the construction are not. 

It is important to understand this clearly because it is a complication 

in making any simple interpretation of the discriminators as represent- 

ing the presence or absence of particular conventional quantum numbers 

in an isolated system. This ambibuity is present at the lowest level 
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since for the two basis vectors we have three choices: a = 

b 

Corresponding to these three possible choices of basis, there are 

three different sets of mapping matrices. When, as here, the number 

of independent vectors is equal to the height of the vectors (n = j), 

the maximal discriminately closed set (MDCS) contains all the non- 

null vectors in the space (here it is (ii), (y) , (:)/I independent 

of the choice of basis; further, the only possible mapping matrix for 

the MDCS is then the unit matrix. For the first basis, the mapping 

matrices for {a} and. (b} are (ii) and (:F) respectively. For the 

second a = a', so that matrix is the same but the mapping matrix for 

01 b' is lo ; ( > for the third we note that a" = b' and b" = b. Re- 

arranging the matrices as columns then give three different possible 

bases for the second level of the hierarchy, namely . 

a2 =(i) b2 =(!) c2 =(/); a'2 =(!) b; =[i) c; =(!)* 

1 
o 

"'; = 0 0 b" = 
2 

1 
0 0 0 1 l "i=o* .1 0 1 1 (2.2) 

In addition to this ambiguity, there is the further problem that 

we could have used any other rule for converting the matrices into 

column vectors, provided only the same rule is used for all three 

matrices. Thus the rows in the representation have no significance, 

and within a level t-he properties of the system under discrimination 
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are unaltered by a permutation of rows in the basis. What the 

construction does guarantee, however, is that instead of the basis 

of th;ee unit vectors such as (lOOO), (OlOO), (0010) or any linearly 

independent set constructable on such a basis, two of the vectors in 

the basis always contain two "1"s in the same two rows. This 

guarantees that the MDCS (up to a permutation of rows) at the second 

level will always be 

This is important, because if we could end up with the minimal basis 

given above, the fourth row in the vectors could be ignored and we 

would be in the j = n = 3 situation; but this starting point 

terminates at the next level. Thus the.doubling of one discriminator 

is a structural requirement which comes from the representations and 

could not be guessed from the cardinal numbers. We will find it 

significant as a clue to physical interpretation. 

When it comes to constructing mapping matrices for the second 

level, we cannot use the unit matrix to represent theMDCS given 

in Eq. 2.3 because it maps all 15 possible non-null vectors of 

height four onto themselves, and not just the required seven. 

The eight vectors which must be excluded are of the form (1 x y 0) or 

(OXY 1). A non-singular matrix which has none of these as eigenvectors, 
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but all the vectors of Eq. 2.3 as eigenvectors is given below. 

The remaining six mapping matrices for the remaining six DCsS can 

then be constructed by adding "l"s to the first three rows in such a 

way as to eliminate 411 but three or all but one of the vectors from 

the set of eigenvectors. Care must be taken to keep the matrices 

non-singular and linearly independent. Leaving the last row as 

(1000) guarantees that none of the unwanted eight vectors will be 

eigenvectors. 

If we carry out the construction in this way, it is clear that 

one of the basis vectors at the third level will have a quadrupled 

discriminator. Sixty-four of the 127 vectors in theMDCS carry this 

.discriminator and 63 carry four nulls in those four rows. If the 

discriminators of the remaining six linearly independent vectors were 

non-null only in six rows, then there would be only (6 + 4>2 = 100 

linearly independent positions in the mapping matrices, and the fourth 

level could not be constructed. Hence, at least two additional 

descriminators must be doubled, providing 144 significant positions 

in the mapping matrices. This structural feature will again be used 

as a clue in constructing the physical interpretation, but we have 

as yet no proof that it is the only way in which the hierarchy can be 

constructed. An analog of the matrix given in Eq. 2.4 which has the 

127 members of theMXS as eigenvectors and excludes the remaining 
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126 mapping matrices which are non-singular and linearly independent 

have been constructed in several ways. Details will be published 

elsewhzre. 

III. PHYSICAL INTERPRETATION OF THE HIERARCHY 

AS A CLASSIFICATION SCHEME 

In this section we attempt to correlate the mathematical 

structure developed above with some facts known from eiementary 

particle physics. Because any physical process requires development 

of the hierarchy through the levels successively, the significant 

physical magnitude is not the cardinal of each level separately, but 

also their cumulative sum, which gives the sequence 3, 10, 137, 

137+2 127-1,10 . 38 Obviously this can be interpreted immediately as 

the inverse of the superstrong, strong, electromagnetic and gravitational 

coupling constants and suggests that in some sense the cumulative levels 

refer to systems of bosons with increasingly refined definitions of 

their possible interactions. One way to make this more specific would 

be to assume that the various systems at each cumulative level all 

above equal apriori probability, and that the probability of coupling 

into any one of them by the characteristic described at that level is 

therefore the inverse of the corresponding number. We give this vague 

idea more specific content in the next section, Further, the fact that 

the first three levels can be mapped up or down freely, but that any 

attempt to construct a linearly independent representation of the 

fourth level with 2 127 -1 DCsS must fail after (256)2 linearly indepen- 

dent matrices have been selected suggests that the destabilization of 
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particle systems due to weak decay processes with coupling constant 

10W5mp might also emerge from the scheme since 1/(256)2 has approximate- 

ly thi+ value (Bastin 1966). This requires us to assume that the unit 

of mass in the scheme is the proton mass, but this is already clear 

from the initial sequence, since 1o38 is the gravitational coupling - 

between two protons; the gravitational coupling between two electrons 

fs 1044. Thus we can hope to derive the ratio of the electron mass to 

the proton mass once the scheme is sufficiently developed. How this 

might be done is discussed in the next section. 

1 1 The lowest level with the three non-null vectors o , 1 , 

0 
0 

0 0 

1 , and the null 0 
0 0 is suggestive of the triplet-singlet system 

obtained from two dichotomic variables (spinors). This analogy becomes 

even closer if we double the discriminators to obtain the same system in 

a four row notation - a step we.have already seen will be required at 

the third-level of the hierarchy - as shown below, in Table 3.1. 
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TABLE 3.1 

Triplet - Singlet System from Two Dichotomic Vectors 

Conventional Notation Hierarchy Notation 
I I r 1 

s 1' t s=o s 1 = s=o 

Sz=l 0 -1 s 0 = Sl 0 = -1 z z sz= 0 
- - 

1 1 1 1 

This should make it clear that we can view the lowest level as 

representing the triplet states of such a system in the minimal 

(i.e., undoubled) notation (i) , (i) , (y) . The question is what 

dichomic variable to choose. Here we are guided by the idea that the 

three stable levels which close under discrimination and map that 

closure up and down might represent the three absolute conservation 

laws, namely baryon number, lepton number and charge (Noyes 1977). 

We, also, as discussed in the next section, want in our dynamical scheme 

to be able to interpret l+l= 0 as the exclusion principle at a single 

(prespacial) locus, so also can include the z-component of spin. 

After a number of attempts to find a reasonable interpretation 

which accomplishes these goals, we now believe we have achieved our 

objective. Rather than spin, we find it more natural to interpret 

the lowest level as representing the three possible non-null states 

obtained from positive and negative unit charge, namely +, - and + . 

Equally well, if we wish to stick closer to the idea of dichotomic 

variables, we could take these to be the three triplet isospin states 
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described by the z- component, since the z- component of isospin is 

also exactly conserved. We summarize both identifications below. 

TABLE 3.2 

Interpretation of the lowest level 

+ or T = 1, TZ = +l 

+ or T=l, T =0 z 

- orT=l, T =-I 0 
Z 0 1 

We have already seen that, up to a permutation of rows, the 

seven vectors in the MDCS of the second level are uniquely given in 

Eq. 2.3. Looking at these we see that the last three are simply a 

repetition of the first level with zero's added in the first and last 

row, while the remaining four have one's in these two rows - and hence 

can allow the second and third row to be null, accounting for the 

fourth possibility. In line with our general attempt to relate the 

classification to the absolute conservation laws, we interpret this 

doubled discriminator as referring to the presence of a baryon - 

antibaryon pair, and the remaining two discriminators as referring to 

the charge state. Thus the interpretation as well as the notation 

map up from the lowest level. Naturally, the three states where the 

bb discriminator is null are the three charge states of the associated 

meson. The lowest mass exemplar of seven bose systems with these 

quantum numbers would therefore be 6, pn, ni;, pp, a+, IT-, ?r" . 
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When we go to the third level, again we want this interpretation 

to map-up. The richer system of quantum numbers that leads to 127 

vectors in the KDCS is now natural to interpret as coming from lepton 

number and spin. Just as the doubled discriminator was interpreted as 

representing bc, when this becomes quadrupled it is easy to assume 

that we have added a lepton- antilepton pair, and that we have at this 

level the charge and spin states of a bb fl system with associated 

mesons. This works out very neatly. We have seen that in addition to 

one quadrupled discriminator, we have to have at least two doubled 

discriminators in order to be able to construct the mapping and the 

fourth level. These are easily interpreted as the spins of the two 

particle- antiparticle pairs, which together give 16 spin states. 

If charge were treated in the same way we would get too many states, 

and they would include doubly charged states which would not map down 

to the lower levels. Thus we have the interesting asymmetry between 

the leptons and baryons at this level that while all charge states of 

the baryons are allowed, the leptons must be either ee or v<. Then we 

have 16 spin states times 4 charge states, or 64 in all. The mesons 

associated with the baryons, in terms of their lowest mass exemplars 

are the spin zero IT (3 charge states), the spin 1 p (9 states, 3 spin 

x 3 charge), and the spin 1 w. (3 spin states). Depending on whether 

the lepton pair is ee or vv the neutral vector boson associated with 

them will be either the two transverse states of the photon plus 

coulomb field in the radiation gauge, or the weak neutral vector boson 

(3 states in either case). Thus the remaining states add up to 
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3+15+ 3x15=63, which together with the 64 particle- antiparticle 

states make exactly the required 127. The ambiguity between y and W. 

in interpretation looks promising as a route toward understanding 

weak-electromagnetic unification at the fourth level, since only 

there can it be resolved. Table 3.3 summarizes our classification 

scheme for the third level. In it we use the shorthand notation of 

(0) for a null column of height n; 
n 

(l)n for a column of "1"s; (312 

for the three vectors (i) , (i) , (3 ; (4)2 when null vector is 

added to the set, and (3)4 and (4)4 for the corresponding doubled 

notation given in Table 3.1. 

TABLE 3.3 

Physical Interpretation of the Second and Third Levels 

Second Level 

bb 
Charged 
Meson 

(4+3=7= 23-1) 

Third Level 

bb& 'TT 
y, Coulomb 

P dO or Wg --- 

b! 
1 

to4 No4 UN4 UN4 
u 

'b; 

% (4)4 No4 w4 m4 

m2 

% Or (o) ON2 
\ 

w2 Ko2 
/ 

2 v 
15 

64 

(64 + 3 + 15 + 3x15 = 127 = 27-1) 

m4 

UN4 

(3)4 

m2 

m2 
- 

3 

Note that again, if we consider the zero spin state for the baryons and 

leptons, the second level recurs as a subsystem of the third level. 
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It is to be emphasized that while the doubling of some discriminators 

is a necessary requirement as discussed in the last section, the precise 

form ezn this takes has yet to be worked out in detail. Even then, 

the specific interpretation given in Table 3.2 still requires developing 

a dynamics in which the specific row assignments for certain quantum , 

numbers can be justified either by these columns occuring as decay 

products from the weak instabilities occurring at the fourth level or 

by some specific dynamical way in which we can "break-in" to the stable 

levels of the hierarchy by a single particle (or system of particles) 

not contained in the hierarchy. We show one way this might happen in 

the next section. 

Before continuing on to this dynamical analysis, however, we 

first show how the quantum number assignments given above can arise 

from putting together two columns outside the hierarchy. For the 

second level this is demonstrated in Table 3.4. 

TABLE 3.4 

Second Level of the Hierarchy as a Representation of the 

Lowest Mass States of SU2 

P y n pii pi np nn i; , G 

(;) (~)+)(gp)+(ij ($ 

( 0 0 0 11 I( 0 0 11 !( 0 0 0 i 
lr+ Ilo IT- 
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Note that the isosinglet mesonic state is missing. This state is, 

of course, very important in the nuclear force, but is due to the 

composi?e 27~ system and not to any simple structure which can be 

described at the level of abstraction we are dealing with here. 

We have noted above that the two level hierarchy,starting from 

n (-1 1 = j (1) = 3 with seven DCsS in the first level and 127 in the 

level'which cannot be mapped, is immersed in the combinatorial hierarchy 

as a subsystem. Following the line suggested by Table 3.4, we interpret 

the seven DCsS as the seven lowest mass mesonic states of SU3 with the 

n-meson excluded, and then find that we can relate these to baryon- 

antibaryon states as shown in Table 3.5. 

TABLE 3.5 

The Seven DCsS for N=3 Interpreted as the Lowest Mass Mesonic States 
of SU3 and the corresponding Baryon- Antibaryon Composition 

n P -A0 c+ co c- 
-- 
c :0 T+ ii 0 p ii 

p; pi np nn P,", 0 A,; Go Go 

Tr+ 7r” IT- (no) K+ K- KS KL 
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The fact that the no has to be missing in our notation, and hence that 

we do not have an exact representation of the SU 3 symmetry is, in our 
- 

opinion, a strength rather than a weakness. This "symmetry" is broken 

in nature, so we had best not find it precisely obeyed at the level 

where we have absolute conservation laws to maintain. 

We have found several representations of the three by three 

mapping matrices for the seven DCsS of this lowest N= 3 level. One of 

them gives at the second level vectors which always have two null rows, 

and hence can be represented by seven unit vectors, all of which are 

on an equal footing. Another representation contains one tripled 

discriminator, so leads at the second level to vectors of the form 

(1)3(7)3(7)3 l The tripled discriminator is very suggestive of three 

quark indices, while the doubling of the "7" that can represent SU 3 
is suggestive of SU2x SU3. Pursuing this idea, we see that if we can 

indeed see how to imbed this in our basic hierarchy, at the next level 

where we have 127 basis vectors of height 256, we could represent 

7x9 = 63 of them as three quarks with three colors, and in some sense 

an SU2 x SU 3 structure, and 63 more as the corresponding anti-particles. 

These would form substructures among the 2 127 -1 DCsS which should prove 

to be quite stable against a random background dynamics. But, fortun- 

ately, this gives only 126 of the 127 basis vectors, and cannot be the 

full story. This again is promising since the quark quantum number 

assignments, and corresponding symmetries are badly broken in nature, 

and must be destabilized by the weak interactions if we are to reach 

agreement with well extablished experimental facts. Thus, although a 

three-quark, three-color theory might come out of the hierarchy as an 
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approximation, we can go on with more complex DCsS to represent more 

flavors and heavy leptons. With 2127 -1 possibilities assured, we do not 

expect-the sequence of new "particles" to stop, in accord with the recent 

discoveries of "charm", the "upsilon", the "tau", and experimentalists 

suspect still more over the next horizon. 

IV. DYNAMICAL AND COSMOLOGICAL EXTENSIONS 

In going beyond a classification scheme, it is necessary to go from 

the consideration of the quantum numbers (discriminators) in a single vec- 

tor to sequential comparisons between successive pairs of vectors. To do 

this properly requires that we go behind our ideas of statistical averaging 

that enable us to make the simplification of discriminate closure, and con- 

sider detailed sequences with detailed memory (in the computer sense). 

Indeed the development of dynamics, for us, has to come from the fundamen- 

tal concept of computer memory. This work has not been done yet, and we 

have the task of inventing some suggestive short cuts. 

If, as we would like to do, we wish to view the binary comparison be- 

tween two vectors called discrimination as a primitive scattering process 

described only in terms of quantum numbers, then the requirement that 

x-l-x=0 is in apparent conflict with any attempt to interpret these quantum 

numbers as conserved. There are two ways we have considered which might 

avoid this difficulty. One is deliberately to introduce an idea of spatial 

separation, and say that the discrimination process defines'the quantum 

numbers which can remain at a (pre-spaciotemporal) locus, when two systems 

are compared at that locus. Thus, all quantum numbers which both systems ..~ 

have in common are removed and only those which differ remain. This has 

a clear interpretation as representing an 'exclusion principle". However, 

if we are also to interpret these quantum numbers as conserved, the two 
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identical sets of discriminators which disappear from the columns must 

reappear at two additional distinct loci. We can insure this possibility 

by extending the original discrimination operation to account for this 

in a simple way by defining the operator 

Tnb,y) = (x+Y&, by),, (x=y) n (4.1) 

where "m" is the usual binary multiplication (O*O=l~O=O*l=O; l-1=1> and 

the operation acts row by row as does the I'+". If the two vectors have no 

quantum numbers in common, this coincides with D ; if the two vectors are n 
the same, we end up with two identical columns at two new loci; in the gen- 

eral case we get a third and different vector as well. This approach has 

the disadvantage that we have added a new postulate to the theory in order 

to insure both conservation and the irreversible multiplication of loci as 

we consider more and more T-operations, rather than trying to derive these 

results from an interpretation of the original scheme. But it may well be 

that introducing dynamics does indeed require a new postulate. 

An alternative approach is to assume that the case x+x = 0 

represents genuine annihilation such as occurs between particle and 

antiparticle in elementary particle theory. Then a discrimination which 

leads to a null result has to be interpreted now 

as saying that one was the antiparticle of the % 
%% 

other. This then allows us to interpret our 0 +++++ ----_ / / / 
original binary discrimination graphically as a /' IO-78 

3506Al 

primitive Feynman diagram. Consider for simplic- Figure 4.1 Graphical 
representation of 

ity the graphical representation of the discrim- the lowest level. 

ination between any two systems at the lowest level given in Fig. 4.1. 

Read as a discrimination diagram, all this is intended to convey is that 
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if we discriminate between any two legs of the diagram, we get the third 

leg. To read this as an actual vertex in space time is more subtle. 

Read fFom left to right, this represents a positive and a negative system 

coming together to form an externally neutral system. Read from right to 

left, it represents an externally neutral system coming apart into a pos- 

itive and a negative system. But if, for example, we read the 11-11 leg as 

coming in and the two others as going out, the process so interpreted does 

not conserve charge. Hence, to maintain charge conservation, we assume 

(as Feynman would) that all three legs are incoming and that a particle 

moving backward in time is an antiparticle. Hence, if we keep to the D 

operation, interpreted as representing (when quantum numbers disappear) 

annihilations, we also are forced to introduce a dynamical postulate in 

order to preserve the conservation law interpretation of the discriminators. 

At present it is unclear which of these routes will be the most fruit- 

ful to pursue, or whether they may not be in some sense already included 

in the sequential constructive process from which we start. It will also 

be important to understand dynamically and not just formally the process 

by which one goes from a level of lower complexity to a level of higher 

complexity or visa versa. In spite of the vagueness of our dynamical 

ideas at this stage, we can still present a dynamical calculation here 

which is of considerable interest. It is not as yet a direct consequence 

of the combinatorial hierarchy; rather we view it as a clue as to how 

we should extend our theory dynamically. 

The calculation was originally achieved by A. F. Parker-Rhodes who 

justifies his physical interpretation of the hierarchy, and of more ex- 

tended structures, on the basis of his theory of indistinguishables 

(Parker-Rhodes 1978). Unfortunately, this theory requires considerable 
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logical development for consistent presentation since objects which can 

be counted as two when together, but which are truly indistinguishable 

when separate (called "twins"), cannot be grouped in ordered sets; they 4h 
can, however, be grouped in such a way as to define a unique cardinal for 

the group or "sort". Thus a "sort theory" dealing with this possibility 

has to be developed, based on the three parity relations "identical", 

"distinguishable", and "twins" - together with their negations. This 

requires a semantic theory, using two-valued logic, for discussion of the 

object theory, and an implication language, again using two-valued logic, 

for the statement and proof of theorems. However important the theory of 

indistinguishables may be, Parker-Phodes'ideas of interpretation are in- 

consistent with those developed in this paper, and we give his deductions 

in an amended form. We expect that before very long a consistent presen- 

tation on our own principles will have been reached, but the form we give 

below is to some extent a compromise with conventional thinking. Our 

excuse for (in a sense) premature publication is the astonishing accura- 

cy of the result. We believe that the presentation we give here is be- 

lievable in terms that are closer to ordinary quantum mechanical usage 

- once one is willing to make the conceptual leap that allows the 

discussion of quantum ideas prior to any mention of space time. 

We have seen that the three stable levels of the hierarchy can 

be viewed as systems carrying the quantum numbers of baryon- antibaryon 

pairs and lepton- antilepton pairs and the associated bosons. Since 

comparison between any two such systems leads to a third, and all 

three levels map up or down, it seems appropriate to think of the hi- 

erarchy as containing all 137 possibilities with equal a priori proba- 

bility. But to discover the actual structure, we must somehow 'break-in' 
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to this closed system, which necessarily requires a vector that is not 

one of the members of the hierarchy. The example we pick is the elec- 
-c. 

tron, which we can obtain in the notation of Table 3.3 by stripping out 

the baryon- antibaryon pair and the antilepton, leaving only the electron 

number, charge, and spin discriminators, in that notation, the vector: 

(i) Or (Y) ‘e 
= an electron (4.2) 

(O)2 ‘b;; 

1 'e ( 1 0 Cg 

In order to couple this column into the hierarchy, we have to 

introduce some new sort of vertex which does conserve quantum numbers; 

just how does not have to be specified for our current purpose. The 

only member of the 137 vectors in the hierarchy which does not change 

the electron spin or charge, or refer to irrelevant quantum numbers, 

is the coulomb case. So we assume that the electron couples to this 

with a probility of l/137. This member of the hierarchy then communi- 

cates with all the others in a random fashion, eveniually ending up 
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again with the coulomb case and back to the electron. In this respect 

we view the hierarchy as resembling something like the "vacuum fluctua- 

tions">f quantum field theory. The reason that this can lead to a 

result is that the electron cannot coincide with those members of the 

hierarchy which contain electron-positron pairs while this process is 

taking place, thanks to the exclusion principle. Thus the process 

necessarily involves some space time separation or interval between the 

electron and the hierarchy, which we will estimate statistically. Further, 

since we have no reference frame to refer this distance to, the resulting 

charge distribution relative to this space time interval must also be 

distributed statistically, subject only to charge conservation. The 

calculation we present is of the ratio of the square of this charge to 

the space time interval equated, as is often assumed, to the electron 
2 rest energy met . Schematically, the process we are computing is 

shown in Fig. 4.2. 

Our first step is to take out 

the dimensional factors and thus 

reduce the statistical part of the 

,- ~~:'"lo~~ 

calculation to dimensionless form. IO-78 5 3506A2 

The square of the charge is e2; it 
Figure 4.2 Schematic representa- 
tion of the electron self-energy. 

is smeared out into two (or more) parts over some distance r. We 

introduce a random variable x to represent the charge in one part, and 

in order to conserve charge between two parts, write the square of the 

charge as e2x (l-x). As we have already argued, the coupling we should 

use at this stage in the development of the theory is l/137, not the 

empirical value of the fine structure constant a, so e2=fic/137. 
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Because of the exclusion principle, there will be some distance of 

closest approach d, which acts as a cutoff in the distance r. 

Since &,he only stable mass other than the me we are computing is the 

proton mass m 
P' 

and proton-antiproton pairs occur in the levels of the 

hierarchy, it seems reasonable to take this shortest distance we can 

define to be the Compton wavelength of a proton-antiproton pair 

d=h/2mpc; our second random variable y is then defined by r=yd. 

Alternatively, we might assume that because of the uncertainty principle 

we cannot ascribe coulomb energy to charge separations in regions of 

linear dimension smaller than d=h{2mpc. This introduces Planck's 

constant directly into the theory as the measure of the statistical 

uncertainty that can only subsequently be reduced by successive hierarch- 

ical stabilizations. Either assumption leads to the same result 

(i.e., r=yd, ~'1) for the calculation at hand. 

The random variable x represents the charge in a system with three 

degrees of freedom smeared out statistically and interacting with the 

remaining charge l-x. If we could cut the charge into two pieces, like 

a hunk of butter, x would vary between 0 and 1. But in our interpreta- 

tion the hierarchy contains pieces with both positive charge (pE,?r 
+ f 

,P , 

. . . ) and negative charge (Fn,r-,p-, . ..) as well as neutral and inter- 

nally neutralized systems, all of which communicate with each other in 

the stabilization process. Hence, if we look at all the possibilities, 

and maintain overall charge conservation, x can have any value between 

--OD and +m . Once we have gone beyond the first separation, we have no 

way of knowing whether the coulomb energy we are evaluating is attractive 

(unlike charges) or repulsive (like charges) outside of the interval 

O<x<l. Statistically the positive and negative effects outside this 
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interval must cancel. However, since we are required to carry out this 

statistical averaging over all real values of x , we have to require the 

WeightAunction P (x (1 -x) ) to be positive over the same range, even 

though, after we have recognized the cancellation, we need norm it only 

between 0 and 1. 2 The simplest such weight function is x2 ( l-x) . 

Taking this argument from simplicity without further physical justifica- 

tion is, in our opinion, the weakest point in the calculation. 

Putting this together, we see that 

2 1 2m c 
2 <4 ><-> = 

mec = r i5 <x(1-x)> -+- .;> 

or 

mp/me = 137 IT 

<x(1- x) > <'I> 
Y (4.3) 

To calculate the expectation value of l/y we need-some probability 

weighting factor P(l/ y). We have seen above that the hierarchy has 

three distinct levels with different interpretations, each carrying 

charge, so we assume that the distribution of charge in the statistical 

system has three degrees of freedom, each of which brings in its own 

random l/ y. Thus we assume P(l/ y) = l/y l l/y *l/y and find that 

(4.4) 

Although the random variable x representing the charge can vary 

from minus infinity to plus infinity, the probability P (x(1-x)) must 

be positive. As the simplest choice we take P (x(1 -x> =x~(~-x)~. If we 



-42- 

had only one degree of freedom, the expectation value would then be 

- 1 1 

K1 
= <x(1-x)> = 

1 J 
x(1-x)P (x(1-x) > dx 

/ J P(x(l-x) )dx = & (4.5) 

0 0 

Actually, as already noted, we have three degrees of freedom coming 

from the three levels of the hierarchy. Once the distribution has 

separated into x and l-x the effective squared charge of each 

piece is x2 or (l-~)~, so we can write the recursion relation 

K = (~-x)~+K~ 1x2(l-x) 4 l2 x (1-x)2dx 
n 

0 

l2 x (l-~)~dx 

= 3-k 3 n-l 2i 
14 2K 7 n-l =14 c() 7 

i=O 

(4.6) 

Putting this back into our formula, using the three degrees of freedom 

of the hierarchy as before, we have 

mp/me = 
137 IT 

&[l+ (f)+ (+J2]+ = 1836 l 1516 

(4-7) 

as compared with the latest empirical result 1836.151525 0.00070, 

(Barash-Schmidt, 1978). 
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Clearly, in presenting our calculation in this way, we have leaped 

ahead of what we are justified in doing as an explicit dynamical calcu- 

lation.- But the calculation illustrates one way in which two algebraic 

quantities can be introduced into the theory in the form of the square 

of one divided by the other. The specific interpretation is compelling 

because of the high quality of the numerical result; the critical inte- 

ger 3 which enters both the charge distribution and the separation as 

three degrees of freedom is, we are confident, correctly identified as 

the three levels of the hierarchy. That we should be able to interpret 

this calculation within our framework is evident. This fact alone puts 

us in a strong position. 

The quality of the result makes it important to discuss corrections 

which might destroy it. To begin with, we have used the value 137 for 

l/a rather than the empirical value. As discussed above, the y-W0 

ambiguity encountered in our interpretation suggests we should strive 

for weak- electromagnetic unification at the fourth level; independent 

of that, we can anticipate corrections to l/a of order 1/2562, which 

is of the correct order of magnitude. The second correction we can 

anticipate is in the cutoff parameter d . Our first estimate is almost 

certainly approximately correct, but does not account for the fact that 

electrons in the hierarchy are sometimes present and sometimes absent. 

Hence, we can anticipate a correction to d of order me/2m . as well 
P 

as in the calculation of the correction to l/a. Thus we anticipate 

something like the empirical result for l/a and must hope that the cor- 

rection to d will almost exactly compensate for it in our formula. 

Looked at this way, the calculation can be viewed as a guide to how to 
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construct the dynamics, rather than as a prediction of our theory. 

It has already proved of great value in setting up the classification - 

scheme given in the last section. 

Since the language we use for justifying the calculation when ex- 

hibited pictorially as in Figure 4.1 makes the stable hierarchy look 

like a photon, we can try to extend this analogy. To begin with, if we 

look at coupling into the hierarchy through transverse photons, these 

will flip the spin of the electron. But again, for a specified spin of 

the electron, this can happen in only 1 of the 137 possible cases, so 

the coupling constant is the same as we used in the coulomb calculation 

(and including this in our "self-energy" calculation does not alter the 

result), which is encouraging. So consider an electron and a photon 

which exchange a "photon" so described. Making the static, non-relativ- 

istic assumption that the mass of the proton does not change with veloc- 

ity and that its motion does not effect the energy of the system, the 

additional effect we must consider is that the electron must acquire its 

own mass both before and after the exchange by the process already con- 

sidered. This leads to the diagram given in Figure 4.2. 

If the "photon" 

exchanged in the figure 

‘O-78 3506Al carries any momentum, 
Figure 4~3 Single "photon" exchange 
between electron and proton. the diagram cannot rep- 

resent the whole story, since there will also be the emission of "brem- 

strahlung" in the final state. So we consider the diagram only for the 

case when both electron and proton are at rest, but as far apart as we 

like. This is to be interpreted as an electron and proton bound in the 
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ground state of hydrogen, and contrasted with a free electron and proton 

with the coulomb effect shielded out, The second case then is the one 

already-considered except that an inert proton has been added, and the 

first can be calculated as before, provided we multiply the coupling by 

the two additional powers of a shown in Fig. 4.2; the statistical cal- 

culation remains unaltered. We conclude that the binding energy of the 

ground state of hydrogen is given by a2mec2 = mee4 /h2 which is indeed 

the correct result, in the static case. To obtain the center of mass 

correction we must allow for the motion of the proton, which takes more 

dynamics than we have developed. Further, to get the excited states, 

we must be able to describe unstable systems which decay via photon 

emission, for which we are as yet unready. 

We already have seen that in going beyond the three stable levels 

of the combinatorial base hierarchy, we encounter 2 127 -1 biscriminately 

closed subsets in addition to the 137 already discussed. Thus the com- 

plete scheme containsml038 discriminable entities. Just as we interpret 

l/137 as an approximation to a, we interpret 10 -38 as an estimate of the 

gravitational coupling constant between two protons - protons rather than 

electrons, since we have already accounted for the rest mass of the 

electron in terms of this unit. At this point a more conventional argu- 

ment, adapted from a remark of Dyson's (1952) becomes relevant. If we 

try to count N e charged particle- antiparticle pairs within a volume 

whose radius is their compton wavelength, their electrostatic energy is 

Ne e2/6/2mc) = Ne (e2/i%) 2 mc2 (4.8) 

We interpret this result as saying that if we try to determine the number 
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Ne for a system with more than 137 pairs by electromagnetic means, we are 

unable to do so because the energy has become so large that additional 

pairs cold be present, and the counting breaks down. Hence, Ne = 137 

is the maximum meaningful number of charged particle pairs we can dis- 

cuss electromagnetically in such a volume. 

Extending the argument to gravitation, we see that, since 

NG G mp2 /(h/mpc) = NG (G mp2/hc) mpc2 (4.9) 

the maximum number of gravitating protons we can discuss within the 

compton wavelength of any one of them is NG Z 10 38 . In this case, the 

gravitational field at the surface is so intense that light cannot 

escape, so this system forms a Laplacian "black hole" (Laplace, 1795). 

Hence, just as failure of the "fourth level" of the hierarchy to posses 

linearly independent mappings gives us an estimate of instability to 

weak decay, the upper limit 2 127-l z 1038 represents a gravitational 

instability for systems with large numbers of particles. 

Since we have -10 38 discriminate entities in the scheme, we are 

logically justified in starting our discussion with the (10 38 2 ) possi- 

ble discriminations between them. For stability, these systems should 

contain lepton number and baryon number (1038)2 , although we cannot 

as yet prove such a conjecture. Given it, the initial discriminations 

will create all sorts of ephemeral forms of the type already discussed, 

and a historical system of loci that provides an initial space time mesh. 

Once the decays and scattering have proceeded a while, these will settle 

down to protons, electrons, photons, hydrogen atoms,... and we have 

started the "big bang". The radiation soon breaks away from the matter, 



I 
-47- 

and provides a unique space time framework, locally defined in terms 

of the cosmic background radiation. Since this "black body spectrum" 

can be measured locally, it provides us both a cosmic time scale from 

the temperature, and an absolute frame for measuring particle velocities. 

Our hope is that we can use this idea to define space time frameworks 

more easily connected to laboratory observation than abstract defini- 

tions. In particular, since our W boson-photon coupling is discrete, 

and defined at proto- spacetime loci, we should be able to use our 

dynamic scheme to explain what we mean by a local discrete coordinate 

system for physical measurement. Only when this task is complete can 

we tackle the question of what we might mean by a "wave function", and 

how we are to relate our particular formalism to the successful results 

obtained by conventional quantum mechanics. 

v. CONCLUSION 

In this paper we have sketched a physical interpretation of the 

combinatorial hierarchy which, if the program can be carried through, 

should provide a finitist conceptual frame for that fundamental revision 

of physics which we seek. Our philosophical reasons for adapting this 

approach are discussed in detail in the opening section. Here we stress 

that the contact with experiment already established in this paper, to- 

gether with the indications of structural contact with the classifica- 

tion schemes used in elementary particle physics, and conceptual con- 

tact with the fundamental ideas underlying current cosmology, make it 

clear that no field of physics need be omitted in this synthesis. The 

original coincidence between the cardinals of the hierarchy and the 
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inverse boson field coupling constants allow us to believe that we 

have indeed unified strong, electromagnetic and gravitational phenomena 

in onerramework. The weak decay instability is also indicated. Our 

proposed classification scheme brings in the absolute conservation laws 

at the correct level, and points toward a weak-electromagnetic 

unification at the next level. Structural contact exists between 

5 SU3 and SU6 (quark) classifications, including an approximate 

three color-three flavor option flexible enough to allow for new 

flavors and new heavy leptons. The cosmology should yield the conserved 

quantum embers of the universe, some sort of "big bang" and hence the 

cosmic background radiation as a unique reference system. Since this 

background is not time reversal invariant, it might even lead ultimately 

to the explanation of the KL- KS decay. So far as we see, no major 

area of physics has been omitted as potentially outside the reach of a 

scheme of this structure. 
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