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INTRODUCTION 

Modern Large Scale Integration (LSI) microcircuits 
are meant to be programmed in order to control the 
function that they perform. In referencell], I have 
already discussed the basics of microprogramming and 
have studied in some detail two types of new micro- 
circuits. In this course, I will explore the methods 
of developing software for these microcircuits. This 
generally requires a package of support software in 
order to assembly the microprogram, and also‘some 
amount of support software to test the microprograms 
and to test the microprogrammed circuit itself. 

1. MICROPRGRAM ASSEMBLERS. 

1.1 ASSEMBLERS INGENERAL. 

An assembler is a support software program which 
allows the progranuner to write a program in a 
s*lic l_anguage. It does many tasks for the 
programmer which greatly relieves to tedium of 
writing programs. These tasks are illustrated in an 
example of assembly language program given in figure 
1 which comes from the outout of the IBM 360/370 
Assembler. Of interest to us-are the columns labeled 
'LK' , 'OBJECT CODE’, and 'SOURCE STATEMENT'. Under 
the colurm labeled '&I is to relative address of an 
I@1 360/370 instruction which is represented in 
hexadecimal format under the column labeled 'OBIIECT 
CODC'. The symlxlic program is presented under the 
CO~!I~ lakkd 'SOURCE STATEXENT'. 

The first task of the assembler is to convert the 
sytilic operation codes into the machine binary 
code. For example, in figure 1 the operation code 
'SR' was converted into the machine code '1B' and 
placed in the proper field of the machine instruction 
as shown at 1. A second task is to substitute for 
symbolic variable names the machine binary form. One 
can see at 1 in figure 1 that the symbols '3,2' have 
been converted to a binary form and placed in the 
proper fields of the machine instruction for the 
source and destination registers. Also, at point 2 
of the figure the symbolic variable name '7&S(7) has 
been substituted with the proper form of memory 
addressing. The third task is to substitute svmholic 
addresses with the binary addresses. In fig&e 1 at 
point 3, the instruction at location '17A' was given 
the syrrbolic label 'A22'. All references to this 
location made by the program used the symbolic name 
such as the one at location '1X'. The assembler 
substitutes for the symbolic name the actual address. 
This was also the case for the address of the 
symbolic variable given at point 2. The fourth task 
for the assembler is to supply after all the 
COi~Jer:~iCns and substitutions a complete binary 

program that can be loaded into the processor. In 
the case of the IBM assembler, this machine code is 
called the Object Code. 

With the aid of the assembler, the programmer can 
write programs of great length and complexity which 
would be too difficult to write directly in machine 
code. Instructions can be inserted or moved without 
difficulty when all variables and branch addresses 
are referred to symbolically because tte assembler 
will do the work of calculating the real addresses in 
generating the Object Code. The programmer is also 
almost completely relieved of having to know about 
the placement of the. fields in the machine 
instruction and the details of addressing memory. 

The assembler is generally given by or bought from 
the manufacturer of the computer when one receives 
the computer as part of a package of support 
software. It is written expressly for the computer. 
If one is to supply an assembler for a microprocessor 
of one's own design, then one has the problem of 
having an assembler written for that machine. 
Methods of doing this will be discussed in the next 
sections. 

1.2 MICROPRCCESSORASSE&lBLERS INGENERAL. -- 

An assembler written expressly for a micrc- 
processor should have the same general features as an 
assembler for a computer. One should realize, 
however, that there may be some major differences 
between the instruction set of a microprocessor and a 
that of a computer. Take for example the question of 
the operation codes. A computer typically has a set 
of about 100 to 400 instructions. Each instruction 
may have a few parameters, and these parameters are 
specified in a way which is comron 
instructions. 

to many 
For example, the 'Subtract Register' 

(SR) instruction of the IBM 360/370 discussed above 
had two parameters, the source and destination 
registers. An 'Add Register' instruction has the 
same two parameters and they are specified in the 
same way. 

A microprocessor might have an several orders of 
magnitude more operation codes if we tried to define 
them in the same way as computer operation codes. 
For example, a processor with a 290l.A bit slice 
microprocessor requires that the source, function and 
destination fields be specified as was shown in 
figures 36 and 37 of reference [l]. Since each of 
these fields is 3 bits in length, there would be 512 
combinations which could be considered operation 
codes. And since the CARRY-IN to the least 
significant bit also needs to be specified, we find 
that there are really 1024 combinations. The A and B 
addresses, of course, may be considered as operands, 
as were the source and destination registers with the 
IBM 360/370. 

Besides the fields of the microinstruction 
defining the operation of the 290lA, we may find a 
microsqdencer in the processor. The 2910 micrc- 
sequencer, for example, has a 5 bit microinstruction 
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LOC OLJ.JECT CODG- ADDRl ADDRZ STHT SOURCE STAlEqENT 
ItI * 

3rJ’1156 4107 0?‘)4 QO’)OQ 112 AZ1 LA 11*4(.11) 
OOOlSA SH30 8300 00000 113 L 3*0( ,111 
00315E 1233 h 114 1-r R 3.3 

33 x34 
OOOIGA 4740 D14A 0015G 118 HC ‘%.A21 
3001CE 5530 9040 00338 119 C 3.MXZA 
139172 4721 DlAE J’J li3A i ,> 6) dC ?;A10 

121 * 

000176 41CO 9320 
OJ017A 41C0 CO04 
00017E 5040 coo0 
OOOlH2 1244 
933184 474Q Dl4A 
00018fl I?43 
00018A 4745 31RC 
‘)601RE 1948 
060193 4720 D14A 
300194 47F0 0194 
000108 1044 
00019A 194h 
)0013C 472) DlhE 

OOOlAO 4159 SC01 
00’31A4 lR64 

0031A 
00004 
00000 

3’) 156 

00190 

00 156 
00 1AO 

,3017A 

122 4 
123 * 

12,LZA3X-4 
12.4(. 12) 

1.34 A23 

131 * 
138 * 
139 * 
140 A24 LA 5*1(.5) 
141 LH 6 . 4 

COO106 47F0 016E 0017A 146 f!C lli.A22 
147 4 

OOOlDA 1255 
OO~~RC 47ac 01~0 
OOOiCO 4i70 7004 
0001C4 5A50 9078 
OOllC8 S?S’) 9778 
COOICC 41AO A002 
000100 46FO D134 

OOOlD4 5910 D?TC 
00ClI-~8 5017 9044 
OOOlDC SO17 9osc 
0001EC aA 3002 

i4fi A10 1. TR 5315 
00 ICC 14‘) tic Y.All 
00004 150 LA 7rZ( 17) 
90370 151 

5AT 
Cz.AYTCH 

,J ‘1 .3 7 0 152 S*A~TCH 
“OE:; 153 bll L. A lO*;?(* 101 

I54 DC? 141A20 
155 * 

0023H 156 L lr=F’-1’ 
3’)33c 157 ST 1 .ZAS(7) 
00 354 15’3 1 .YAS( 71 
00002 159 

%A 
792 

LOOP OVER U 

NEXT 5*U 

A3=-1 => EN3 5*U STRING 
S*U-4*Y+KA 

GET NEXT 5*U IF R3 < HNZA 

GET NEXT Y IF R3 > i4XZA 

LCDF’ C1VER 2 

(ADDRESS-4) OF 3*ZA 

NEXT 342 

H4=-1 => END 3*Z STRING 
3CZ-WUt4*Y-KA 

CDh:PARE R4 Ah0 TEST A lR41 
GET NEXT 5*U IF R4 > TtSTA 

AdSOLUTE VALUE 
COKPARE ~14 AND TESTA 
GET hEXT 36;Z 1F ii4 > TESTA 

GDDD YATCH 

CANFA=CANFAt 1 
NEW TESTA 

342 P!ATCH PT 

Y MATCH PT 

GOOD MATCH FCR THIS Y 7 

1NCREMENT AST INDEX 

INCHEMEFiT Y ADDRESS 
( KNT=KNT- 1 1 EN3 YA 7 

ENTER -1 AT END OF STRIvG 

MATCH PTS = (R7)/4 

---. -. . 

Figure 1: Example of Assembler Output. 

code if we include the condition code enable bit 
along with the four next address instruction bits. 
If the next address control circuit were as shown in 
figure 48 of reference [l], then we must also 
condsider the four bits which control the condition 
code multiplexer. All the co;nbinations of next 
address control must be joined with the 2901 
instructicn which would lead to a total of 524,288 
operation codes. 

Thus, it is general practice for microprocessor 
assemblers to divide the microinstruction into 
several fields each with its own set of operation 
codes and operands. Whereas an ordinary computer 
assembler generates one machine instruction for one 
operation code, the microassembler may expect several 
operation codes to be concatenated into one micro- 
instruction. 

LMother difference between ordinary computer 
instructions and microinstructions is the appearance 
of Don't Care fields in the microinstruction. In the 
case of the simple scanner described in section 3 of 
reference [l], the branch address field was not used 
for instructions in which the next address was taken 
as the next sequential address (CONTinue 
instructions). As we will see below, it is also 
convenient to have "Default" fields in the micrti 
instruction. A microassembler must be able to handle 
these situations as well as the multiple operation 
codes. 

2. GENERATION OF MICR3PKJZhblS 

There are many methods for generation of miCKC?- 
prograrrs and we will study four of them. The choice 
of which method to use depends on many factors, such 
as the length of the expected programs, the execution 
efficienq required, the complexity of the 
instruction set, etc. And as with programming 
COmpUteKS, a programming language that generally 
leads to efficient code such as assembly language may 
be rejected in favor of a programming language which 
is easier to use by a average programmer, such as 
FOF?JlUN. 

2.1 HANPCODL!Xl BINARY. 

Hand-Coded binary programming is a method in which 
the programmer writes directly in the binary bit 
pattern of the processor's microinstruction set. 
This method was used in prograrmning the simple 
scanner in section 3 of reference [l]. Figure 33 of 
reference [l] gave the instruction set of the 
processor. The program to perform a scan of devices 
with data was written in only six instructions as was 
shown in figure 34 of that reference. 

The Hand-Coded binary method was a perfectly 
viable method in the case of the simple scanner. 
Uniike the methods which wili be discussed in the 
following sections, it requires no support software 
in the form of assembler programs. The only support 
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software that may be needed is a way of actually 
loading the microprogram memory and even there one 
could think ways to get around using software to do 
this. 

If the program should become very long this method 
can be v-y tedious. It is also relatively difficult 
to read the program many months after is was written. 
Modifying the program may also be very time con- 
sunming. For example if one inserted a few new 
instructions in the middle of a program, then one 
might need to change many other instructions in order 
to correct the branch address field for those 
instructions which have changed their address. The 
hand-coded binary method should probably only be used 
for very short and simple microprograms which do not 
need to be modified often. 

2.2 DEDICATED MICROASSEMBLER. 

A dedicated microassembler is an assembler which 
has been written to assemble programs for one 
microprocessor. If'the processor is simple, and one 
does not expect an assembler with many of the 
sophisticated features we normally associate with 
assemblers that come with computers, then one can 
write a dedicated microassembler relatively quickly. 

As an example of a dedicated microassembler, let 
us study a microprocessor designed by Guzik for use 
at experiment at FermiLab[2]. It's purpose was to 
read data from a CAMAC crate and make a decision on 
whether the event should be read out by the host 
computer. Figure 2 is a simplified block diagram of 
the processor which is based on the 2901A bit slice 
microprocessor and a 2909 microsequencer. 

16 0 

i-i- 

CAMAC 
NAF CAMAC 

I 
I 0 

2909 SO.Sl,elc. CONTROL 
SEOUENCER - LOGIC 

Y 

1 
1 :i 

SEOCLK . ‘I 

Figure 2: Block Diagram of Guzik's Processor. 

As is shown in figure 3, the microinstructions are 
24 bits in length with an 8 bit control field and a 
16 bit operand field. The control field has bits 
that are routed directly to the control points within 
the processor. Two bits control the next address 
multiplexer of the 2909 (SQ,Sl). The SEN bit enables 

the stack file of the 2909. The CND bit allows the 
SIGN bit from the 2901A to be ORed with the least 
significant bit of the microinstruction address. 
This is the only form of conditional branching the 
processor can execute. The MPL bit was used for 
iterative multiplication. The DAT bit controls 
whether the operand field is clocked into the 
accumulator register or the CANAC address register. 
The MPX bit controls the multiplexer at the input to 
the 290lA. It selects either the accumulator 
register which could be loaded from the 16 bit data 
operand field of the instruction or the data on tne 
CAMAC READ lines. And finally, the MOD bit 
controlles whether the 29611 or a register is clocked. 
The operand field may be used for one of four 
purposes: a 16 bit data word, a 16 bit micro- 
instruction address, a instruction for the 2901, or a 
CAMAC comaand. Figure 4 shows the bit assignments in 
the Operand field. 

Figure 5 is an example of the processor's 
microassembly source code. The control field and 
operand fields are handled in different ways. For 
the control field the source is divided into 7 
columns corresponding to the 6 control bits and the 
one 2 bit field. In these columns, the program 
writes a symbol to generate a '0' or '1'. These 
symbols are easily interpreted in terms of what the 
processor is controlling during that micro- 
instruction. For some of the fields, the a blank 
means the Don't Care state of that subfield, while in 
others it means the Default value. 

As discussed above, the operand field can have one 
of four different meanings. The first character of 
the o,perand field of the source code contains a 
symbol which tells the assembler which kind of 
operand follows. These symbols are 

$ for data operand 
* for microinstruction address 
& for 290l.A instruction field 
# for CAMAC command 

Within the rest of the operand field are further 
symbols to indicate parameters to put into the 
subfield, if any, of the operand. The micro- 
instruction address may have a symbolic name or label 
and it is placed in the left most column of the 
instruction. The right most column is reserved for a 
comment field. 

If we look in detail at a few instructions we 
should be able to see how the assembly language is 
used. The first instruction has the symbolic label 
'START'. The ?4OD column has the symbol 'OPR' 
indicating that the 290lA will not function for this 
cycle. The DAT column has the symbol 'NAF' so that 
the operand field will be loaded into the C.&MAC KAF 
register. The SFQ field has the symbol 'CNT' so that 
the next microinstruction .will be taken from the 
microprogram counter register of the 2909. The 
operand field‘starts off with a '#', thus the operand 
contains the CAMAC address and function. The symbol 
'N(3)' means that the station number subfield should 
be filled with a '3'. Similarly, the symbols 'A(0)' 
and 'F(0)' cause the subaddress and functions 
subfields to be filled with '0'. The net effect of 
this instruction' is thus a CAMAC Read at station 3 
subaddress 0. 

The next instruction is similar to the first 
except that the operand field is loaded into the 
accumulator as is indicated by the symbol 'DAT' in 
the DAT column. The operand field starts with the 
symbol '$' to show that what follows in a single data 
word and the symbol 'AX' is used for this word. Thus 
this instruction loads a 16 bit data word from the 
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24 BIT MICKOINSTKUCTION WORD 
---------Nm-p --------------------------- 
I OPERAND FIELD 1 CONTROL FIELD I 

8 BIT CONJJKOL FIELD 
----.---------..-__ 
I I I I I I I I I -------------____ 

) ‘- 
---w-m 

-------- 

---------- 

------------ 

-------------- 

I 
---------------- 

for 2909 00 = 

2 
next address 

Program Counter (Cm) 

multiplexer 
01 = K-Re ister (KEG) 
10 = Staca (STK) 
11 = Direct Data (DIR) 

SEN 0 = Stack disabled (default) 
1 = Stack enabled (S&N) 

CND O= SIGN flag disabled (default) 
1 = SIGN flag enabled (CCU) 

MPL 0 = normal 2901A operation (default) 
1 = conditional ADD in 2901A (MPL) 

DAT 0 = operand field to ACC. Kegister (DAT) 
1 = operand field to CAMAC Command Register (NAF) 

MPX 0 = ACC. Register to 2901A D input (ACC) 
1 = CAMAC Read lines to 2901A D input (CAM) 

MOD 0 = 2901A operation 
1 = Data or Address 

ALU) 
OPR) 

Figure 3: Control Field of Guzik's Microinstruction Word. 

16 BIT OPERAND FIELD 
DATA Operand 

I DATA I 

Microinstruction Address Operand __-----_------------__I____ 
I ADDRESS I ------------------------- 

2901 Instruction Operand 
_----------------------------- 
I A I B I D 1 F 1 S ICI _-----_-------_------_________I_ 

I 
------ CAURY-IN 

---------- 2901 Source code 

--------------- 2901 Function code 
--------------------- 2901 Destination code 

______---------------------- B-Register address 
______-__-__---------------------- A-Register address 

CAMAC Command Operand 

IEtLl N I A I F 1 _I-_-____----__-----__________^_ 

I 
I ---------- CAMAC Function code 

---mm.------------- CmC SubAddress 
---------------------------- C&Q& Station Number 

--_-_----------------------------- CmC L&f generation 
-----__----------------------------- END (stops processor) 

Figure 4: Operand Field of Guzik's Microinstruction Word. 

operand field of the microinstruction into the indicated by the 'ACC' in the MFX column. The 
accumulstor register. operand field starts with the symbol I&' which means 

that the operand field source is be read as subfields 
The 290l.A will function in the next instruction as of the 2901 instruction. In this instruction the 

indicated by the symbol 'ALO' in the I4OD column. The 2901 source, function and destination codes are 
D input multiplexer selects the accumulator source as progranvned to be 'D,O', 'OR', and 'F-)Q'. The A and 
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MOD MPX DAT MPL CND SEN SEQ, OYERAND FIELD ;CO>lMENr 

;,$START: CI.If: 
E"T 

E$, ;N$) A(O) F(O) ; 
ALU ACC 
ALU CAN 

&IT: &X)B(X) D,O OR FQ 0 ; 

041 OPR 
CNT, &A(X)B(Z) D,O OR FBF 0 , 

051 
SEN DIR, *MULTI 

ALU 
061 OPK NAF 

CET, &A(2)B(O) O,A OR FBF 0 ; 
CNl', #N(3) A(1) F(0) 

AiU 
ALU 
ALU 
ALU 
ALU 
ALU 
ALU 
ALU 
ALU 
OPR 

MPL 
MPL 
MPL 
MPL 
MPL 
MPL 
MPL 
MPL 

Ch, 6A(X)B( 
CNi dA(2)B( 
CNL' &A(2)B( 

STK, $0. 

I) 0.B AND FBF 0 ; 
1) A,B ADD UFQ 0 ; 
1) A,B ADD UFQ 0 i 
1) A,B ADD UFQ 0 
1 A,B ADD 
1 A,B 

UFQ 0 : 
ADD 0 

1 A,B 
UFQ 

ADD 
; 

0 
1 A,B ADD 

UFQ ; 

1 
UFQ 0 ; 

A,B ADD FBF 0 ; 
; 

Figure 5: Example of Guzik's Kicroprcgram. 

0 register address are not used which is indicated by 
the 'X' in the symbol 'A(X)B(X)'. In the next 
instruction, however, the data on the CAMAC Read 
lines are loaded into register 2 of the 2901. Note 
the symbol 'CAN' in the MPX column and the operand 
field symbol 'A(X)B(2)'. 

The next instruction illustrates how a subroutine 
call is prcgrakured. The stack enable bit (SEN) is 
turned on with the next address multiplexer of the 
2909 selecting the D inputs ('DIR' in column SEQ). 
The operand field must then contain a micro- 
instruction address so it starts with a I*@ The 
operand field contains the symbol 'MULTI' which is 
also used further down in the program to label a 
microinstruction address. The microassembler will 
substitute the binary address of MULTI into the 
operand field of this instruction. 

It is left as an exercise to the reader to read 
the rest of the program. One might accuse this 
microassc;ilbler of being rather primitive, but the 
author feels it fits well to the task it must do. 
The processor was designed to execute a simple 
program and one can even notice that not all the 
functions of the LSI microcircuits were implemented 
in the circuit. Likewise, the microassembler only is 
capable of doing what the programmer needs: to write 
the relative short programs that this processor will 
ix used for. Programming this processor witn the 
assembler is considerable easier than using the hand- 
coded binary method and yet the assembler is not so 
complex that it is difficult to write. 

2.3 META ASSEMBLERS. 

Assemblers for microprocessors or ' computers 
Perform very similar tasks. The code that must be 
written to write an assembler is also very similar. 
It is possible to divide the task into those parts 
which are the same for all machines and those parts 
which depend on the processor's instruction set. 
Then, if an assc.mbler would be written to accept as 
input the definition of the processor, we could reuse 
this sort of assembler for many different processors. 
Such an assembler is called a an assembler assembler 
or a "metsassembler". 

A meta assembler operates in two phases, the 
definition phase and the assembly phase. The 
definition phase, which must be executed first, sets 
up tables with the programmer's defined set of 

instructions and their model format. That is to say, 
the programmer specifies the symbols which will be 
used in the assembly phase to produce the binary bit 
pattern of the microinstruction. The asse;nbly phase 
then uses the output of the definition phase and the 
source program input and operates in the sam2 way as 
an ordinary computer assembler. 

~NAFKEG:=NAF(X:) 
ACC:=AX 

K%MAC (X1) 
JSR MULTI 
RO:=Rl 
NAFREG:=N4F(X2) 

Kl:=O 
COND-ADD AN’3 SHIFT 
CON ADD AND SHIFT 
COW ADD AND SHIFT 
COND ADD AND SHIFT 
COW ADD AND SHIFT 
CCND ADD AND SHIFT 
COW ADD AND SHIFT 
ADD 
RETURN 

In order to study the properties of a meta 
assembler, we will study in some detail a meta 
assembler called AMDASM which was written by Advance 
Micro Devices for users of their LSI microcircuits. 
We will only discuss only the some of the features of 
ANDASM in order to bring out the basic ideas. More 
details may be had in the reference manual which is 
included with the book on circuit specifications[31. 

2.3.1 Definition Phase example. 

The definition phase of the AMDASM meta assembler 
has two basic statement types: the EQU statement and 
the DEF statement. An EQU statement is used to 
generate a symbolic name for a constant value or 
expression. An example would be: 

S4: EQU B#l00 

which sets the value of the symbol 'S4' to a 3 bit 
binary number '100'. Once the Ego statement is made, 
any further reference to the bit pattern '100' may be 
made by using the symbol 'S4'. A choice of four 
number systems may be made. The programmer selects 
which one by the letter in front of the 'II' symbol as 
follows: 

B for binary, 
Q for octal, 
D for decimal, and 
H for hexadecimal. 

The purpose of the EQU statement is the same as in 
ordinary assemblers, it relieves the programmer of 
the tedious task of always coding the bit pattern. 
Instead he can code a symbol which makes the program 
not only easier to write but also much easier to read 
and understand at a later date. Also, if the 
constant bit pattern need be changed, it may be done 
pnly at the F.QLI statement rather then throughout the 
program where that Pattern may be used. Consider for 
example setting up the function code field of the 
2901. We may write the following EOU statements: 
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ADD: WJ QW ; R PLUS s 
SUBR: EQU Q#l ; S MINUS R 
SUBS: EQU Q112 ; RMINUS S 
OR: K’u Q#3 ;RORS 
AND: EQU Q%4 ; R AND S 
NOIRS:FQU Q#5 ; (NOT R ) AND S 
BXOR: Jm Q#6 ; REX-ORS 
EXNOR: NU Q#7 ; R EX-NOR S 

The DEF atement is a model of the micro- 
instruction that is to be generated by a symbol in 
the assembly phase. The microinstrucion word is 
broken up into fields of specified length with the 
sum of the lengths being equal to the length of the 
microinstruction word. There are three kinds of 
field specifications: constant, variable, and "Don't 
Care". A constant field is one which always supplies 

_ the same constant bit pattern each time the micro- 
instruction is invoked in the assembly phase. A 
variable field is one in which a variable value may 
be supplied in the assembly phase. One feature of a 
meta assembler which is not common to an ordinary 
assembler, is that if the variable value is not 
explicitly stated in the assetily phase then a 
default value for the field is supplied by the 
assembler. The DEF statement also provides a 
mechanism for specifying the default value. The 
"Don't Care" fields are those which are unaffected or 
not needed by the model microinstruction. 

;AMDASM MICRO ASSEMBLER EXAMPLE 
;SIMPLE SCANNER 
; DEFINE WORD LENGTH 

WORD '13 
i DEVICE CONTROL EQUATES 
~DAC: W NEXT: EQU 3: 
ZDAC: WJ B 111 
i NEXT ADDRESS CONTROL DEFINITIONS 

As an example of the DEF statement, consider the 
simple scanner example again. Figure 33 of reference 
Ill defines the fields associated with that 
processor. Using the A;mAs."I assembler we can define 
the folloiiing microinstrcctions to handle 'he 
branching portion of the microinstruction as folloas: 

cmr : DEF 4?i,B#00,7X ; CONTINUE 

l3RDv : DZF 4VIltF,B;;'111,7X ;BR OKI?, Vz'LID 
B.WNE: DEF 4VH;lr',B#10,7X ;BR m:qE 
JLW: DEF 4VHIF,ti11,7X ;JU>W 

In the first statezent, the symbol 'COp?I' is a micro- 
instruction with 3 fields which are separated by 
a I,'. The first and last are Don't Care fields 
which is indicated by the 'X'. These fields are 4 
and 7 bits in length respectively. The second field 
is 2 bits in length and contains the constant vAue 
'00' binary. The same number system specification as 
the EQU stateilents are used in the DEF statements. 
In the re;n;lining statements the first field is a 
variable field four bits in length. The default 
value will have the value 'F' hexadecimal. Tne 
second and third fields in these statements are like 
those of the first statement except the constant 
value is different. A complete input to the 
definition phase of the AF'iASM assembler for the 
simple scanner is shown in figure 6 . 

CONT: DEF 4X. 25100.7X 
BKDV: DEF 
BKDOSE: UEF 

4vx, 2H101,lX 
i CONTINUE 

JUPlP: DEF 
4VX,ZB#10,7X 

, BRANCH IF 'DATA-VALID' 
4VX,ZB#11,7X 

; BRANCH IF ‘DONE’ 
; JUMP 

f Ilt>;OKY CONTROL DEFLNITIONS 
iEIAC : DEF ; ZEKO MEIJORY ADDRESS COUNTER 
IblAC : DEF pp$y; 

; INCKENENT MENOKY ADDRESS COUNTER 
W:IE:+l: DEF 
F!i\'0P: DEF 

6X:O//l:4X 
6X,Qli!l,4X 

; WRITE TO MEMORY 
; EIEYORY NO OPERATION 

Figure 6: Definition Phase Input 
for Simple Scanner. 

; DEVICE COhTROL DEFINI'TIONS 
BEVICE: DEF 9X,1VUtO,lVB~O,IVB~~O,lX ; VAKIABLE FIELDS ARE: 

; 'NEXT' PULSE 
; INCRENEhT DEVICE COUNTER 
; ZEKO DEVICE COUNTER 

; STOPPING CONTKOL 
iTOP: DEF lZX,lVB#O ; SET TO '1' TO STOP 
E LX II 

x 

2.3.2 Assembly phase example. ~-- 

The assembly phase reads the source program 
statements, substitutes values for the constants and 
labels, and generates the bit pattern which is to be 
lea&d ino the microprogram memory. The symbols used 
in the source statements must be either those defined 
in the definition phase or from EQU statements given 
in the assembly phase. The meta assembler in this 

phase looks very much like an ordinary assembler 
except for its ability to overlay or concatenate 
several microinstructions into a single micro- 
instruction word. This feature is made clear by 
considering statements for the program of the simple 
scanner. 

The program flow of the simple scanner is given in 
figure 31 of reference 111. In the first 
instruction, the processor must reset the DEVICE 
COUNTER and ADORESS COUNTER and send the first NEXT 
signal. The next instruction will be the next 
sequential address. This instruction may be coded as 
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;AMDASM MICRO ASSEMBLER EXAMPLE 
;SIMYLE SCANNER 

; PROGRAM PHASE 

START: CON-T 
DVCHK: BRDV DVON 

& ZMAC & DEVICE NEXT,,ZDAC ; RESET ALL 
6 MNUP & DEVICE 

BRDONE FINI & MNOP & DEVICE 
; TEST 'DATA-VALID' 

NXTDV: 
; TEST 'DONE' 

DVON: 
JUMP DVCHK & MNOP & DEVICE NEXT.IDAC 
cola & WMEM & DEVICE 

; TKY NEXT DEVICE 

JUMP NXTDV & IMAC & DEVICE 
; WRITE TO MEMORY 

FINI: JUMP START & STOP 1 
; INCREMENT MEM ADR 

STOP 

shown in the first program statement of figure 
Reading this statement from left to right, it 
explained as follows. The 'START:' is a label 

7 . 

this microinstruction address. It does not effect 
the instruction generated for this location in any 
way. The 'CONT' is a symbol from the definition 
phase which sets bits 4 and 5 to '00' and leaves all 
the other bits in the Don't Care condition. The 
symbol '&' means concatenation or overlay is to be 
performed by the assembler. The symbol 'ZMAC' is 
also from the definition phase and it sets bits 6 
through 8 to '100'. Because the overlay symbol has 
been used the bits affected by both the 'CONT' and 
'ZMAC' will be set by this instruction. Continuing 
to the right another I&' symbol follows which means 
that even more bits are to be set. The 'DEVICE' 
symbol comes next and from the definition phase we 
see that it sets three variable fields. Only two 
variable symbol names follow: 'NEXT' and 'ZDAC'. 
The value of the variable 'NEXT' is equal to '1' 
because of the EQU statement in the definition phase. 
Thus the with combination 'DEVICE NEXT', the 
assembler will generate a '1' in bit 9 of the 
microinstruction. The next variable field of the 
'DEVICE' instruction is not specified as we can see 
by the two commas occurring in a row. Thus the 
assembler will use the default value for this field 
and generate a '0' in bit 10. The last variable 
field is specified, and from the EQU statement for 
'ZDAC', one can see that the assembler should 
generate a '1' in bit 11. 

The next instruction is labeled 'DVCHK' and it 
overlays a 'BRDV', 'I'SOP' , and 'DEVICE' micro- 
instructions into this single instruction. The 
'DRDV' contains a variable field which is the first 
bits of the microinstruction. The variable to be 
used is 'DVON'. This symbol is used as the statement 
label for the fifth microinstruction in the program 
assexbly . Thus the assembler takes the address of 
this instruction as the value of the variable DVON 
and puts this value in bits 0 through 3. The net 
effect of this code is for the program to branch to 
the instruction labeled 'DVON' if the 'DATA-VALID' 

;A:lDASM MICRO ASSEMBLER EXAMPLE 
:SIMPLE SCANNER 

Figure 7: Assetily Phase ExaTle 
for Simple Scanner. 

signal is being received while doing no operation on 
either the buffer' memory control or the device 
control signals. Step 1 on the flow diagram in 
figure 31 of reference [l] corresponds to this 
instruction. 

One should now be able to follow the complete 
program for the simple scanner shown in figure 7 . 
Note that for the fields of the microinstruction 
which control the buffer memory and the device 
counter, I have used two different methods of setting 
the bits in order to illustrate variable 
substitution. I could have used either method for 
both fields or combined them into one 
microinstruction model. 

One would think that the program given in figure 7 
would yield the same bit pattern for the 
microinstructions as shown in figure 34 of reference 
[ll . One mistake, however, has been made in the 
program as shown. It illustrates that micro- 
programming with a meta assembler is not as easy at 
it seems. The 'STOP' microinstruction model was used 
in the program statement in order to halt the 
processor. The use the 'STOP' symbol followed by t!le 
variable field '1' is correct in the last statement 
of the program shown in figure 7 . In all the ether 
instructions, however, this bit of the micro- 
instruction is left in the Don't Care state because 
the symbol 'STOP' does not appear. The default value 
'0' which is desired for these instructions will not 
be invoked unless the symbol 'STOP' appears in the 
source statement. As will be seen in section 3, all 
the Don't Care fields must be translated to either 
'0' or '1' when they are moved into the micro- 
instruction memory since obviously a memory can't 
store a Don't Care. Thus, unless all Don't Cares are 
translated to '0', the processor will not function 
pass the first instruction. Figure 8 shows the 
program corrected with the symbol 'S'IUP' appearing in 
each statement. In all but the last statement the 
default value '0' is generated because no variable is 
specified. 

; PROGRAM PHASE 

START: C0.W 
ll\lCIiK: BRDV DVON 

& ZPAC & DEVICE NEXT,,ZDAC & STOP 
& MNOP 6 DEVICE & STUP 

; RESET ALL 
; TEST 'DATA-VALID' Figure 8: Assembly Program 

BKDONiE FIN1 & MKUP & DEVICE 6 STOP 
NXTDV: 
DVUN: 

JL':ll' DVCHK & MN0 & DEVICE NEXT,IDAC & STOP 
; TEST 'DONE' for Simple Scanner Corrected. 

cori h WMPL & DEVICE & STOP 
; TKY NEXT DEVICE 

Jtib!P NXTDV & IMAC & DEVICE 
; WRITE TO MEMORY 

& STOP 
FINI: JUl\lF START & MNUP & DEVICE 

; INCREMENT MEM ADR 
6 STOP 1 ; STOP 



2.3.3 Other features in meta assemblers. 

Even a meta assembler as simple as that part of 
the AMDASM assembler described above can make 
programming a microprocessor much easier when 
compared to hand-coded binary. It may also be used 
for many different microprocessor projects and 
programs can be easily be modified when a processor 
is modified. There are other desirable features one 
would like to have in a meta assembler which would 
make programmi= even easier and .a few of these 
features are described below. 

First of all, one would like to remove the 
positional dependence of the variable substitutions. 
This may be accomplished if the assembler has what is 
called a 'keyword' ability. Consider the following 
source program statement which might come from a 
processor with a 290lA: 

ALtJ=(A(l),B(3),0R,AB,FBF),BR=[Z,LOOP) 

From the description of the 290lA, we can imagine 
that this statements calls for registers 1 and 3 to 
be selected for the A and B outputs respectively, an 
OR ALU function code with A and B as the two ALU 
operands, and the results loaded back into the 
register file. In the same microcycle the program 
should branch to the location labeled by the symbol 
'UWP' if the result is zero. The Keywords can be at 
least 'ALU=', and 'BR=' as well as 'A( )’ and 'B( )'. 
A meta assembler which could correctly interpret the 
statement this way would be much easier to write 
programs for and the programs would be much easier to 
read. One could also imagine that sy&ols such as 
'OR', 'AB', and 'FBF' could be defined in such a way 
that they would cause certain fields of the 
microinstruction to be generated independent of the 
position within the microprogram statement. 

Another feature, which is sometimes very useful in 
ordinary assemblers, is the macro capability. It 
allows the programmer, in the assembly phase to 
define one or ‘more instructions to be generated by a 
symbol defined as a macro. For example one could 
define a macro 'OR' which when written in a program 
statement thusly: 

OR A(l),B(3) BR=(Z,LooP) 

would generate exactly the same microinstruction 
shcn*n in the previous paragraph. Some ordinary 
assemblers with macro capabilities alloM the user to 
test for the number of operands. With such a 
capability in a meta assembler, the statement 

OR A(l),D,B(3) BR=(Z,LCOP) 

could be assembled as 

ALU=(A(l),B(3),OR,DA,FBF), BR=(Z,LCOP) 

where the use of the D inputs for one operand was 
understood by the assembler because there were three 
operands in the argument list. 

Another use of the macro capability is the 
generation of multiple microinstructions with one 
macro. Consider a macro called 'LOAD' which when 
written in a statement like 

JAAD 0,X4 

would generate 

MOPR=(X4,READ),CONT 
ALU=(A(X),B(X),OR,DB,FQ), CONT 
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which might be a memory read cycle with address X4 
followed by passing the memory contents through the 
2901 ALU in order to load it into the 2901 Q 
register. 

One might also want an automatic default feature 
to avoid the kind of error that was made with the 
simple scanner program as shown in figure 7 . That 
is, with the automatic default feature, any mcdEl 
microinstruction not appearing in the microprogram 
statement would be set to its default field. Such a 
feature however, might lead to other kinds of 
programning errors if the programmer had to make a 
real choice of possible variables. On the other 
hand, in all the microprogram statement examples we 
have shown so far, one had to always specify a 
'CONTINUE' for the next address selection. It would 
be easier for the pKogKEUMk?K if the assembler 
defaulted to 'CONTINUE' unless a 'Branch' was 
explicitly stated. 

2.3.4 Difficulties with meta assemblers. -- 

It seems that with an assembler of the type 
described with the AMDASM assembler that micro- 
programming can be quite easy. One way of analyzing 
the difficulty is the consider scme of the errors one 
might make and when these errors can be detected. 
Table 1 gives such a possible list of errors and also 
shows what kind of errors are unique to 
microprocessor assemblers as compared to ordinary 
assemblers. 

2.3.5 Obtaining a meta assembler. -- 

The meta assembler is a good, if not essential, 
starting point for developing the necessary micro- 
programs. The question is: . How does one obtain a 
meta assembler which has the capabilities required 
fOK microprocessors we would find in our 
laboratories. The decision is basicly whether to buy 
one or to write one. 

One can write a meta assembler in FORTRAN Or 
assembly language. It is not as formidable task as 
it might appear if one keeps the definition and 
assembly phases simple enough. Probably the most 
tedious part of the task is writing the code which 
recognizes the syntax of the character strings. One 
should consider a programming language which is good 
at this. The rest is simple. 

Since the task of recongizing character strings is 
already done by the assembler one has with a 
computer, one might like to find a way to use this 
assembler to do most of the work. One way to use an 
existing assembler is to make use of its macro 
capabilities. This approach is highly desirable 
because many of the necessary capabilities of an 
assembler will be taken care of by-the host assembler 
so the user will not need to rewrite them. These 
include the assignment of symbols to constant values, 
the handling of address labels, and the substitution 
of. variable values into instructions. Also the 
writing of the assembler is made easier by the macro 
language capabilities for decoding of parameter 
fields and the general ability for manipulating 
character strings and bit patterns. There are also 
some higher level languages which have a macro 
capability, such as PL/l, which should be good for 
writing a meta assembler. 

An example of this latter approach is the MIMIC 
assembler written at SLAC by Edward Frankf41. It 
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TABLE 1 Errors in Microprogramming 

DEFINITION PHASE 
Ille al character strings 
Unde ined P symbols 
Duplicate labels 
Bad word length 
Bad field length 

ASSEMBLY PHASE 

RUN PHASE 
Bad field 

P 
osition 

Bad field ength 
Wrong constants 
Bad timing 
Don't Cares are not 

makes extensive use of the capabilities of the IBM 
360/370 assembler. It consists of a set of macro 
definitions so that, except for EQU statements, every 
SymboiiC Source statement calls a MIMIC macro. The 
general format rules of the IBM Assembler program are 
preserved, along with its 2KKOK handling 
capabilities. 

In the definition phase of the MIMIC meta 
assembler, the ~K~~KZLINWK writes the definition of 
his fields with a set of MIMIC macros. The maccos 
generate a table of symbol names and may generate 
other macKos. The table of generated macros are 
"Punched" to an output file which is in fact the 
output of the definition phase and they may be saved 
for future use. 

In the assembly phase of the MIMIC meta assembler, 
the ~KO~KZMEK codes the program using the symbols 
defined in the definition phase. The "Punched" 
output file is the s2t of macros necessary for this 
phase. 'These macros assemble the bit pattern of the 
&Sired microinstruction into assembler constants. 
Th2 binary output is generated by a "DC" (Defin2 
Constant) IHM assembler directive. It may then be 
saved using all the normal facilities of the 
operating system. 

F?il alternative to writing a n;eta ass2mbler is to 
rent one. There are several meta assemblers 
availa!, from the time sharing comgut2r services. 
In the U.S., fOK example, the Computer Sciences 
CoKporation rents the AMDAS>l that we have already 
studied. Output is available on paper ta,pe ready to 
pro;ram Pi?c&l'S. The cost of such a service is about 
U.S. $190~SlU00 per month depending on the ?znount of 
programming done. Despite tne s2eming high cost for 
th2 rental, this may be the best answer when one has 
a a.?.11 project and does not expect to need the m2ta 
assembler for other projects. 

The same meta assemblers that one can Kent are 
g2ncrally available to buy in tiE! form of either a 
FC%TcJ?N couKce FK~JKZL? or a Load nlcdule for a mini OK 

IAiCK0 CCXpU;2K. In addition, there are other meta 
asse:rblcK that on2 can buy. Maily of the semi- 
conr;uctor manufacturers, realizing that potential 
LlS"LS of their LSI microcircuits need progrannung 
aids, are also in the business of selling meta 
assemblers. FOK example, Signetics sells a meta 
assc!iSleK written i n mi3Tm.i , while fidvanced Micro 
Ccvic2s sells an assembly program written for the 

Ordizary 
I, 

Microazsemblers 

Ordinary 
18 

Microassemblers 
,, 
II 
II 

Microazsemblers 

8088. There are also independent Software houses 
which have developed meta assemblers which are geared 
for the microprocessor logic engineer. Even IEM has 
a software product which is a meta assembler. It 
requires that the installation has APL. The cost of 
these meta assemblers is around U.S. $2000. FOK a 
survey of cc~mm2rcially available m2ta asseKbl2rs, the 
reac!er iS KefeKKed t0 a Kecsnt article by V. !',. 
Powers and J. H. Hernandez [5]. 

It is interesting to ncte that the interest in 
meta assemblers has increased dramatically sinc2 the 

availability of the LSI microcircuits. The 33x '- 
COndUCtOK manufacturers find theinseives not only 
supplying the circuits but also some software to bclp 
their customers use- them. In addition, Ei!l~d~ 
colmpanies are publishing extensive application notes 
which give examples for the us2 of their circuits. 
Whereas microprogramming was the domain of a few 
acadenics and professional computer designers in the 
past, it is now the focus of a large public education 
campaign waged by semiconductor companies interested 
in bring the technique to the largest body of people 
as possible. 

Another method to obtain a meta assembler is to 
"steal" one . That is to say, get a copy of one from 
someon which is willing to give you a meta assembler 
he has written. Since the LSI microcircuits ace 
becoming more and more in use in the High Energy 
Physics Laboratories, one will certainly find that 
some good meta assemblers will be developed. I have 
already mentioned the MIMIC meta assembler written at 
six , for example, which may be used by anybody who 
has access to an IBM 360/370. Another on2 has been 
written oy W. Wimmer at DESY[6]. 

2.4 EMULATION OF EXISTIMG CCr?l'UTER. - 

FOK a given project in which a microprocessor is 
to perforin some task, one has a generally a great 
deal of design flexibility. That is to say there aKe 
many ways in which the circuit could be designed to 
peKfOKm the task. Given a processor with a 
reasonable instruction set, the PK~KZdTUlEK can 
accomplish almost any calculation he desires. One 
microprocessor on the market (the 8X300, made by 
Signetics) has only 8 machine instructions and yet 
one could imagine doing very complicated calculations 
with it. Obviously, if the main feature of a 
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microprocessor is speed of calculation for one 
particular problem, then the choice between many 
possible designs becomes smaller. An example is the 
M7 processor[7] which was designed to calculate the 
effective mass from two particles in the detector. 

- It has, the capability of doing two multiplications 
and one addition in a single cycle. 

For a microprocessor which is designed for general 
Purse, 
design. 

there is generally a larger choice of 
However, there is one choice which can 

greatly reduce the programming difficulty. It is to 
emulate an existing computer which one has access to, 
so that software development can be done on it. An 
example comes from my own work with a microorocessor 
called the 168/E which I have described in section 
5.2 of reference [I]. The rational behind the 168/E 
was the following. A general purpose microprocessor 
must have three basic features: 

1. arithmetic and logical operations perhaps 
with a register file or accumulator, 

2. a Ilh~n:; of I~hWlOCy addressing with efficient 
indcsily capanbilities, and 

3. a means of condition branching on 
previous results. 

The design of the 168/E chosen so that all these 
conditions was satisfied in a fashion which is so 
similar to the instruction set of the IBM 360/370 
series of computers that one can easily translate IBM 
360/370 programs into microprograms for the 168/E. 

The advantages of emulation can be seen if one 
follows the steps for writing and debugging a 
program. First, a program is written in a language 
which is available for the emulated computer such as 
FO2T.P.W or assembly. One can then use a complier 
that exists for this machine to generate object code. 
Then the program is tested with real or simulated 
data on the emulated computer using all of that 
co:?>uter’s resources for program debugging such as 
line printers, interactive terminals, graphics, and 
histogram and debug software packages. The working 
program can then be translated from the object code 
into the microprogram code of the,microprocessor and 
:;i:2n loaded into it, it should work the first time. 

The reduction in overall effort can be quite 
substantial. For one thing, no software 
documentation for a microprocessor instruction set 
need be written or maintained. There would be no 
need to write an asse,mbler or use a meta assembler. 
Simulators for a microprocessor are sometimes written 
to aid prograz~ testing, but no such simulators need 
to b" written for a emulating microprocessor since 
the enulated computer serves this function. One 
should also realize that no retraining of programmers 
noeii be done which is important since most 
pro:lralXWrs only get very proficient with a 
particular machine langluage after they have much 
experience with it. The greatest advantage of all is 
tnat because of the emulation of another computer, 
the experimenters on th2 project can program the 
:l:icrcprocersor themselves in a higher level language 
tney understand, such as FCZ?TRAii. 

Tne emulation technique requires a restriction of 
tt:e d2sign of the microprocessor so that it best 
cor;~3sponds to L&e c:rulated cowuter, w!>ich is 
CL’.-:.c times called tine “target machine”. The 
translator, which is the only special software which 
needs to be written, is a partner with the hardware 
design to prod~e the desired result. The net result 
is that one has a processor which is considerably 
easinr to program yet is probably no slower in 
~xcc:ztion spzed nor not n!dch more costly then designs 

based on the same LSI microcircuits. They will be 
slower, however, than processors with a lot of 
dedicated high speed arithmetic units. 

3. POST-PRXESSING MICROPROClRW ASSE!lBLY. 

After assembling a program for a microprocessor on 
a host cowuter, one is ready to load it into the 
microprogram memory of the processor. This task is 
simple in concept but nevertheless requires soze 
additional software which must be considered as part 
of the software for microcircuits. 

The Output from the assembly stage is a object 
code file containing the bit pattern to be loaded 
into the microprogram memory. It is in a form which 
is probably convenient for storage on the host 
computer such as a disk file. It must be transformed 
into the farmst for loading into the ptocess3r i:r.ose 
memory may be in the form of Program72ble Read Only 
Gmi~y (PKN) or as a writeable control store (PW.) . 
It also must be transported from the host computer to 
the microprocessor. 

The programming of PiWMs is a software task which 
must have knowledge of the microinstruction format 
and the particular PK%l circuit chosen. First, the 
“Don’t Care” states which may still exist in the 
program must be changed to either a logic ‘D’ or ‘1’ 
since the memory circuit can only store one state or 
the other. Some P,KX+ circuits invert or co+ement 
all of its outputs and in such cases one would need 
to complement the object program file before loading 
into the PF01. l3oth of these problems are relatively 
easy to take care of during program transport. 

The number of bits available in PROM circuits is 
increasing all the time. Yet, in most cases one can 
not put all of the microprogram into one single 
circuit. For example, the microinstruction for the 
simple scanner processor (figure 33 of reference [l]) 
has a width of 13 bits and requires at least 6 words. 
A survey of the available memory circuits shows that 
the economical choice for the simple scanner is to 
us2 PRGls with 32 words of 8 bits. There simply does 
not exist on the market a memory circuit with 6 words 
of 13 bits. Thus the implementation of the 
instruction memory may be as shown in figure 9 . 
Eere two memories each containing 8 bits have been 
placed in parallel so that the first has outputs for 
the first 8 bits and the second contains the 
remaining 5 bits. Three bits of the second PRCM are 
not used and we are force to waste these bits. The 
same microprogram address is applied to both 
circuits. Since the next address logic of the simple 
scanner has an address field of only four bits, we 
have one address input line on both memories which is 
unused. In figure 9 we have tied that input to 
ground which forces that address line to ‘11’. 

The simple scanner example is a case where the 
program is smaller but the program instruction width 
is larger than any available memory circuit. When 
this PXM is programmed it is inserted into a special 
circuit which applies the required voltages to blow 
the fuses within the circuit or deposits the charge 
in the cells of EPKNs. In either case, the 
programming circuit needs as input from the object 
code only the bits from the whole instruction word 
which will be placed into one PROM circuit. This 
means one of the post-processing steps is to take the 
object file and generate a programming file for eac!l 
PRN which is required to contain the whole 
instruction word. 



-ll- 

_. 

F%FRPSESXT interface needs to be designed between the host 
MULEXOR computer and the memory bus of the microprocessor. 

In many cases, as will be discussed later, this 
interface may contain a micro or mini computer. In 
such cases, one must provide for the software for 
these two computers to communicate with each other 
and software which enables the computer directly 
attached to the microprocessor program memory to 
write into that memory. The software necessary is 
generally simple and straightforward. Yet it must be 
written, tested and debugged and as we all know even 
the simplest of software programs can sometimes lead 
to days or weeks of effort. All of this software _ 
should be considered as part of the software 
necessary for microcircuits even though it has 
nothing to do with the programs that run in the 
microprocessor. But once ths software iS functioning 

Figure 9: PROM layout for Simple Scanner. properly, it may be reused for many different 
microprocessor projects. 

Some microprocessors will have programs which are 
longer than the number of words available in PRGls. 
In this case, one would use multiple PROMS to contain 
the whole program as shown in figure 10 . In this 
figure, we have illustrated how one can use the same 

' 32 word by 8 bit PRCNs to make a program memory of 64 
words by 16 bits. The low order 5 bits of the micro- 
program address are bused to each memory circuit. 
The most significant bit and its complement is 
generated so that a "Chip-Select" signal is sent to 
only one bank of PROMS at a time. Most memory 
circuits have a "Chip-Select" input which disables 
the output of the circuit when a False signal is 
received by the circuit. One can then tie the 
outputs of two circuits together to form what is 
called a "Wired-Or" . Since only one memory bank is 
"ChipSelected" at any time, the two circuit banks in 
figure 10 act as if they were one memory circuit of 
64 words in length. The Wired-OR function is 
generally accomplished by having the outputs of the 
PF?CHs being either an Open Collector or a Tri-State 
output. 

6 BITS 

4. SOFTWARE FOR TESTING MICROCIRCUITS. 

Testing the microprogram may be a very difficult 
task, especially at the early stages of the project 
development when the microprocessor itself is not 
know to function properly. With ordinary random 
logic design if one does not get the correct results, 
then the fault must lie in the hardware. With 
ordinary micro or mini computers, if one does not get 
the correct result, then the fault must lie in the 
software. With microprogrammed processors, if one 
does not get the correct result, then the fault could 
be in either the hardware or software and one must 
try to isolate the problem. Thus, as well as 
carefully designing the processor' and writing 
programs for it, one should also carefully design a 
means of testing the processor, and testing the 
programs that will run on it. 

Let us consider for a moment, what the hardware 
faults in the processor might be. First of all there 
may simply be a logic design error, for example a 
circuit may not perform as expected because one did 
not read the specifications carefully enough. 
Secondly, there may errors in the fabrication of the 
processor, for example wires may be misplaced. There 
may be errors in the timing, for example, some 
results may be strobed into a register before they 
are ready. There may be "glitches", that is to say, 
noise pickup on some lines so that the wrong results 
are strobed into register or a clock input is 
generated at the wrong time. Although unlikely, 
there may even be some bad IC packages that need to 
be replaced with working ones. 

I I PWGRAM o ,5 
BITS 

Figure 10: Expanding Memory Space. 

Thus in transporting the microprogram object file 
to the PRCM burner, we must reformat the file to take 
into account the width of each memory circuit, its 
position in the microinstruction word, and its depth 
in the memory address length. if the microprogram 
memory is to be implemented as PAM memory, then one 
has other needs in the transport of the file. An 

4.1 -- TEST BOXES. 

In the classical random logic design, one can 
usually "drive" the circuit with a pulse generator, 
and examine the functioning of the processor with an 
oscilloscope or logic probe. If the circuit has 
multiple input sources, one could build a test box to 
generate these inputs. The test bench setup would 
look like the one shown in figure 11 . If we try to 
apply this same testing technique to micro- 
processor, we will undoubtedly run into some 
problems. The microprocessor is "driven" by its 
program and the processor operates on data coming 
from or going to external devices or memory. Tnus we 
have three separate subsystems as shown in figure 12 
and each of the subsystems must be tested to see if 
they function properly. 
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Figure 11: Traditional Random Logic Test Set-Up. 

Figure 12: Microprocessor Subsystems to be Tested. 

1 I I J 

Figure 13: Microprocessor With Test Box. 

One could follow the same approach as with random 
logic, that is by building a test box as shown in 
figure 13 . This test box can be more co:aplex than 
the random lcqic test box, however. For exe@e, if 
the microprocessor will eventually have a program 
memory in PFXX circuits, the test box may contain a 
3% memory so the user can put into it a variety of 
test programs. When using ti?e R&i, one would 
disconnect the normal memory circuits from the micro- 
processor. Of course, some switches and lights need 
to be provided in order to read, write and modify tha 
conknr3 of tne memory. Also the device or data 
m.xxy my need to be simulated or at least a means 
of preloading a data pattern into them must be 

provided in order to test the processor. 

A means of seeing what the processor has done must 
be provided as well as a means of controlling it. 
One could take as an exzxple of the numoer of lights 
and switches that should be provided, those items 
that are used by a typical minicolfiputer. Taz.?le 2 
lists what one finds on the front panel console of a 
PDP-11/20 minico‘mputer. Indicator lights are 
provided for the 18 address lines, the 16 data lines, 
and several other miscellaneous status conditions 
such as RUN, @US, FETCH, etc. Sixteen switches are 
provided for entering data or address information 
which is controlled by the switches LOAO A!XXSS, 
EX&YINE, and DEPOSIT. Tne processor itself in 
controlled by the switches FX,T/CONTINUE, SILIGLE 
STEP, and START. These indicators and switches are 
about the minimal set that one could imagine in order 
to test programs on the POP-11/20. A test box should 
at least contain these to test programs on a micro- 
processor. With a microprocessor, however, the test 
box might be even bigger than with a minicoquter 
because typically the program memory has a width 
greater than the data path and it is on a separate 
bus, so that the test box must have enough switches 
t0 handle both the program and data memory. 

TABLE 2 
PDP-11/20 Front Panel 

INDICATOR LIGHTS: 
ADDRESS BUS (18) 
DATA BUS (16) 
RUN 
BUS 
FETCH 

TOGGLE SWITCHES: 
DATA (16) 
LOAD ADDRESS 
EXAHINE 
HALT/CONIINUE 
SINGLE STEP 
DEPOSIT 
START 

Such test boxes have been build in the past to 
control CAMAC. This approach has the advantage that 
the box can be specialized to the needs of a 
particular processor and it is a conr&etely stand- 
alone system. On the other hand, the test box 
approach has certain disadvantages. 
limited capability, 

It may have 
since it itself is probably 

random logic. If one starts to add capabilities such 
as stopping the processor at certain address or 
loading the memory from some storage medium, the test 
box may be more complex than the processor itself. 
If tne microprogram grows in size, it becomes 
extremely tedious and vulnerable to error to manually 
load the memory each time the power needs to be shut 
off to Imake a hardware change. 



4.2 USE OF LGIC ANALYZER. --- 

Even with a very good test box, there are 
difficulties in testing a microprocessor with certain 
programs. For example, an error in either the 
hardware OK software may cause the pKOCeSsOK to jump 
to some unusually address and begin to do seemingly 
random operations that make it difficult to trace 
back to the source of the error. With an 
oscilloscope or logic probe one sees only one or two 
signals at a time and then only after the scope is 
triggered. If the processor halts after the error 
than one has only a single trace to see on the scope 
or one must use a storage scope. 

A very useful instrument which aids in testing the 
microprocessor is a logic analyzer. It is an 
instrument which records in an internal memory the 
logic level (i.e. 0 or 1) of its input in fixed time 
intervals. Since with microprocessor circuits, we 
are always dealing with standard logic signals, it is 
usually sufficient to look only at the logic level 
rather than the real signal. The advantage of doing 
this is that an logic analyzer can be build with many 
more channels of input than an ordinary oscilloscope. 
Logic analyzers are available on the market with up 
to 16 independent input channels. The number of 
samples recorded is limited by the size of the 
internal memory and it is typically up to 1024 
samples. The sampling rate, or inversely the time 
between the samples, is limited by the speed of the 
internal memory. With the analyzers available today, 
it is typically 20 nsec, and with some models 10 
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nsec. The analyzers generally have switch selectable 
thresholds for the standard logic families such as 
ECL and TTL. The analyzer does-not, however, record 
short signals OK glitches if they don't occur at the 
instance the signals are sanpled. Some models have 
special input circuits called "glitch catchers" which 
take any transition in an input as the recorded 
level. 

There are many other advantages of a Logic 
Analyzer over an ordinary oscilloscope. For exanple, 
a very important advantage is in triggering. With an 
oscilloscope, one can see the input signals for a 
time period after the trigger signal. Similarly, the 
logic analyzer can record its inputs after a trigger 
signal has arrived which is called the "Pre 
,Triggeriug" mode. But the analyzer can operate in 
tine other sense, that it is, it can be continuously 
recording the input signals in a wrap around buffer 
and then stop recording when the trigger signal 
arrives. This mode is called "Post-Triggering" and 
it allows one to see all the input signals before the 
trigger signal. Some analyzers even allow one to put 
the triggering time in the middle of the memory 
storage so that one can see the input signals before 
an1 after the trigger time. Another im&portant 
advantage is that once the analyzer is triggered, it 
can keep the recorded signals indefinitely, so that 
single shot events can easily been seen <and studied. 

The triggering abilities can be augmented by the 
use of a Word Reccqnizer which is frequently built 
into commercially available Logic Analyzers.- This 
device allows the user to form his trigger on the 
combined state of many input conditions. The trigger 
can then be formed from something simple such as the 
transition of one signal input or as complex as 
particular bit pattern on the memory bus. Most 
available Word Recognizers accept up to 18 inputs to 
form the trigger and even allow one to make the 
trigger only after a number of occurrences of the 
same input pattern. 

With most of the available Logic Analyzers, one 
has a choice of the way the recorded inputs are 

displayed. With an oscilloscope, one has only one 
mode. In this mode the signal levels are displayed 
vertically on the screen and time is displayed 
horizontally from left to right. Logic Analyzers can 
also display their data in this way and it is called 
the “'Time Dcrain" mde . But tiey can also display 
their memory as data words with possibly a choice of I. 
binary, octal, or hexadecimal format. This mode is 
called the "Data Domain" and it is very useful for 
program development since it seems moKe like a 
program trace that the programmer is used to. \,'c t 
another mode is called the "Nap" mode. It treats the 
input signals as one data word and plots a pint on 
the screen for each possible data word. The most 
significant bits of the word form an displacement 
vertically while the least significant bits are used 
for a displacement horizontally. Thus one can get a _ 
feel of the flow of a program and the human eye can 
spot unusual events by pints being very displaced 
from the normal pattern. 

4.3 CCiPUTER BISED DEVEIOP:.lEVT SYSTEX. 

The logic analyzer greatly improves ones ability 
to find errors in the microprocessor even with a 
simple test box. But not all the problems are solved 
with it. One still has the problems of loading by 
hand the processor's memories and reading the 
results. Another approach is to use a micro or mini 
computer as the "test box". In this approach the 
design of the microprocessor would be made so that 
one could build an interface from a computer to the 
processor which allows the computer to gain access to 
the memories and various control points of the 
pKOCeSSOK, for example the processor's clock. One 
can than emulate the test box functions with software 
in the computer. Such a setup is illustrated in 
figure 14 . The micro or mini computer in this setup 
is called the “Host Ccixputer”. _ 

CRT 
TERMINAL 

MASS 
STORAGE 

+--[Olcll 

MICRO OR MINI 
COMPUTER 

X-Y DISPLAY 

Figure 14: Computer Based Developnt System 
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The use of a micro OK mini computer for a test box 
may seem to be an expensive and overkill solution to 
a simple problem. But the cost of small computers is 
so low that they are probably not much more exp:nsive 
then a test box with many 
switches. Throqh 

its softzdItor lights and 
'a it offers runy 

advantages over all but the most sophisticated test 
boxes. However, the software needs to written and 
debugged and one should consider this software as 

*part of .the so&are supprt for the microprocessor 
project. 

Let us consider what software one might like to 
have for the host computer. The software can be 
organized as two set of programs, one set to move 
blocks of data as files and the other which allo! the 
user to dynamically interact with the processor under 
test. FiKSt of all, one needs to be able to load the 
memory of the microprocessor from the memory of the 
host compute: or some storage medium. The LOAD 
prcgzam may have a few options such as loading only a 
segment of the program or starting the load at some 
specified starting address. Since the processor's 
rwmory is also to be tested at som3 stage of the 
project, one should include a means of verifying that 
the memory was loaded correctly. 

During the testing one would like to be able to 
examine and display individual words in the micro- 
processor program or data memory. The data should be 
formated for display on the host computer's terminal 
in a fashion that is easy to understand such as 
binary, octal, or hexadecimal or even a mixture in 
some applications. For example, the display program 
mY recognize the fields in the microprocessor 
program ,memory and display them as rrnexonics. One 
should also be able to modify individual words in 
order to correct p~og~m errors or to try different 
cases. All of the above features are available on 
most micro or mini co.mputers that don't have front 
panels. For exanple, the DEC LX-11 has a subset of 
the ODC program built into the processor to provide 
these functions. Finally, one should be able to read 
blocks of the microprocessor's memory and save it in 
t!?z host co.?puter or its storage medium, This would 
be useful after the program has been modified until 
!t wrks and one would like to be able to reload it 
at a future date or use the saved file as input to a 
Pi..& burning prcqam. 

The next set of programs to be written on the host 
computer are programs to control the processor 
itseif. Tne basic set are used to emulate the normal 
front panel console switches such as P&T, START, and 
s I >.;':. E-srgp -u . One should also be able to load and 
display tne microprcqram counter and perhaps some 
other important registers. A very useful function 
would be to and . single step the processor 
automatically display the contents of a register in 
orcar to trace inhere sc‘mething went wrong. Ar,d 
finally, if one could cause the processor to stop 
w>;:: a certain address or data word is encountered, 
oile would nave all the capabilities that most 
con-xte:s have to trace down 
dlfficultics. 

prcgrar~ or hardjJare 

The usefulness of comp&er based development 
SySkC6 has be recognized by many semiconductor 
manu+a:uturers. Some are offering for sala complete 
systris; designed for microprocesso; development.- An 
exz$e of such a systen is the System/29 which is 
made by 2 company -called Advance Xicro Computers 
which is a partnership het,~aen Advanced Kicro Devices 
and Siemens. This system is also described in a 
microcircuit scecification bcoki31. It includes a 
stand-alone W&I nicrocoquter with floppy disks, CRY. 
terminal, optional hardcopy printer, and a box in 
which one puts his own designed microprocessor. 

Prototype boards are available to simlatc the 
eventual microprogram ?ikKlt witn RX.1 and E standard 
next address logic bsard usiq a microso.rce::cer . 
ThlS sy'tem costs U.S. $25,!Wd. This price includes 

other software to aid in dst~gging the mic-ropro<essor 
under test. 

The use of a micro or xhi. ccizp,. tr: r to hg the 
controlling element for the micropro.cescsr is nst 
unique in tile computeZ field. Gne can fir.2 si::ilar 
ex.k+es in large ccquter systems. For p:;&,:Dl.' _ -, the 
Amdahl 47Q,'V6 ccrquter has a Data General i<GiJA 
computer built into it's console display. T,ie ‘;O',IA 
can read almost every rqiscer in the large machine. 
Another cxt,1ple is the Digital ELql i; :;".I t 
Coqporation's X%-11/783 in which an s;ji-li 
microcomputer handles the system terminal. In mth 
co.7@lters the micro or mini co,nputer handles the 
. oiagnostic routines ana - the system corsole. N?it::,2r 

;nachine has anything in the way we normally think of 
computer front panel consoles. 

4.4 USE OF CCXWUTER CEN'IER'S CYWUTER. --____________ 

Given that one has a host ccvputer that acts as 
the front panel for the microprocessor, one still nas 
to consider on how one is going to store files and 
run the microprocessor's assembler program. This 
assembler program could well run on the host corrqter 
but not without soma additional peripherals on this 
computer such as mass storage, and line printers. In 
High Energy Physics, most of the laboratories i:;:ere 
one would be doing tie microprocessor d~e‘/~ilopTmt 
work have a co+uter center and the question arises 
as to wiiether one should use the computer center for 
file storage and program development. In many cases 
a simple connection between tbe host COKputei and t!:e 
computer center for the transfer of files is an 
approach which offers many advantages, 

First of all, the peripherals are the most costly 
part of a computer system, especially with micrc- 
computers since the CPU cost is very low. By using 
the Computer Center's peripherals one can greatly 
reduce the cost of the local computer system. Even 
with some local peripherals such as floppy disk, one 
generally has a more limited program developent 
ability on a small micro or mini computer. One is 
also more likely to find useful cross assemble; 
software available for the computer center computers 
than the inexpensive local computer. 

All of the above advantages are obvious at first 
'glance and may very well justify using the computer 
center for microprocessor program development. But 
there are also many hidden advantages which may be 
equally important from the point of view of hardware 
costs and more important in terms of man power costs. 
First of all, one can reduce the cost of the local 
computer to the bear minimum. This could mean tiiat 
it wculd consist of only the CPU, some RAM memory, an 
interface to a terminal, an interface to the computer 
center, and a some RW memory to get started. Since 
there will be no moving parts, the cost is only in 
in,expensive components. The reduction on peripherals 
also leads to a substantially reduced maintenance 
cost. Very little space in the laboratory would &a 
required for the system which ailows more room to 
work on the microprocessor or allows more flex- 
ability on where to place the equipment. 

There is also a very large reduction of time 
consuining tasks for the personal involved in the 
project. All the facilities of the corquter center 
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are presumably already known so there is no lost of 
time to retrain people with a new system. The 
computer center most likely has a better text editing 
system than those found on small systems. There will 
also be a file management system with much more space 
available to the user. Included with the file system 
will a routine data management system, that is, a 
system where by files are archived and backup tapes 
are regularly made. When batch jobs are to be 
submitted to_rfo cross assembly work one can use the 
job entry system which is already well know including 
all the job control language that is necessary. The 
computer center will have many more peripherals and 
more kinds of peripherals than one would think of 
putting on a low cost local computer system. They 
may include high speed line printers, microfiche 
printers, graphic plotters and terminals, etc. On2 
has global access to the computer center from any 
terminal in the laboratory rather than the one 
terminal for the local computer which allows more 
flexibility in working. The computer center is also 
set up to be multi-user, so that more than one person 
can work at a time on software for the microprocessor 
project and yet they can share the same data base 
files. 

The cost of the connection between the local 
computer and the computer center can be minimized 
when one realizes that the data transmission rate 
need not be very high. For example one can let the 
local computer emulate an ordinary terminal from the 
point of view of the computer center. Data files 
could then be prepared before transmission with 
certain keyword characters so the local comptiter can 
take the characters as data rather than repeating 
them on its terminal. In this way no software for 
the connection need be written for the computer 
center's computer and the local computer need only 
have an ordinary terminal interface to the center and 
a very small amount of software. Such a simple 
connection was used for the local computer for the 
168/E test bench shown in figure 15 . The terminal 
emulation program located in R&l is only 256 words in 
length. 

Many laboratories have or are developing computer 
networks which would allow high s-d data 
transmission between the computer center and the 
local computer. They offer better facilities in 
bringing down large programs with error checking and 
correcting on the transmitted data. 

5. SMQW 

We have seen that there are two parts of the 
software for microcircuits. The first part is the 
programs for the micreprocessors, while the second is 
the software support programs. The support software 
can turn out to be much more extensive than the 
processcr's programs. This does not mean that the 
user of microprocessors will drown in a ocean of 
support software, but he must simply learn how to 
sGrn in deep water. 

GDT IN 
MICROPROGRAM 

TERIMINAL 
EMULATOR 

4 KW 
CRT ROM 

TERMINAL 

SERIAL 
I/O 

Figure 15: Test Bench for 168/E Project. 
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