
SLAC-PUB-2213 
LBL-8265 
October 1978 
CT) 

SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY 

*+ 
Tohru Eguchi 

Stanford Linear Accelerator Center,, Stanford University 
Stanford, California 94305 

and 
** 

Andrew J. Hanson 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

ABSTRACT 

Recent work on Euclidean self-dual gravitational fields is 

reviewed. We discuss various solutions to the Einstein equations and 

treat asymptotically locally Euclidean self-dual metrics in detail. 

These latter solutions have vanishing classical action and nontrivial 

topological invariants, and so may play a role in quantum gravity 

resembling that of the Yang-Mills instantons. 

(Sub. to Annals of Physics) 

Jc Research supported in part by the Department of Energy under 
contract number EY-76-C-03-0515. 

** Research supported in part by the High Energy Physics Division 
of the United States Department of Energy. 

t Present address: Enrico Fermi Institute, University of Chicago, 
Chicago, Illinois 60637. 



-2- 

1. INTRODUCTION 

The discovery of self-dual instanton solutions in Euclidean 

Yang-Mills theory [l] has recently stimulated a great deal of 

interest in self-dual solutions to Einstein's theory of gravitation. 

One would expect that the relevant instanton-like metrics would be 

those whose gravitational fields are self-dual, localized in Euclidean 

spacetime and free of singularities. In fact, solutions have been 

found which have the additional interesting property that the metric 

approaches a flat metric at infinity. These solutions are called 

"asymptotically locally Euclidean" metrics because, in spiteof their 

asymptotically flat local character, their global topology at infinity 

differs from that of ordinary Euclidean space. Since the Yang-Mills 

instanton potential approaches a pure gauge at infinity, this class 

of Einstein solutions closely resembles the Yang-Mills case. 

The first examples of asymptotically locally Euclidean metrics 

were the self-dual solutions given by the authors in ref. 121. 

Belinskii, Gibbons, Page and Pope [3] then studied the general class 

of self-dual Euclidean Bianchi type IX metrics and showed that only 

metric II of ref. [2] could describe a nonsingular manifold. Gibbons 

and Hawking [ 41 have now exhibited an entire series of such metrics. 

In fact, V-cry general classes of manifolds which could admit self- 

dual asymptotically locally Euclidean metrics have recently been 

identified by Hitchin [ 51 . 

Asymptotically locally Euclidean self-dual metrics have a 

number of special properties. For one thing, they have zero action 

and so must be quite important in the path integral. Secondly, since 
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the metrics become flat and the gravitational interactions are 

switched off at infinity, standard asymptotic-state methods can be 

applied to analyze the quantum effects of such metrics. 

For completeness, let us summarize various stages of the search 

for gravitational instantons which took place before the discovery of 

asymptotically locally Euclidean metrics. The first step was the 

identification of the Euler characteristic and Hirzebruch signature 

of a manifold as the appropriate gravitational analogs of the Yang- 

iWills topological invariants [ 61 171. A number of standard Riemannian 

manifolds were of course considered as logical candidates for 

gravitational instantons. The most remarkable of these, the K3 

surface, is the only compact regular four-dimensional manifold without 

boundary which admits a metric with self-dual curvature [ 81 ; this 

metric would therefore satisfy Einstein's equations Gth vanishing 

cosmological constant. Unfortunately, the explicit form of the K3 

metric has so far eluded discovery. 

The first known metrics which come to mind are the standard 

solutions of black hole physics. While all black hole solutions 

arise in Minkowski spacetime, $hey can be continued also to the 

Euclidean regime to produce positive-definite singularity-free 

metrics 191 [ 101. These continued metrics are periodic in the new 

time variable, which is associated with the thermodynamic temperature, 

and decay only in the three spatial directions. One example of such 

a metric is the self-dual Euclidean Taub-NUT solution examined by 

Hawking [lo]. In this case Einstein's equations are satisfied with 

zero cosmological constant, and the manifold is 0X4 with a boundary 
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which is a twisted three-sphere S5 possessing a distorted 

metric. The metric is not asymptotically flat because it does not 
4 

fall off in all four asymptotic spacetime directions. 

Another interesting case is the Fubini-Study metric on P2(@), 

two-dimensional complex projective space, studied by Eguchi and 

Freund[71[2C,!..This manifold is compact without boundary and has 

constant scalar curvature. The metric has self-dual Weyl tensor 

rather than self-dual curvature, and so solves Einstein's equations 

with nonzero cosmological term. One drawback is that P,(a) does not 

admit well-defined Dirac spinors. Nevertheless, one can constructa 

more general type of acceptable spin structure on P,(G) by adding 

a Maxwell field to the theory [ll] . 

All of the metrics just described are in some sense self-dual, 

are regular and have finite action, but are not asymptotically flat. 

The gravitational fieldsof such metrics persist throughout spacetime 

and make it difficult to define the asymptotic plane-wave states 

necessary for ordinary scattering theory. Although these metrics are 

very interesting, they do not quite coincide with our intuitive 

picture of instantons as localized excitations in Euclidean spacetime 

which approach the vacuum 

locally Euclidean metrics 

gravitational instantons. 

at infinity. In contrast, the asymptotically 

seem to be very naturally identifiable as 

The remainder of the paper is organized as follows: Section 

II contains a complete explanation of the derivation of the regular 

asymptotically flat self-dual solution presented in ref. [2]. 
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In Section III, we examine the properties of various other metrics 

which have instanton-like properties. Section IV is devoted to 

self-dual multicenter metrics and Section V contains concluding 

remarks. 
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11. AN ASYMPTOTICALLY FLAT SELF-DUAL 

SOLUTION OF EUCLIDEAN GRAVITY 

We now derive the simplest regular asymptotically flat self- 

dual solution of Euclidean gravity, which was labeled as metric II in 

ref. [2]. Let us begin by reviewing a procedure by which one can 

solve the Yang-Mills equations to obtain the instanton solution [l] 

and noting possible gravitational parallels. To obtain the 

instanton, we do the following: 

(1) Observe that the Yang-Mills equations 

3F 
1-1 w + lA,&Vl = 0, 

where F =aA 
P I-iv - a,& + ~Av,Avl , are solved at once 

due to the Bianchi identities if . 

(2) Choose the Ansatz 

A 
1-I 

for the SU(2) gauge potential, where r2 = t2 + z2, 

g = (t - i': l ;)/r, and {T] are the Pauli matrices. 

(3) Solve the first-order differential equation 

P’(r) +$0-l) = 0 

obtained by setting F -3 
l.lv j-2 we find 

P = r2/(r2 + a2) . 



In this way, we find a Euclidean SU(2) Yang-Mills solution with 

finite action, self-dual F 
PJ 

localized at r = 0 and falling like 

l/r4 at infinity, and A 
?J 

asymptotically a pure gauge at infinity. 

We wish to find a Euclidean gravity solution with finite 

action, self-dual curvature localized inside the manifold and falling 

rapidly at infinity, and with the metric asymptotically locally 

Euclidean at infinity. We might therefore search for such a solution 

by undertaking the following gravitationalanalogsof the Yang-Mills 

procedure: 

(1) Observe that if the spin connection l-form tiab is 

self-dual (i. e., the curvature 

2-form Rab is self-dual, so Einstein's equations are 

satisfied at once due to the cyclic identities. 

(2) Choose an Ansatz for guv(x) which'differs from a flat 

Euclidean metric by functions of r2 = t2 + "2 alone. 

(3) Solve the first-order differential equations in the 

metric obtained by requiring wab to be self-dual. 

A. Preliminaries. 

First we establish some useful notation and explain more fully 

the essential concepts appearing in the procedure just outlined. We 

let the four Euclidean coordinates be 
x1-l 

= (t,x,y,z) so that the 

flat metric is given by 

ds2 = dt2 + dx2 + dy2 
2 +dz e (2.1) 
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We next change to four-dimensional polar coordinates with r2 = 

t2 + x2 + y2 + z2 and define 
4 

0 = X $ (xdt - tdx + ydz - zdy) = $- (sin $de - sin 0 cos $d@) 

cl = 
Y $ (ydt -tdy+ zdx- xdz) = -cos @de - sin 0 sin $d!$) 

Cl = Z 
1 (zdt - tdz + xdy - ydx) = $- (d$ + cos ed@). 
r2 

(2.2) 

The variables 8, $I, $ are Euler angles on the three-sphere S5 

with ranges 

O<ti(4T 
-  

(2.3) 

and are related to the Cartesian coordinates by 

x+iy = 0 * r cos - ex-p 2 3 (VJ + $1 

z+it = 8 * rsin- exp 2 3 NJ - $1. 

(2.4) 

The differential l-forms (2.2) are closely related to the Cartan- 

NIaurer forms for SU(2) and obey the following structure equations 

under exterior differentiation: 

d”X = 2oyA oz, cyclic. (2.5) 
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The flat metric can now be written in polar coordinates as 

ds2 = dr2 + r2(o2x + 2 +&. 
Y Z 

Next we write an arbitrary metric in terms of the local 

orthonormal vierbein frame 

ds2 = dx' gUv(x)dxV = (2.7) 
a=0 

where e a- = eaudxli. The spin connection uab is then a one-form 

determined uniquely by the structure equations [121 

dea + wab h eb = 0 

b wab = -w a = oablidxFi. (2.8) 

Greek indices are raised and lowered with gPv; while Latin indices 

are raised and lowered by the flat metric 6 ab. Vierbeins and inverse 

vierbeins interconvert Latin and Greek indices. 

The curvature is now defined as the two-form 

Rab = dtiab + tiac ,, web 
where 

(2.9) 

Rab = ; RabPv dx' c\ dxv = $ Rabcd ec A ed. 

By exterior differentiation of (2.8), we find the cyclic identity, 

b Rab h e = 0 -f ~~~~~ Rabcd = 0. 
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We now define the "dual" of the two-form Rab in its free indices as 

3 = 1 c 
b ?%5bcdR d" 

Then it is easy to show that Einstein's equations 

R ac 
bc = % 

jvea v 
v ueb = 0, 

where 1-I 
F V 

is the Ricci tensor, are equivalent to 

TlabAeb = 0. 

(2.11) 

(2.12a) 

(2.12b) 

(Cne must take appropriate sums and differences of various components 

to prove the equivalence.) Therefore if Rab is (anti) self-dual, 

a Rb = 2' b, IP (2.13) 

the cyclic identity (2.10) implies that the Einstein equations 

(2.12) are satisfied. This is the analog for gravitation of the fact 

that self-dual Yang-Mills fields automatically satisfy the equations 

of motion. However, Eq. (2.13) is still a second-order differential 

equation in the vierbeins e ",(x). It is remarkable that we can 

now go one step further and deduce the Einstein equations from 

a first-order differential equation in the fundamental variables, just 

as in the Yang-Mills case. We simply observe that Eq. (2.9) can be 

written 
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R23 = &)2 3 + w20 A wo3 + w21 h al3 , cyclic, 

R0 1 = d,O, + wo2 A w21 + uo3 A w31 , cyclic. 

(2J4) 

Thus if 

0 /J =+ 
i L 2 ijk J k 

(2.15) 

is obeyed, then Eq. (2.13) is immediately satisfied. Defining 

%a 1 c 
w b = 2 'abcdU d' 

we see that the first-order condition on e 
a 

1-I' 

(2.16) 

a %a 
'b = +WbJ (2.17) 

is a sufficient condition for the self-duality of RabJ and hence 

for solving the Einstein equations. 

In fact, Eq. (2.17) is also necessary for a self-dual Rab 

in the following sense: if Eq. (2.13) is satisfied, one can always 

transform Wab by an 0( 4) gauge transformation into the form 

(2.17). To see this, we examine the change in uab when the ortho- 

normal frame specified by ea is rotated by an x-dependent orthogonal 

transformation nab(x): 

Ia e = (AB1)ab eb. (2.18) 
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A simple calculation using the structure equation (2.8) shows that 

the form of the structure equation is preserved if we identify the 

new spin connection as 

'a 
w b = (f+)acwcd Adb + (A-1)a, d Acb. (2.19) 

Thus wab transforms exactly like an O(4) Yang-Mills gauge potential. 

Furthermore, the curvature behaves as 

(2.20) 

The conclusion of our argument is as follows: Suppose Rab 

is self-dual, but wa b is not. Then split wab into self-dual 

and anti-self-dual parts; one can explicitly construct a Aa b which 

will gauge transform away the anti-self-dual3art. Since self-duality 

of Ra b is preserved under the orthogonal transformation (2.20), 

we find that any self-dual curvature comes from a self-dual 

connection if a "self-dual gauge" is chosen. 

In Table 1, we present a summary of these results and compare 

them with the analogous properties of Yang-Xlls theories in differen- 

tial-form notation. The point is that although the Euler equations 

of the Einstein and Yang-Mills theories are quite different, they 

both are automatically solved when the spin connections or field 

strengths obey the appropriate self-duality conditions. In gravity, 

the self-duality condition (2.17) is a first-order differential 

equation in the vierbein e a,(d, w i h 1 e in Yang-Mills the self-duality 
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condition F = f % 
PV ?JV 

is first-order in the potentials A;(x). 

We remark that the difference between Yang-Mills theory and Einstein's 

theory in the orthonormal frame basis is that the gravity O(4) con- 

nections a w b follow from the metric and thus guarantee that Rab 

obeys the cyclic identity. No such additional restriction occurs in 

general in an O(4) Yang-fills theory since the group indices and 

the spacetime indices are uncorrelated. 

B. The Metric Ansatz 

We now continue to follow the pattern observed in Yang-Mills 

theories by choosing a metric Ansatz differing from the flat metric 

by functions of the radius alone. We choose to examine the axially 

symmetric Ansatz 

ds2 = f2(r)dr2 + r2(o 2 + o X y2 + g2(r)oz2). (2.21) 

(This was Ansatz II of ref. [2] .) More general Ansgtze will be 

examined in the next Section. 

If we decompose the 

basis 

a e = (f(r)dr, axJ 

we find that the structure 

metric (2.21) into the orthonormal vierbein 

3x3 J Y wdd~,L (2.22) 

equations (2.8) give the spin connections 
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w3o = [& + &] e3 
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a2 = 5 e1 
3 r 

w31 = $j. e2 

al2 = 2 - g2 e3. (2.23) 
rg 

With our choice of orientation, we are led to impose anti-self-duality 

on the wa b' leading to the differential equations 

fg =l 

1 
g + rg = f(2 - g2)* 

These equations are integrable, with the result 

g2(d = fm2(r) = 1 - (a/r)4, 

(2.24) 

(2.25) 

where a is the integration constant. - 

Hence we find a new metric ]2] 

ds2 = [l - (a/r)']-1 dr2 + r2(o 2 + CT 2 + r2[1 - (a/r)4]o 2 X Y) Z 

(2.26) 

which satisfies the Euclidean empty space Einstein equations. The 

spin connections are 
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J 0 = W23 = [ 1 - ( a/r)4]% x 
= [ 1 - ( a/r )4]1e1/r 

Jo = u31 = [l - (a/r)']'oy = [l - (a/r)'lie2/r (2.27) 

.3 
0 

= WI 
2 = [l + (a/r)4]oz = [l + (a/r)41e3/(r[l - (a/r)41') . 

We easily compute the curvature components to be 

RI- 
4 

0 
= R2 

3 
= -2a_ ( e1Ae0+e2^e3) 

r6 

R20 
4 = R31 = -i?&!g ( e2Ae0+e3he1) 

r 

R3 = R1 = 
0 2 

+$ ( e3Ae0+e1^e2). 
r 

(2.28) 

It is straightforward to construct also a combined solution 

of the Maxwell-Einstein equations in the presence of the metric 

(2.26). Choosing the potential 

A = 1. 
2 z 

(2.29) 

one finds the field strength 

F = a = 3 (e3 A e” + e’ A e2). (2.30) 

Since F is anti-self-dual, it is harmonic and has vanishing 

(Euclidean) energy-momentum tensor, Thus Einstein's equations retain 

their empty-space form and the Maxwell-Einstein equations are 
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automatically satisfied. As we will demonstrate shortly, the 

coordinate system "origin" occurs at r=a and the manifold is 

regular there, so F is regular and finite everywhere. (The 

other two anti-self-dual Maxwell fields that naturally present them- 

selves, with A 1 = r20x/(r4 - a4) and A2 = r20y/(r4 - a4), 

are Fl 
= 2(r4 - a4)-'(e1 n e" + e2 A e3) and F = 2 

2( r4 _ aL')-' 

(e2 A e" + e3 h e') and are thus singular. > Suggestively, the 

l/r4 asymptotic behavior of the Maxwell field (2.30) is the same -- 

as that of the Yang-Mills instanton. 

c J. Properties of the Manifold -- 

We now need to determine whether there are any true singular- 

ities in the new metric (2.26) and whether it describes a geodesically 

complete manifold [3]. We begin by writing the metric in several 

alternative forms. First, let 

p4 = r4 _ a4- , (2.31) 

then 

ds2 = [l+(a/p)4]w4 dp2 { 
2 2 +Pa Z 

+ El + (a/p)41'{p20x2 +Po 2 ,"} . (2.32) 

These coordinates are well-adapted to converting the metric into 

complex form using 

z1 = x + iy "2 = z + it 

A L p = zlzl + z2i2 . 
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One then finds two equivalent ways of writing the metric in terms of 

a Kahler form 151 [131 on CC2 - (01: 
4\ 

1) K = P2 
+ a4l p ( dzp$ + dzp*) + I p4 

a4 

[ P4 
1 a;ib(p”) 

+ a4]’ 

(2.33a) 

2) K = aa Rn c$, $I = P2 exp [ P4 + a4]’ 

a2 + IP4 
1 

+ a4]H * 
(2.33b) 

The aa Rn p2 term in these forms causes problems at P = 0 (i. e. 

at r = a). However, this apparent singularity can be removed if 

one identifies opposite points of the manifold, 

or (2.34) 

'xv' 'L (-x,). 

We next give a more elementary explanation of this fact. 

First, let us change radial variables once again by defining 

(zp,)’ ‘L (-zp,) - 

u2 = r211 - (a/r)4]. (2.35) 

Then the metric can be written 

dS2 = du2/[l + (a/r)4]2 + u20z2 +r2(o +cs 2 2 
Y) 

. 
X 

(2.36) 
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Very near to the apparent singularity at r = a, or, equivalently, 

.- u = 0, we have 

ds2 = ; du2 + T ' u2(dJ, + cos ed$)2 + t2(de2 + sin28d$2)m 

(2.37) 

For fixed 8 and $, we obtain 

ds2 = $du2 + u2d$2). (2.3g) 

A short exercise tells us whether or not the singularity at 

u=o is real or is a removable polar coordinate singularity. We 

simply note that the apparent r = 0 singularity in the B' metric 

ds2 = dx2 + dy2 = dr2 + r2dQ2 

is removable provided that - 

0 < Q < 27r. 

We therefore conclude 

Eq. (2.5) is changed 

0 < * < 27r, 

that if the range 0 < $ < 4~r given by 

to 

(2.39) 

(2.40) 

(2.41) 

we can remove the apparent singularity at r=a and obtain a geo- 

desically complete manifold. 

The global topology of our manifold is now the following: 

Near r = a, the manifold has the topology p2 x S2 indicated by 
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Equation (2.3'7). To be precise, at each point of the two-sphere 

parametrized by ( e,$), there is attached an JR2 which shrinks 

to a point as r +a (u -t 0). The manifold is thus homotopic to S2 

and has the same Euler characteristic as S2, x = 2. 

For large r., the metric approaches a flat metric. However, 

because of the altered range (2.41) of 9, the constant-r hyper- 

surfaces are not three-spheres, but three-spheres with opposite 

points identified, The boundary as r 

manifold of SO( 3) = P,(a), for which 

covering. This is an explicit example 

-f 00 is thus the familiar group 

S3 = SU(2) is the double 

of a metric whose topology 

is asymptotically locally Euclidean (P$R) = S3/Z2), but not 

globally Euclidean (i. e. not S3). 

It can be shown [5] that the entire manifold M we have 

just described is in fact the cotangent bundle of the complex plane, 

P,(C) = s2, and so we may write 

M = T*(Pl(C)) 

aiu = Pi . 
(2.42) 

In Figure 1, we present a description of the topology of the 

manifold which we have deduced from the metric (2.26) and the 

regularity requirements. 
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D. Action and Topological Invariants 

.- 

4 Using the connections and curvatures (2.27) and (2.28) for 

the metric (2.26) with the $-range (2.41), we now calculate the 

various integrals characterizing the solution. Since our manifold has 

a non-empty boundary surface, we will repeatedly need the second 

fundamental form, 

cab = wab - (“o)a,, (2.43) 

to compute boundary corrections. If we choose the radial direction 

as the direction everywhere normal to the boundary, (w~)"~ is 

the connection of the product metric for fixed ro, 

ds2 = [1 - (a/r 0 141m1 dr2 + r '(0 2 + o 2 + [l _ (a/r,)4]o 
ox y 

3. 
Z 

(2.44) 

Since our scalar curvature is identically zero, the entire 
. 

action comes from the surface term [9]. Defining Klj by [ 131 
eo *- 

i = -KljeJ, we calculate the surface action at large r to be 

1 
-5 J Kii dx = i [3r2 - ?- - 3r2(l - (a/r)4)'] 

aM(d 
4 

4 
-Q* (2.45) 

Since the surface term falls like l/r2 as r -f ~0, we find 

vanishing action for the metric (2.26), 

S[ .!?I = 0. (2.46) 
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We have already stated the topological arguments giving our 

manifold the same Euler characteristic, x=2, as S2. 

We confirm this fact using Chern's formula [141[151 

a E abcdR b "Red - / Eabcd(2eab A Red 

aM( c0 ) 

3 
ZZ 

z 
- (-$) = 2. (2.47) 

Had we allowed $ to range over all of S3 instead of P3(lR), 

we would have found twice this answer, X = 4. The apparent 

disagreement between the topology and the Chern-Gauss-Bonnet theorem 

for the wrong 11 range shows that for 0 < $ < 4T, the manifold 

would have "cone-tip" singularities at r = a; this implies the _ 

necessity of cone-tip corrections (such as effective delta-functions 

in the curvature at r = a) in order to adjust the Euler character- 

istic to its correct topological value. This does not seem to be a 

very satisfactory physical situation, so that the proper range of 

$ must indeed be 0 < $J < 27~. 

To compute the signature T of our manifold M, we first com- 

pute the integral of the first Pontrjagin class, 

P,[M] = J p1 = -+ J Tr(R A R) 

M " M (2.48) 

= -3. 
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The Chern-Simons boundary correction [16] vanishes, 

- Q,[aM] = 1 
8n2 

Tr(0' A R) = 0. (2.49) 

aiv 

The signature q-invariant q, for the canonical metric on P3(/R) 

has been computed by Atiyah, Patodi and Singer 1171 to vanish also: 

qs(P3(/R)) = $ cot2 ( 3) = 0. (2.50) 

Thus the signature of M is 

-c[M] = +(P,-Q&n, = -1. (2.51) 

Ey the Atiyah-Patodi-Singer extension [17] of the Hirzebruch signature 

theorem, there is exactly one anti-self-dual harmonic 2-form with 

the appropriate boundary conditions. 

The index I, of the spin f Dirac operator in the 
2 

presence of the metric (2.26) is given by [17] [15]. , 

I, = 
2 -$-(P1[ti - Q,[aid) - +(v, + h$. 2 

(2.52) 

Atiyah [18] has extended the computation of ref. ]17] to the Dirac 

case, with the result 

h, = 0. 
z 

(2.53) 
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Thus 

I ZZ 
3 

_ $ (-3-o), -i(i) = 0 ' (2.54) 

and there is no asymmetry between the right and left chirality 

zero-frequency modes of the Dirac operator. 

For the spin j/2 Rarita-Schwinger operator, the index is 

given by 

‘3/z = $$ (Pl[MI -Q,[aMI > - $(n3/2 + h3/2) > 

(2.55) 

where we have corrected the result of ref. 1191 to include 

boundary terms in the obvious way. Hanson and Rgmer [ 201 have 

calculated the expression involving the Atiyah-Patodi-Singer 

n-invariant with the result 

‘3/2 
+ h3,2 = - $ . 

There are thus two excess negative chirality spin 3/2 fields 

obeying the Atiyah-Patodi-Singer boundary conditions, 

*3/z = s (-3-o) +2, = 4. (2.57) 

This is in agreement with the explicit construction of Hawking 

and Pope 1211, who build two spin 3/2 wave functions out of two 

covariant constant spinors and the single anti-self-dual Maxwell 
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field whose existence is required by Eq. (2.51) for the signature. 

The indicated spin j/2 solutions may in fact follow directly from 

an appropriate supersymmetry transformation. 

While the spin 2 index characterizing the number of anti- 

self-dual perturbations about the metric (2.26) has not been 

calculated at this time, there is at least one zero-frequency mode, 

corresponding toadilatation,which is not a gauge transformation [22]. 
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111. PROPERTIES OF MORE GENERAL METRICS 

A. General Bianchi IX Ansatz 

One might naturally ask what happens if the Ansatz (2.21) is 

replaced by the most general Ansatz giving a Bianchi IX metric I 31 , 

ds2 = f2(r)dr2 + a2(r)ox2 + b2(r)oy2 + c2(r)oz2* 

(3.1) 

For the case 

a(r) = b(r) = c(r), (3.2) 

we find that self-duality implies a vanishing curvature and hence 

a flat metric. The case 

a(r) = b(r) = 1, c(r) = g(r) (3.3) 

was our choice II of ref. [21, which we studied in the previous 

section; the choice 

4 d = b(r) E g(r) , 4 d =l (3.4) 

was case I of ref. [21. While self-dual solutions of (3.3) 

describe the regular manifold of Fig. 1, the self-dual solutions 

of (3.4) in fact have a singularity at finite proper distance and 

are therefore unacceptable. 



A general solution of the self-duality equations for the 

Ansatz (3.1) has been given by Belinskii, Gibbons, Page and Pope 
- 

131 * They find 

f2W = F-'(r) = r6a-"(r)be2(r)cB2(r) 

a2(d = r2Fg(r)/(l - (al/r)4) 

(3.5) 

b2(d = r2Ff(r)/(l - (a2/r)4) 

c2W = r2FS.(r)/(l - (a,/r)') 

where 

-26- 

F(r) = (1 - (al/r)4)(l - (a,/r)4)(1 - (a3/r-j4) (3.6) 

a.&. y-2Ja3 are constants. They find (see also ref. f 131 ) that 

for general parameters ai, these metrics all'have singularities at 

finite proper distance and so describe physically unacceptable 

manifolds, Only the particular degenerate case (3.3) described 

in Section II allows a mechanism for "shielding" the naked singu- 

larity inside the S2 at r = a so that geodesics cannot get 

to it. (Th' 1s is of course analogous to what happens in the 

Euclidean continuation of the Schwarzschild and Taub-NUT metrics.) 

B. Nuts and Bolts 

Given a metric, one of the most important things one must 

know is whether or not its apparent singularities are removable. 

The two known types of removable singularities have been christened 
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"nuts " and "bolts" by Gibbons and Hawking [231 . A "nut" is a 

four-dimensional )R4 polar coordinate singularity in a metric which 

is flat at the origin, like the self-dual Euclidean Taub-NW metric. 

A "bolt" is a two-dimensional JR2 polar coordinate singularity in 

a metric looking like jR2 X S2 near the origin, like (2.26). Nuts 

carry one unit of Euler characteristic, while bolts carry two 

units. 

A precise formulation of the concepts of nuts and bolts is as 

follows [131 [ 231 : C onsider the metric 

ds2 = dT2 + a2(T)ox2 + b2(-r)o 2 + c2(~)oz2 , Y (3.5) 

where a variable change has been made on (3.1) to convert the 

coordinate radius r into the proper distance (or proper time) '1. 

In general, one would require that a,b,c be finite and nonsingular 

for finite 'I to get a regular manifold. (For infinite rc, this 

restriction can be relaxed if the manifold has a suitable boundary at 

'I = a.) However, the manifold can be regular even in the presence 

of apparent singularities. 

Let us for simplicity consider singularities occurring at 

T = 0. A metric has a removable nut singularity provided that 

near T = 0, a2 = b2 = c2 2 =+r. (3.6) 

In this case at T = 0 we have simply a coordinate singularity in 

the flat polar coordinate system on an iR4 centered at T = 0. The 

singularity is removed by changing to a local Cartesian coordinate 
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system near 'r = 0 and adding the point T = 0 to the manifold. 

Near ~=0, the manifold is topologically TR4. 

A metric has a removable bolt singularity if 

a2 = b2 = finite 
near T = 0, (3.7) 

c2 > n = integer. 

Here a2 = b2 multiplies the canonical S2 metric $ (de2 + sin2Bd$2), 

while at constant (f3,@), the (d-r2 + c2(1)o z2) P iece of (3.5) looks 

like 

dT 2 + n2-c2$ d$2 , (3.8) 

Provided the range of n Q/2 is adjusted to 0 -+ 2~, the apparent 

singularity at T = 0 is nothing but a coordinate singularity in 

the flat polar coordinate system on B2. Again, this singularity can 

be removed by using Cartesian coordinates. The topology of the mani- 
c 

fold is locally E2 x SL with the BL shrinking to a point on S2 

as -c + 0. 

C. The Fundamental Triplet of Self-Dual Metrics 

The prototype of a metric with a single bolt is the metric 

(2.26) introduced in ref. [2]. The removal of this singularity 

was discussed in detail in Section II. The prototype of a metric 

with a single nut is the self-dual Euclidean Taub-NUT metric [XC] 

ds2 = lr+m 
~i;r-m dr2 + $ (r2 - m2)(dB2 + sin20d$2) 

+ m2 $+ (d+ + cos ed@f 
(3.9) 
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To remove the apparent singularity at r = m, we first change to the 

proper distance coordinate 

(.3.N 

and consider only the region r = m + a, E << m. Then 

(3.11) 

The metric near E = 0 is thus 

ds2 x dr2 + $ T2(de2 + sin2 8 d$2) + L T2(d$ + cos 8 d$)2 
4 

(3.12) 

and the condition (3.7) for a nut is met. 

Both the bolt metric (2.26) and the nut metric (3.9) are 

noncompact with boundary at 00. A very instructive compact case 

is the Fubini-Study metric on p,w, which has both a nut and a 

bolt. To see this, we first write the P,(G) metric in the form 

[ 241 

dr2 + r20 2 r2(ox2 + 2 

ds2 = 
0 

Z + Y) 
(1 + Ar2/6)2 1 + Ar2/6 . (3.13) 

Here Ais the cosmologicalconstantinEinstein's equationsfor this metric. 

As r-+0, we recover the flat metric and thus learn that r = 0 is 

a removable nut singularity. The other interesting region is r = ~0, 

which we examine by changing variables to 
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1 u = yJ 

so that 

(3.14) 

ds2 = (u2 + A/6)-2(du2 + i u2(d$ + cos ed@)2) 

+$&” + sin28 d$2)/(u2 + A/6) . (3.15) 

As u -+ 0 (or r + m), the coefficient of (d9 2 + sin2Bdtp2) 

stays finite while that of (d$ + cos 8 a$);! vanishes, so the bolt 

criterion (3.7) is satisfied. At fixed (e,@), 

ds2 = (A,'6)-;?(du2 + $ u2 dQ2). 

Thus the singularity at u = 0 is removable if 

0 < ql< 4lT, 

we have for u -t 0 

(3.16) 

(3.17) 

and the constant-r manifolds in the P,(G) metric are complete 

S3%, unlike those of the metric (2.26), which had P3(jR)'s. 

Modulo this difference, we are now led to group together the 

p,(a) metric (3.13) or (3.15), the Taub-NUT metric (3.9) and our 

"bolt," metric (2.26) as a "fundamental triplet." We note that 

both (3.9) and (2.26) have self-dual Riemann curvature tensors and 

so satisfy Einstein's equations without a cosmological constant. The 

P,(g) metric, in contrast, has a self-dualWey1 tensor I .-- which is 

as close as one can get to having self-dual Riemann tensor if there 

is a nonzero cosmological constant. The Taub-NUT metric and the 
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p2w metric both have nuts at the origin, but Taub-NUT opens up at 

infinity while P2(G) compactifies. On the other hand, our metric 4 
(2.26) at the origin looks like the P2(D) metric at infinity - 

both have bolts at these locations; furthermore, the flat infinity 

of (2.26) strongly resembles the flat (but compact) origin of 

p,w. Figure 2 gives a schematic representation of the relationships 

among the manifolds described by these three metrics. 

We next make the remark that all three of the metrics just 

discussed are derivable from a more general three-parameter Euclidean 

Taub-NUT-de Sitter metric, although some hindsight is necessary to 

notice the existence of the appropriate singular limits. If we 

write the general Taub-NUT-de Sitter metric as 

L 

ds2 = o - L 
L 

do2 + (02 _ L2)(o 2 + a.2) + dL2A 2 
4A X Y 2 

P - L2 Oq ' 

(3.18) 

where 

A = p2 -2Mo+L2 + ; (L4 + 2L2p2 - $ p4), (3.19) 

then the choice 

A = O,M= L (3.20) 

immediately gives the self-dual Taub-NUT metric (3.9). If we set 

M = L(l+ 5 AL") (3.21a) 

and take the limit [2L;] 
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with 
(321b) 

p2 - L2 = r2/(1+$ Ar2) fixed, 

we recover the Fubini-Study P (Cc) 2 metric in the coordinate system 

(3.13). Finally, our metric (2.26) can be reproduced by setting 

putting fl = 0 and taking the limit 

I L+m ., 
with 

2 2 2 fixed . r =p-L . 

(3.22) 

(3.23) 

This is a rather peculiar limit which has previously escaped attention. 

If we keep A # 0, we find a new metric resembling (2.26) except that 

it satisfies Einstein's equations with nonzero cosmological term, 

ds2 = dr2 

1 - (a/r)4 - q + 
-f2(0 2 + 0 2 

X Y) 

ArL 2 + r& 1 - (a/r)4 - 6 
1 J 

o 2 (3.24) 

By taking an appropriate limit of this metric, we can eliminate the 

singularity and obtain a metric on S2 X S2with a twist. 
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/ Another amusing comparison which we may make among these 

three metrics involves their natural self-dual Maxwell fields. For 

p,(C), Trautman [ll] observed that the metric possessed a 

natural (anti) self-dual Maxwell field given by the P2(@) Kahler 

form, 

F = 2(e"A e3- e1^e2), (3.25) 

a where e = 
C 
dr(1 + Ar2/6)-l, rsx(l + ke2/6)-', roy(l + h2/6)-‘, 

raz( 1 + hr2/6 )-l I . Since (anti) self-dual Maxwell fields have 

vanishing energy-momentum tensor, the Einstein equations are undis- 

turbed and we have an automatic solution of the Einstein-Maxwell 

equations (see also ref. [2L+] ). For the Taub-NUT metric, it is also 

easy to find the Maxwell field 

(3.26) 
F = 1 

2( 
e" A e3 - e1 A e2 > 

(r + d 

where 

dr, 2(r2 - rn2)$ ox, 2(r2 - m2)" 0 
Y 

, 
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The Maxwell field for our metric (2.26) was presented earlier in 

Eq. (2,30). We note for comparison that the Taub-NUT Maxwell field 
* 

has the characteristic l/r2 behavior of a magnetic monopole, 

while (2.30) has the l/r4 behavior of the Yang-Mills instanton. 

The P,(G) field (3.25), on the &her hand, is constant everywhere. 

Finally, we give a brief summary of the topological invariants 

of the fundamental triplet of metrics. p2w is the easiest, since 

it is a compact manifold without boundary. Because P,(g) has a bolt 

and a nut, its Euler characteristic is x = 2 + 1 = 3, while the 

signature is -r = 1. If p2w were a spin manifold, the spin B 

index would be 

(3.27) 

Since I 
3 

must be an integer for a manifold admitting well-defined 

spinor structure, we confirm the fact that P ((c) 2 has no spin 

structure. For the Taub-NUT metric, x = 1 and the spin f index 

with boundary corrections vanishes [151- For the metric (2.26), 

the topological invariants were previously given in Eqs. (2.47-54). 

A tabulation of the properties of the fundamental triplet is presented 

in Table 2 alongside the properties of the K3 manifold mentioned in 

the Introduction. 



IV. MULTICENTER METRICS 

- A" Hawking's E = 1 Multicenter Nitric 

Just as there are multiple instanton solutions for the SU(2) 

Yang-Mills problem [25], there is a gravitational metric with 

multiple removable singularities. Hawking examined the Ansatz [lo] 

ds2 = V-l(;) (d+ + ; l d;,2 + V&d; l d;: (4.1) 

and found (anti)self-dual connections (and hence an Einstein solution) 

provided 

-P w = k$x; 
+ self-dual 

(4.2) 
- anti-self-dual. 

Clearly, 

$“v = 0, (4.3) 

so that, modulo delta functions, a solution is 
n 

v(Z) = & + 
c 

2mi]Z - si]-' , (4.4) 
i=l 

where E is an integration constant. In order to make the singular- 

ities at Z = Z i into removable nut singularities, one must take 

all the m i to be equal, mi = M, and make $ periodic with the 

range 

0 < $ 6 &rM/n (4.5) 

The case 

E = 1, (4.6) 
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which reproduces the self-dual Taub-NUT metric for n = 1,was 

examined in ref. [lo]. 

The gravitational action has been computed to be [26] 

S E=l [nl = 47r n 2, (4*7) 

where the entire contribution comes from the surface term Eql. 

Since all the singularities are nuts and each nut contributes one 

unit of Euler characteristic, we find the Euler characteristic 

x = n. (4.8) 

B. The E = 0 Metric 

Since s in (4.4) is an arbitrary constant, one might ask 

what happens when we set 

E = 0. (4.9) 

This case has recently been examined by Gibbons and Hawking [41. 

Clearly, the asymptotic behavior of the metric is drastically 

altered and in fact the entire action, including the surface term, 

now vanishes: 

SE+-) In1 = 0. (4.10) 

This case therefore will probably dominate over the E = 1 solutions 

in the path integral. 
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As before, we need the periodicity (4.5) for a regular manifold, 

but now one finds 

( 
E = 0, n=l = 

> 
flat space metric. (4.11) 

The boundary at ~0 for n = 1 is just the Euclidean space boundary 

2. For n=2, one finds a two-nut metric with nonzero Riemann 

tensor. In this case the boundary at ~0 is the same lens space 

s3/z2 = P 3(m) foundf or our metric (2.26) and also the curvature 

invariants are the same; thus it seems certain that 

E = 0,n = 2 = the metric (2.26) (4.12) 

up to a singular change of frame. For higher values of n, 

the boundary at 00 consists of S3 with points identified under 

the action of the cyclic group of order n. 

We conclude that in general the multicenter metric (4.1-4.4) 

with E = 0 strongly parallels the Jackiw-Nohl-Rebbi multi-instanton 

solution [ 251 . In particular, there are (n + 1) positions appearing 

in the description of the "n-instanton" solution. 

The topological invariants for the E = 0 metric are [211 

X = n 

T = f (n - 1) 

*l/2 = O 

I 
3/2 

= 2T=*+(n-1) . 

(4.13) 



There is in fact a general theorem showing that the spin lL2 index 

vanishes for asymptotically flat self-dual metrics [ 131 I We are 

led to conclude that for gravity, a spin 3/2 axial anomaly replaces 

the spin l/2 axial anomaly induced by Yang-Mills instantons. Thus ) 

the roles of gravitational and Yang-Mills instantons in symmetry 

breaking may be summarized as ,follows: 

Yang-Mills solution, Chern class k + Dirac index = k 

Einstein solution, signature ? + Rarita-Schwinger index = 2-r. 

(4.14) 

We conclude with the remark that we can write down natural 

self-dual Maxwell fields for the multicenter metrics just as we did 

for the metrics in previous Sections. One such field is 

A = V-'(dY+; l d;) 
. 

F = d.A = Vm2 aiV(eo n e1 ' k--E 2 ijk e j A ek). 

(4.15) 

C. More General Metrics 

We have now seen the natural appearance of higher order lens 

spaces of S3 in the multicenter self-dual Einstein metrics (4.1). 

Hitchin [5] has examined the known complete classification of spheri- 

sa.I.formsof S3 and has found regular complex algebraic manifolds with 

boundaries corresponding to each sphericalform. It is conjecturedthat 

a unique self-dual metric can be obtained for each of these manifolds 

using the Penrose twistor construction [271. Although this subject 

is not completely understood at this time, let us at least list the 
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sphericalforms of S 3 corresponding to each possible asymptotically 

locally Euclidean self-dual metric. 
- 

The spherical forms areclassified 

according to their associated discrete groups as follows [28] : 

Series -q - cyclic group of order k 

(= lens spaces L(k + Ll)) 
Series Dk : dihedral group of order k 

T : tetrahedral group 

0 : octahedral group x cubic group -- 

I : icosahedral group x dodecahedral group . 

We note that our metric (2.26) corresponds to Al, while the general 

n-center metric (4.1) corresponds to A n-l' 
If we could derive self-dual metrics for the manifolds having 

each of these spherical forms as boundaries, the problem of finding 

zero-action solutions of the Euclidean Einstein equations would be 

essentially solved. We would then have a better understanding of the 

structure of the vacuum in quantum gravity. 
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VJ CONCLUSIONS 

4 The discovery of the. self-dual instanton solutions to Euclidean 

Yang-Mlls theory suggested the possibility that analogous solutions 

to the Euclidean Einstein equations might be important in quantum 

gravity. Here we have discussed a number of self-dual solutions to 

Euclidean gravity and indicated their properties. We have con- 

centrated particularly on the asymptotically locally Euclidean metrics, 

of which the authors' solution (2.26) is the simplest nontrivial 

example. These gravity solutions have properties which are 

strikingly similar to those of the Yang-Mills instanton solutions: 

(1) They describe gravitational excitations which are local- 

ized in Euclidean space-time. 

(2) Their metrics approach an asymptotically locally 

Euclidean vacuum metric at infinity. 

(3) They have nontrivial topological quantum numbers. 

However, there are also some important distinctions between the two 

sets of solutions: 

(1) The gravity solutions contribute only to the spin j/2 

axial anomaly, while the Yang-Mills solutions contribute 

to the spin l/2 axial anomaly. 

(2) The gravity solutions have zero action, while the 

Yang-fills solutions have finite action. 

The pairing of the Yang-Mills field with the spin l/2 anomaly 

and the pairing of gravity with the spin j/2 anomaly are very likely 
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due to the existence of supersymmetry. It would be interesting to see 

whether supersymmetry gives any further insight into the structure of 

these systems. 

As is well-known, the finite Yang-Mills instanton action 

implies the suppression of the transition amplitude between topologi- 

tally inequivalent sectors of the theory. Gn the other hand, in 

gravity there appears to be no such suppression. The vanishing 

action of asymptotically locally Euclidean self-dual metrics implies 

that in the path integral they have the same weight as the flat 

vacuum metric. Thus these solutions will presumably be of central 

importance in understanding quantum gravity. 
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FIGURE CAPTIONS 

Fig. 1: The manifold T*(P,(C)) described by the metric (2.26). 

For fixed S2 coordinates (0 ,a), the manifold has local 

topology jR2 x s2. Constant radius hypersurfaces have the 

topology of P,(p). At 03, the metric on the boundary is 

the canonical P3(rR) metric. As u -+ 0 [Eq. (2.36)] or 

equivalently, as r -+ a [Eq. (2:,26)], the manifold shrinks 

to s2 = Pi(Q). 

Fig. 2: Relations among the manifolds of our metric (2.26), the 

self-dual Taub-NUT metric (3.9) and the Fubini-Study metric 

(3.13) or (3.15) on P2(@). 
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TABLE I: Comparison of the Euclidean Yang-Mills and Einstein 

equations. 
4 

Property 

Metric 

Structure equation 

Connection 

Curvature 

Dual Curvature or 

Connection: 

Bianchi identity 

Cyclic identity 

Euler equation 

Automatic solution 

First order 

automatic solution 

Basic function 

Yang-Mills Einstein 

__---- ds2 = f (ea)" 
a=0 

a----- 0 = dea + wa 
b 

A eb 

A = Aa -ia dxl-I a b a 1-I 
l.Jlz u~=-w~=w~~~x. 

F=dA+A^A Rab 
= duab + uac A uCb 

= -$ FzV $ dxuA dxv = 2 Ra d 
2 bed eCA e 

$a 1 a 
pv 2 pxxBFa~ 

Z--E %a R 1 e 
bed= 7 'abefR fed 

3 = 3$$ dxuA dxv %ab = ixabcd ecA ed 
%a w 5, c 

b= 2 abed w d 

dF+A,,F-F^A=O-dR+wAR-RAw=O 

b ----- RabA e = 0 

e 
-t 'abcdR bed =0 

d? + A A$-$ AA=O $a b Rb*e =0 

-f Rabcb = 0 

F=t$ Rab 
=+p 

b 

F=t$ wab 
%a =+w b 

AaU( x > eaJd 
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Table II: Properties of the fundamental triplet of self-dual 

metrics compared with the self-dual metric of the 

IC3 manifold. 

Taub-NUT Fubini-Study X3 

explicit 
form 
LlIlkTlOWn 

Metric :q. (2.26) Eq. (3.9) Eq. (3.13) 

A= 0 A= 0 A#0 Cosmological 
Constant 

I\=0 

Manifold r*c pl( @ > 
;'(Bolt) 

‘3m) 

Point (Nut) Point(Nut) 

distorted S3 S2(Bolt) 

- Origin 

- Infinity 

- Boundary ?3(Fo distorted S3 none none 

Euler 
Characteristic 2 

-1 

0 

1 3 24 

-16 

2 

? 
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Hirzebruch 
Signature 0 1 

Dirac Spin-$ 
Index (no spinors) 0 

Maxwell Field 
Strength sl/r2 %l/r4 

-2 

1 

Rarita- 
Schwinger Spin 
3/2 Index 

? (no spinors 
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