s

_symbolic language.

SLAC-PUB-~2206
October 1978
(1)

SOFTWARE FOR MICROCIRCUIT SYSTEMS*

Paul F. Kunz

Stanford Linear Accelerator Center

INTRODUCTION

Modern Large Scale Integration (LSI) microcircuits
are meant to be programmed in order to control the
function that they perform. In reference{l], I have
already discussed the basics of microprogramming and
have studied in some detail two types of new micro-
circuits. In this course, I will explore the methods
of developing software for these microcircuits. This
generally requires a package of support software in
order to assembly the microprogram, and also some
amount of support software to test the microprograms
and to test the microprogrammed circuit itself.

1. MICROPROGRAM ASSEMBLERS.

1.1 ASSEMBLERS IN GENERAL.

An assembler 1is a support software program which
allows the programmer to write a program in a
It does many tasks for the
which greatly relieves to tedium of
These tasks are illustrated in an

programer
writing programs.

- éxample of assembly language program given in figure

1 which comes from the output of the IBM 36@/370
Assembler. Of interest to us are the columns labeled
'LOC', 'OBJECT CODE', and 'SOURCE STATEMENT'. Under
the column labeled 'LOC' is to relative address of an
IBM 364/370 instruction which is represented in
hexadecimal format under the column labeled 'OBJECT
COLE'. The symbolic program is presented under the
colunn labeled 'SOURCE STATEMENT'.

The first task of the assembler is to convert the
symbolic operation codes into the machine binary
code. For example, in figure 1 the operation code
'SR' was converted into the machine code '1B' and
placed in the proper field of the machine instruction
as shown at 1. A second task is to substitute for
symbolic variable names the machine binary form. One
can see at 1 in figure 1 that the symbols '3,2' have
been converted to a binary form and placed in the
proper fields of the machine instruction for the
source and destination registers. Also, at point 2
of the figure the symbolic variable name 'ZAS(7)' has
been substituted with the proper form of memory
addressing. The third task is to substitute symcolic
addresses with the binary addresses. In figure 1 at
point 3, the instruction at location '17A' was given
the symbolic label 'A22°. All references to this
location made by the program used the symbolic name
such as the one at location '19C’. The assembler
substitutes for the symbolic name the actual address.

This was also the case for the address of the
symbolic variable given at point 2. The fourth task
for the assembler is to supply after all the

conversicns and substitutions a complete binary

Stanford University, Stanford, California 94395, U.S.A.

program that can be loaded into the processor. In
the case of the IBM assembler, this machine code is
called the Object Code.

With the aid of the assembler, the programmer can
write programs of great length and complexity which
would be too difficult to write directly in machine
code. Instructions can be inserted or moved without
difficulty when all variables and branch addresses
are referred to symbolically because the assembler
will do the work of calculating the real addresses in
generating the Object Code. The programmer is also
almost completely relieved of having to know about
the placement of the - fields in the machine
instruction and the details of addressing memory.

The assembler is generally given by or bought from
the manufacturer of the computer when one receives
the computer as part of a package of support
software. It is written expressly for the computer.
If one is to supply an assembler for a microprocessor
of one's own design, then one has the problem of
having an assembler written for that machine.
Methods of doing this will be discussed in the next
sections.

1.2 MICROPROCESSOR ASSEMBLERS IN GENERAL.

An assembler written expressly for a micro~
processor should have the same general features as an
assembler for a computer. One should realize,
however, that there may be some major differences
between the instruction set of a microprocessor and a
that of a computer. Take for example the question of
the operation codes. A computer typically has a set
of about 188 to 4600 instructions. Each instcuction
may have a few parameters, and these parameters are

specified in a way which is common to many
instructions. For example, the 'Subtract Register'
(SR) instruction of the IBM 360/378 discussed above

had two parameters, the source and destination
registers. An 'Add Register' instruction has the
same two parameters and they are specified in the
same way.

A microprocessor might have an several orders of
magnitude more operation codes if we tried to define
them in the same way as computer operation codes.
For example, a processor with a 2991A bit slice
microprocessor requires that the source, function and
destination fields be specified as was shown in
figures 36 and 37 of reference {1]. Since each of
these fields is 3 bits in length, there would be 512
combinations which could be considered operation

codes. And since the CARRY~IN to the least
significant bit also needs to be specified, we find
that there are really 1924 combinations. The A and B

addresses, of course, may be considered as operands,
as were the source and destination registers with the
IBM 368/370.

Besides the fields of the
defining the operation of the 29614,
microsequencer in the processor.
sequencer, for example,

microinstruction

we may find a
The 2918 micro—
has a 5 bit microinstruction

* Work supported by U. S. Department of Energy, EY-76-C-03-0515

(Presented at the 1978 CERN School of Computing, Jadwisin, Poland, May 28, - June 10, 1978.)

LOC OUJECT CODE "ADDR!1 ADDR2 STMT SQURCE STATEMENT
11t = LOOP DVER U
201156 41873 BYINS noNoS 112 A2t LA 11+44(s11)
00015A 58730 BO0O 00000 113 L 3«0(+11) NEXT 5%y
C001SE 1233 114 LTR 3,3
290167 424 DLIAE ® 979 1BA 115 jsiet 4,A10 A3=—~1 => END S5%U STRING
000164 (1132 TG SR 3,2 S¥U~8¥Y+KA
310166 593 15,.973C 19334 117 TMNZA
00N16A 4740 D14A 00156 118 (31 4,A21 GET NEXT S*U IF R3 < MNZA
J001€E 5530 $04Q 00338 115 C 3,MXZA
339172 472) DIAE 29 1BA 129 ne 2,A10 GET NEXT Y IF R3 > 4XZA
121 *
122 % LOOP OVER Z
123 %
000176 41C0 9220 00318 124 LA 12.LZA3X-4 (ADDRESS—4) OF 3%ZA
00017A 41CO CNOA 000204 125 1264(s12)
30017E 3840 COCO 00000 126 4000012} NEXT 3%2Z
000182 1244 127 4ek
702184 4740 D1AA 29156 123 4,421 R4=-1 => END 3%Z STRING
000188 1147 129 433 3KZ~SEULAR Y=KA
0001BA 4743 D18C 00198 130 A23
DOGLRE 1946 131 416 COMPARE R4 AND TESTA (R4)
000197 4720 D14A 00156 132 A2l GET NEXT S*U IF R4 > TESTA
200194 47F0 D198 001A0 133 AZ4
000198 1044 134 444 A3 SOLUTE VALUE
00019A 1946 135 46 COMPARE R4 AND TESTA
INN19C 472) DIGE 2017A 136 GET NEXT 3%Z [F R4 > TESTA
137 %
138 * GOOD MATCH
129 *
0001A0 4159 5CO1 00001 140 A24 LA 541(45) CANFASCANFA+1
0001A4 1864 141 LR 6.4 NEW TESTA
0001A6 3 ; ® 00000 142 1 423 212)
0001AA(5047 9044 y= DU33C 153 -=(5T 4. ZAS(7)) 3%Z MATCH PT
7321AE 48 #ls] 411202 144 CH APIVE R WD |
0001R2 5047 905C 003548 145 ST 44 YAS(7) Y MATCH PT
C00136 47FC DIGE 0017A 146 8cC 15,822
147 * GOOD MATCH FCR THIS Y ?
0QO1BA 1255 148 A1lO LTR 5,5
0001AC 478C DICO co1cc 149 BC BeAll
00GICO 4170 7004 00004 150 LA 79447} INCREMENT AST INDEX
CO01C4 SAS0 9078 00370 151 A S AMTCH
1031CB 3752 9178 3237¢ 152 sY S AMTCH
CQOICC 41AQ A0CO2 00002 153 ALl LA 1042(,10) INCREMENT Y ADDRESS
0001D0 4650 Di3a 00140 isg . pct 18,4 A20 (KNT=KNT=-1) END YA 7
5
000104 5810 D22C 00238 156 L La=Fo=-1¢
00CiNa 5017 9044 3933C 157 SY 1+ZAS5(7) ENTER ~1 AY END OF STRING
0001DC 5017 $0SC 00354 153 ST 14YAS(7)
00QLEC 8A7C 0002 00002 159 SRA 72 MATCH PTS = (R7)/4
Pigure 1: Example of Assembler Output.
code 1if we include the condition c¢ode enable bit 2. GENERATION OF MICROPROGRAMS

along with the four next address instruction bits.
If the next address control circuit were as shown in
figure 48 of reference [1], then we must also
condsider the four bits which control the condition
code multiplexer. All the combinations of next
address control must be Jjoined with the 2901
instructicn which would lead to a total of 524,288
operation codes.

Thus, it 1is general practice for microprocessor
assemblers to divide the microinstruction into
several fields each with its own set of operation
codes and operands. Whereas an ordinary computer
assembler generates one machine instruction for one
operaticn code, the microassembler may expect several
operation codes to be concatenated into one micro-
instruction.

Another difference between ordinary computer
instructions and microinstructions is the appearance
of Don't Care fields in the microinstruction, 1In the
case of the simple scanner described in section 3 of
reference (1], the branch address field was not used
for instructions in which the next address was taken
as the next sequential address (CONTinue
instructions). As we will see below, it is also
convenient to have *“Default" fields in the micro—

instruction. A microassembler must be able to handle
these situations as well as the multiple operation
codes.

There are many methods for generation of micro-
programs and we will study four of them. The choice
of which method to use depends on many factors, such
as the length of the expected programs, the execution

efficiency required, the complexity of the
instruction set, etc. And as with programming
computers, a programming language that generally

leads to efficient code such as assembly language may
be rejected in favor of a programming language which

is easier to use by a average programmer, such as
FORTRAN,
2.1 HAND~CODED BINARY.

Hand—Coded binary programming is a method in which
the programmer writes directly in the binary bit
pattern of the processor’s microinstruction set.
This method was used in programming the simple
scanner in section 3 of reference [1}. Figure 33 of
reference [1] gave the instruction set of the
processor. The program to perform a scan of devices
with data was written in only six instructions as was
shown in figure 34 of that reference.

The Hand~Coded binary method was a perfectly
viable method in the case of the simple scanner.
Unlike the methods which will be discussed in the
following sections, it requires no support software
in the form of assembler programs. The only support

software that may be needed is a way of éctually
loading the microprogram memory and even there one
could think ways to get around using software to do
this,

If the program should become very long this method
can be vesy tedious. It is also relatively difficult
to read the program many months after is was written.
Modifying the program may also be very time con-
summing. For example if one inserted a few new
instructions in the middle of a program, then one
might need to change many other instructions in order
to correct the branch address field for those
instructions which have changed their address. The
hand-coded binary method should probably only be used
for very short and simple microprograms which do not
need to be modified often.

2.2 DEDICATED MICROASSEMBLER.

A dedicated microassembler is an assembler which
has been written to assemble programs for one

microprocessor. If: the processor is simple, and one
does not expect an assembler with many of the
sophisticated features we normally associate with

assemblers that come with computers, then one can
write a dedicated microassembler relatively quickly.

As an example of a dedicated microassembler, let
us study a microprocessor designed by Guzik for use
at experiment at Fermilab[2}. 1It's purpose was to
read data from a CAMAC crate and make a decision on
whether the event should be read out by the host
computer., Figure 2 is a simplified block diagram of

the processor which is based on the 2901A bit slice

microprocessor and a 2989 microsequencer.

CAMAC
NAF CAMAC
i
wicRo NAF b= | LacC f
PROGRAM
1A MEMORY ACCCLK
NAFCLK
PIPELINE MPX
REGISTER
ALUCLK
16 8 5
2901
1,C,AB ARRAY
D
2909 SO,Slete. | CONTROL
SEQUENCER LOGIC
X 2
L————__I SEQCLK i
Figure 2: Block Diagram of Guzik's Processor.

As is shown in figure 3, the microinstructions are
24 bits in 1length with an 8 bit control field and a
16 bit operand field. The control field has bits
that are routed directly to the control points within
the processor. Two bits control the next address
multiplexer of the 2909 (S@,S51). The SEN bit enables

word and the symbol 'AX' is used for this word.

the stack file of the 29@9. The CND bit allows the
SIGN bit from the 29¢1A to be ORed with the least
significant bit of the microinstruction address.
This is the only form of conditional branching the
processor can execute. The MPL bit was used for
iterative multiplication. The DAT bit controls
whether the operand field 1is clocked into the
accumulator register or the CAMAC address register.
The MPX bit controls the multiplexer at the input to
the 2901A. It selects either the accumulator
register which could be loaded from the 16 bit data
operand field of the instruction or the data on the
CAMAC READ lines. And finally, the MOD bit
controlles whether the 2981 or a register is clocked.
The operand field may be used for one of four
purposes: a 16 bit data word, a 16 bit micro-
instruction address, a instruction for the 2961, or a
CAMAC command. Figure 4 shows the bit assignments in
the Operand field.

Figure 5 is an example of the processor's
microassembly source code. The control field and
operand fields are handled in different ways. For
the control field the source 1is divided into 7
columns corresponding to the 6 control bits and the

one 2 bit field. In these columns, the program
writes a symbol to generate a '8' or 'l'. These
symbols are easily interpreted in terms of what the
processor is controlling during that micro~
instruction. For some of the fields, the a blank

means the Don't Care state of that subfield, while in
others it means the Default value. ’

As discussed above, the operand field can have one
of four different meanings. The first character of
the operand field of the source code contains a
symbol which tells the assembler which kind of
operand follows. These symbols are

$ for data operand

* for microinstruction address

& for 2981A instruction field

for CAMAC command
Within the rest of the operand field are further
symbols to indicate parameters to put into the
subfield, if any, of the operand. The micro-

instruction address may have a symbolic name or label
and it is placed in the 1left most column of the
instruction. The right most column is reserved for a
comment field.

If we look 1in detail at a few instructions we
should be able to see how the assembly language is
used. The first instruction has the symbolic label
'START' . The MOD column has the symbol 'OPR'
indicating that the 2901A will not function for this
cycle. The DAT column has the symbol 'NAF' so that
the operand field will be loaded into the CAMAC NAF
register. The SEQ field has the symbol 'CNT' so that
the next microinstruction will be taken from the
microprogram counter register of the 2989. The
operand field'starts off with a '#’, thus the operand
contains the CAMAC address and function. The symbol
'N(3)"' means that the station number subfield should
be filled with a '3"'. Similarly, the symbols 'A(9)'
and ‘F(2)' cause the subaddress and functions
subfields to be filled with '8'. The net effect of
this instruction is thus a CAMAC Read at station 3
subaddress 9.

The next instruction is similar to the first
except that the operand field is loaded into the
accumulator as is indicated by the symbol 'DAT' in
the DAT column. The operand field starts with the
symbol '$' to show that what follows in a single data
Thus
this instructicn loads a 16 bit data word from the

24 BIT MICROINSTRUCTION WORD

| OPERAND FIELD

| CONTROL FIELD |

8 BIT CONTROL FILELD

-

P

L
{

I
for 2909 00 = Program Countex (CNT)
= §0 next address 0l = R-Register (REG)
e §1 multiplexer 10 = Stacﬁ (STK)
11 = Direct Data (DIR)
~——=-——— SEN 0 = Stack disabled (default)
1. = Stack enabled (SEN)
w~=—wme—=— CND O = SIGN flag disabled (default)
1 = SIGN flag enabled (CND)
------------ MPL O = normal 2901A operation (default)
1 = conditional ADD in 2901A (MPL)
mmeememe—ew——— DAT 0 = operand field to ACC. Register (DAT)
1 = operand field to CAMAC Command Register (NAF)
———————————————— MPX 0O = ACC. Register to 290lA D input (ACC)
1 = CAMAC Read lines to 2901A D input (CAM)
MOD O = 290lA operation EALU)
1 = Data or Address (QPR)
Figure 3: Control Field of Guzik's Microinstruction Word.

16 BIT OPERAND FIELD
DATA Operand

| DATA

|

Microinstruction Address Operand

| ADDRESS

2901 Instruction Operand

] A} B] b | F | s

16}

‘———-—— CARRY-IN

2901 Source code

e 2901 Function code

2901 Destination code

B-Register address

CAMAC Command Operand

A-Register address

{E|L| N I A F

e CAMAC Function code

CAMAC SubAddress

CAMAC Station Number

CAMAC LAM generation

Figure 4:

operand field of the microinstruction into the

accumulator register.

The 2901A will function in the next instruction as
indicated by the symbol 'ALU' in the MOD column. The
D input multiplexer selects the accumulator source as

END (stops processor)

Operand Field of Guzik's Microinstruction Word.

indicated by the 'ACC' -in the MPX column. The
operand field starts with the symbol '&' which means
that the operand field source is be read as subfields
of the 2901 instruction. In this instruction the
2981 source, function and destination codes are
programmed to be 'D,8', 'OR', and 'F~->Q'. The A and

-5-

75}LABEL: MOD MPX DAT MPL CND SEN SEQ, OPERAND FIELD ;COMMENT
00/START: QPR NAF CNT, #N(3) A(0) F(0) ; NAFREG:=NAF(X1)
01/ OPR DAT CNT. SAX ; ACC:=AX
02/ ALU ACC CNI, &A(X)B(X) D,0 OR FQ 0 } Q:=ACC
03/ ALU CAM CNT, &A(X)B(2) D,0 OR FEF 0 ; R2:=CAMAC(X1)
04/ OPR SEN DIR, *MULTI : JSR MULTI
05/ ALU CNT, &A(2)B(0) 0,A OR FBF 0 ; RO:=Rl
06/ OPR NAF CNT, #N(3) A(l) F(0) : NAFREG:=NAF(X2)

- 57/MULTI: ALU CNT, &A(X)B(1) 0,B AND FBF 0 ; Rl:=0 '
58/ ALU MPL CNI &A(2)B(1)} A,B ADD UFQ O ; COND ADD AND SHIFT
59/ ALU MPL CNI &A(2)B(1) A,B ADD UFQ O ; COND ADD AND SHIFT
60/ ALU MPL CNT &A(2)B(1) A,B ADD UFQ O i COND ADD AND SHIFT
61/ ALU MPL CNT &AEZ)B 1; A,B ADD UFQ 0 ; COND ADD AND SHIFT
62/ ALU MPL CNI &A(2)B(1) A,B ADD UFQ O ; COND ADD AND SHIFT
63/ ALU MPL CNT &A(2)B(1) A,B ADD UFQ O ; COND ADD AND SHIFT
64/ ALU MPL CNT &AEZ)B 1 AJB ADD UFQ O 3 COND ADD AND SHIFT
65/ ALU MPL CNT &A(2)B(1) A,B ADD FBF 0 . ADD
66/ OPR STK, $0. ; RETURN

Figure 5: Example of Guzik's Microprogram.

B register address are not used which is indicated by instructions and their model format. That is to say,
the 'X' in the symbol 'A(X)B(X)'. In the next the programmer specifies the symbols which will be
instruction, however, the data on the CAMAC Read used in the assembly phase to produce the binary bit
lines are loaded into register 2 of the 2981. Note pattern of the microinstruction. The assembly phase
the symbol 'CAM' in the MPX column and the operand then uses the output of the definition phase and the
field symbol 'A(X)B(2)°. source program input and operates in the same way as
an ordinary computer assembler.

The next instruction illustrates how a subroutine
call is programmed. The stack enable bit (SEN) is In order to study the properties of a mreta
turned on with the next address multiplexer of the assembler, we will study in some detail a meta
2909 selecting the D ipputs ('DIR' in column SEQ). assembler called AMDASM which was written by Advance
The operand field must then contain a micro- Micro Devices for users of their LSI microcircuits.
instruction address so it starts with a '*'. The We will only discuss only the some of the features of
operand field contains the symbol 'MULTI' which is AMDASM in corder to bring out the basic ideas. More
also used further down in the program to label a details may be had in the reference manual which is
microinstruction address. The microassembler will included with the book on circuit specifications[3].
substitute the binary address of MULTI into the
operand field of this instruction.

It is left as an exercise to the reader to read 2.3.1 Dpefinition ghasé example.

the rest of the program. One might accuse this

microassembler of being rather primitive, but the The definition phase of the AMDASM meta assembler
author feels it fits well to the task it must do. has two basic statement types: the EQU statement and
The processor was designed to execute a simple the DEF statement. An BQU statement 1is used to

program and one can even notice that not all the generate a symbolic name for a constant value or

functions of the LSI microcircuits were implemented expression. An example would be:

in the circuit. Likewise, the microasseubler only is

capable of doing what the programmer needs: to write S4: EQU B#109

the relative short programs that this processor will

be used for. Programming this processor with the which sets the value of the symbol 'S4' to a 3 bit

assembler is considerable easier than using the hand- binary number '108'. Once the EQU statement is made,

coded binary method and yet the assembler is not so any further reference to the bit pattern '1¢6' may be

complex that it is difficult to write. made by using the symbol 'S4’, A choice of four
number systems may be made. The programmer selects
which one by the letter in front of the '#' symbol as

follows:
2.3 META ASSEMBLERS.
, B for binary,
Assemblers for microprocessors or computers Q for octal,
perform very similar tasks. The code that must be D for decimal, and
written to write an assembler is also very similar. H for hexadecimal.
It is possible to divide the task into those parts
which are the same for all machines and those parts The purpose of the EQU statement is the same as in
which depend on the processor's instruction set. ordinary assemblers, it relieves the programmer of

Then, if an assembler would be written to accept as the tedious task of always coding the bit pattern.
input the definition of the processor, we could reuse Instead he can code a symbol which makes the program

thic sort of assembler for many different processors. not only easier to write but also much easier to read
Such an assembler is called a an assembler assembler and understand at a later date. Also, if the
or 2 "meta—assembler", constant bit pattern need be changed, it may be done

only at the EQU statement rather then throughout the
A meta assembler operates in two phases, the program where that pattern may be used. Consider for
definition phase and the assembly phase. The example setting up the function code field of the
definition phase, which must be executed first, sets 2901, We may write the following EQU statements:
up tables with the programmer's defined set of

ADD: EQU Qi ; R PLUS S
SUBR: BEQU Q#l ; 5 MINUS R
SUBS: BQU Q#2 ; R MINUS S
OR: BQU Q#3 ; ROR S
AND: EQU Q#4 ; RAND §
NOTRS: EQU Q#5 ; (NOTR) AND S
EXOR: EQU Q#6 ; REX~CR §
EXNOR: EQU Q#7 ; R EX-NOR S
The DEF sfatement is a model of the micro-

instruction that is to be generated by a symbol in
the assembly phase. The microinstrucion word 1is
broken up into fields of specified length with the
sum of the lengths being equal to the length of the
microinstruction word. There are three kinds of
field specifications: constant, variable, and “Don't
Care". A constant field is one which always supplies
the same constant bit pattern each time the micro-
instruction is invoked 1in the assembly phase. A
variable field is one in which a variable value may
be supplied in the assembly phase. One feature of a
meta assembler which is not common to an ordinary
assembler, is that if the variable wvalue is not
explicitly stated in the assembly phase then a
default value for the field is supplied by the
assembler. The DEF statement also provides a
mechanism for specifying the default value. The
"Don't Care" fields are those which are unaffected or
not needed by the model microinstruction.

;AMDASM MICRO ASSEMBLER EXAMPLE
;SIMPLE SCANNER

 DEFINE WORD LENGTH

WORD 13
} DEVICE CONTROL EQUATES
ipac: EQu Bl
NEXT: EQU B#1
ZDAC: EQU Bi#1

! NEXT ADDRESS CONTROL DEFINITIONS
CONT: DEF

4X,28#00,7X% ; CONTINUE
BRDV: DEF 4VX, 28401, 7X 3 BRANCH IF “DATA-VA
BRDONE: DEF 4VX, 28#10,7X s BRANCH IF “DONE”
b4

JuMp: DEF 4VX, 2B#11,7X JUMP

1 MEMORY CONTROL DEFINITIONS

As an example of the DEF statement,
simple scanner example again. Figure 33 of refere
{1} defines the fields associated with that
processor. Using the AMDASM assembler we can define
the following microinstructions to handle the

branching portion of the microinstruction as follows:

Figure 313 of re

consider the
Faraoncra
ALTLTIIWG

CONT: DEF 4X,BY439,7X ; CONTINUE
BROV: DEF 4VI4F,B#91,72 ;BR DATA VALID
BROONE: DEF 4VH#F,B416,7X ;BR DONE

JU4P: DEF 4VH#F,B#11,7X ;JU4P

In the first statement, the symbol 'CONT' is a micro-
instruction with 3 fields which are separated by
a','. The first and last are Don't Care fields
which is indicated by the 'X'. These fields are 4
and 7 bits in length respectively. The second field
is 2 bits in length and contains the constant vealue
90 binary. The same number system specification as
the EQU statements are used in the DEF statements.
In the remaining statements the first field is a
variable field four bits in length. The default
value will have the value ‘F' hexadecimal, The
second and third fields in these statements are like
those of the first statement except the constant
value is different. A complete input to the
definition phase of the AMDASM assembler for the
simple scanner is shown in figure 6 .

LD’

Figure 6: Definition Phase Input
for Simple Scanner.

k4

ZMAC: DEF 6X,Qit4, 4X ; ZERO MEMORY ADDRESS COUNTER
IMAC: DEF 6X,Q#2,4X 5 INCREMENT MEMORY ADDRESS COUNTER
WHEM: DEF 6X,Q#1,4X 3 WRITE TO MEMORY

MNOP: DEF 6X,Q#0, 4X ; MEMORY NO OPERATION

} DEVICE CONTROL DEFINITIONS
DEVICE: DEF 9X, 1VB#0, 1VB#0, LVB#0, 1X

! STOPPING CONTROL
dToP: DEF 12X, 1VB#0 ; SET TO “1° TO STOP
END
X
2.3.2 Assembly phase example.
The assembly phase reads the source program
statements, substitutes values for the constants and
labels, and generates the bit pattern which is to be

loaded ino the microprogram memory. The symbols used
in the source statements must be either those defined
in the definition phase or from EQU statements given
in the assembly phase. The meta assembler in this

VARIABLE FIELDS ARE:
“NEXT® PULSE

INCREMENT DEVICE COUNTER
ZERQO DEVICE COUNTER

phase looks very much like an ordinary assembler
except for its ability to overlay or concatenate
several microinstructions into a single micro-
instruction word. This feature is made clear by
considering statements for the program of the simple

scanner.

The program flow of the simple scanner is given in
figure 31 of reference [1]. In the first
instruction, the processor must reset the DEVICE
COUNTER and ADDRESS COUNTER and send the first NEXT
signal. The next instruction will be the next
sequential address. This instruction may be coded as

-

;AMDASM MICRO ASSEMBLER EXAMPLE
;SIMPLE SCANNER

i PROGRAM PHASE

>

$TART: CONT & ZHA & DEVICE NEXT,,ZDAC ; RESET ALL
DVCHK: BRDV DVON & MNOP & DEVICE ;

BRDONE FINI & MNOP & DEVICE s TEST ‘D
NXTDV: JUMP DVCHK & MNOP & DEVICE NEXT,IDAC
DVON: CONT & WMEM & DEVICE H

JUMP NXTDV & IMAC & DEVICE ;
FINIL: JUMP START & STOP 1 3 STOP
Enp . -
shown in the first program statement of figure 7 .
Reading this statement from left to right, it is

explained as follows. The 'START:' is a label for
this microinstruction address. It does not effect
the instruction generated for this location in any
way. The 'CONT' is a symbol from the definition
phase which sets bits 4 and 5 to '06' and leaves all
the other bits in the Don't Care condition. The
symbol '&' means concatenation or overlay is to be
performed by the assembler. The symbol 'ZMAC' is
also from the definition phase and it sets bits 6
through 8 to '188'. Because the overlay symbol has
been used the bits affected by both the 'CONT' and
'ZMAC' will be set by this instruction, Continuing
to the right another '&' symbol follows which means
that even more bits are to be set. The 'DEVICE’
symbol comes next and from the definition phase we
see that it sets three variable fields. Only two
variable symbol names follow: 'NEXT' and 'ZDAC'.
The wvalue of the variable 'NEXT' is eqgual to '1'
because of the EQU statement in the definition phase.
Thus the with combination 'DEVICE NEXT', the
assembler will generate a 'l1' in bit 9 of the
microinstruction. The next variable field of the
'DEVICE' instruction is not specified as we can see
by the two commas occurring in a row. Thus the
assembler will use the default value for this field
and generate a '6' in bit 1l6. The last variable
field is specified, and from the EQU statement for
'ZDAC', one can see that the assembler should
generate a 'l' in bit 11.

The next instruction is labeled 'DVCHK' and it
overlays a 'BRODV', 'MNOP', and 'DEVICE' micro-
instructions into this single instruction. The
'BROV' contains a variable field which is the first
bits of the microinstruction. The variable to be
used is 'DVON'. This symbol is used as the statement
label for the fifth microinstruction in the program
assembly. Thus the assembler takes the address of
this instruction as the value of the variable DVON
ard puts this value in bits @ through 3. The net
effect of this code is for the program to branch to
the instruction labeled 'DVON' if the 'DATA-VALID'

;AMDASM MICRO ASSEMBLER EXAMPLE
YSTMPLE SCANNER
: PROGRAM PHASE

START:

CONT & ZMAC & DEVICE NEXT,,ZDAC & STOP
DVCHK: BRDV DVON & MNOP & DEVICE & STOP
BRDONE FINI & MNOP & DEVICE & STOP
NXTDV: JUMP DVCHK & MNOP & DEVICE NEXT,IDAC & STOP
DVON: CONT & WMEM & DEVICE & STOP
JUHP BXTDV & IMAC & DEVICE & STOP
FINIL: JUMP START & MNOP & DEVICE & STOP

Enp

TEST “DATA-VALID’

Figure 7: Assembly Phase Example

ONE® for Simple Scanner.

TRY NEXT DEVICE
WRITE TO MEMORY
INCREMENT MEM ADR

signal is being received while doing no operation on
either the buffer memory control or the device
control signals. Step 1 on the flow diagram in
figure 31 of reference [l1] corresponds to this
instruction.

One should now be able to follow the complete
program for the simple scanner shown in figure 7 .
Note that for the fields of the microinstruction
which control the buffer memory and the device
counter, I have used two different methods of setting

the bits in order to illustrate variable
substitution. I could have used either method for
both fields or combined them into one

microinstruction model.

One would think that the program given in figure 7
would yield the same bit pattern for the
microinstructions as shown in fiqure 34 of reference
[1]. One mistake, however, has been made in the
program as shown. It illustrates that micro—
programming with a meta assembler is not as easy at
it seems. The 'STOP' microinstruction model was used
in the program statement in order to halt the
processor. The use the 'STOP' symbol followed by the
variable field '1' 1is correct in the last statement
of the program shown in figure 7 . In all the cther
instructions, however, this bit of the micro—
instruction is left in the Don't Care state because
the symbol 'STOP' does not appear. The default value
'@’ which is desired for these instructions will not
be invoked unless the symbol 'STOP' appears in the
source statement. As will be seen in section 3, all
the Don't Care fields must be translated to either
'@' or 'l' when they are moved into the micro—
instruction memory since obviously a memory can't
store a Don't Care. Thus, unless all Don't Cares are
translated to '@', the processor will not function
pass the first instruction. Figure 8 shows the
program corrected with the symbol 'STOP' appearing in
each statement. In all but the last statement the
default value '8' is generated because no variable is
specified,

RESET ALL

TEST ‘DATA-VALID’
TEST “DONE’

TRY NEXT DEVICE
WRITE TO MEMORY
INCREMENT MEM ADR
STOP

Figure 8: Assembly Program
for Simple Scanner Corrected.

2.3.3 Other features in meta assemblers.

Even a meta assembler as simple as that part of
the AMDASM assembler described above can make
programming a microprocessor much easier when
compared to hand-coded binary. It may also be used
for many different microprocessor projects and
programs can be easily be modified when a processor
is modified. There are other desirable features one
would like to have in a meta assembler which would

“make programming even easier and a few of these
features are described below.

First of all, one would like to remove the
positional dependence of the variable substitutions.
This may be accomplished if the assembler has what is
called a 'keyword' ability. Consider the following
source program statement which might come from a
processor with a 2901A:

ALU=(A(1),B(3),0R,AB,FBF) ,BR=(Z,LOOP)

From the description of the 2981A, we can imagine
that this statements calls for registers 1 and 3 to
be selected for the A and B outputs respectively, an
OR ALU function code with A and B as the two ALU
operands, and the results loaded back into the
register file. In the same microcycle the program
should branch to the location labeled by the symbol
'LOOP' if the result is zero. The Keywords can be at
least 'ALU=', and 'BR=' as well as 'A()' and 'B()",
A meta assembler which could correctly interpret the
statement this way would be much easier to write
programs for and the programs would be much easier to

read. One could also imagine that symbols such as
'OR', 'AB', and 'FBF' could be defined in such a way
that they would cause certain fields of the

microinstruction to be generated independent of the
position within the microprogram statement.

Another feature, which is sometimes very useful in
ordinary assemblers, is the macro capability. It
allows the programmer, in the assenbly phase to
" define one or more instructions to be generated by a
symbol defined as a macro. For example one could
define a macro 'OR' which when written in a program
statement thusly:

OR A(1),B(3) BR=(Z,LOOP)
would generate exactly the same microinstruction
shown 1n the previous paragraph. Some ordinary
assemblers with macro capabilities allow the user to
test for the number of operands. With such a
capability in a meta assembler, the statement

OR A(l1),D,B(3) BR=(Z,LOOP)

could be assembled as
ALU={A(1),B(3),0R,DA,FBF), BR=(Z,LO0OP)

where the use of the D inputs for one operand was
understood by the assembler because there were three
operands in the argument list.

Another use of the macro capability is the
generation of multiple microinstructions with one
macro, Consider a macro called ‘LOAD' which when
written in a statement like

10AD @,X4
would generate

MOPR= (X4 ,READ) , CONT
ALU={A(X) ,B(X),OR,D8,FQ), CONT

which might be a memory read cycle with address X4
followed by passing the memory contents through the
2991 ALU in order to load it into the 2981 ¢
register,

One might also want an automatic default feature
to avoid the kind of error that was made with the
simple scanner program as shown in figure 7. . That
is, with the automatic default feature, any model
microinstruction not appearing in the microprogram
statement would be set to its default field. Such a
feature however, might lead to other kinds of
programning errors if the programmer had to make a
real choice of possible variables. On the other
hand, in all the microprogram statement examples we
have shown so far, one had to always specify a

'CONTINUE' for the next address selection. It would
be easier for the programmer if the assembler
defaulted to 'CONTINUE' unless a ‘'Branch' was

explicitly stated.

2.3.4 Difficulties with meta assemblers.

It seems that with an assembler of the type
described with the AMDASM assembler that mnicro~
programming can be quite easy. One way of analyzing
the difficulty is the consider scme of the errors one
might make and when these errors can be detected.
Table 1 gives such a possible list of errors and also

shows what kind of errors are unique to
microprocessor assemblers as compared to ordinary
assemblers.

2,3,5 Obtaining a meta assembler.

The meta assembler is a good, if not essential,
starting point for developing the necessary micro-
programs., The question is: ..How does one obtain a
meta assembler which has the capabilities required
for microprocessors we would find in our
laboratories. The decision is basicly whether to buy
one or to write one.

One can write a meta assembler in FORTRAN or
assembly language. It is not as formidable task as
it might appear if one keeps the definition and
assembly phases simple enough. Probably the most
tedious part of the task is writing the code which
recognizes the syntax of the character strings. One
should consider a programming language which is good
at this. The rest is simple.

Since the task of recongizing character strings is
already done by the assembler one has with a
computer, one might like to find a way to use this
assembler to do most of the work. One way to use an
existing assembler is to make use of its macro
capabilities. This approach is highly desirable
because many of the necessary capabilities of an
assembler will be taken care of by the host assembler
so the user will not need to rewrite them. These
include the assignment of symbols to constant values,
the handling of address labels, and the substitution
of ~variable values into instructions. Also the
writing of the assembler is made easier by the macro
lanquage capabilities for decoding of parameter
fields and the general ability for manipulating

character strings and_bit patterns. There are also
some higher level languages which have a macro

capability, such as PL/1, which should be good for
writing a meta assembler.

An example of this latter approach is the MIMIC
assembler written at SLAC by Edward Frank[4]. It

-9
TABLE 1 Errors in Microprogramming

DEFINITION PHASE

Ille%al character strings Ordinary
Undefined symbols "

Duplicate labels "

Bad word length Microassemblers
Bad field length "

- ASSEMBLY PHASE

Illegal character strings Ordinary
Undefined symbols or labels "

Duplicate labels "

Overlay error Microagssemblers
Misplaced variables "
Incorrect variable specification "

Missing variable with no default '
Necessary field unspecified "

RUN PHASE

Bad field position Microassemblers
Bad field length "
Wrong constants "
Bad timing "
Don’t Cares are not "

makes extensive use of the capabilities of the IBM 8083. There are also independent Softwace houses
360/370 assembler, It consists of a set of macro which have developed meta assemblers which are geared
definitions so that, except for EQU statements, every for the microprocessor logic engineer. Even IBRY has
symbolic source statement calls a MIMIC macro. The a software product which is a meta assembler. It
general format rules of the IBM Assembler program are requires that the installation has APL. The cost of
preserved, along with its error handling these meta asserblers is around U.S. $2603. For a
capabilities. survey of commercially available meta asserblers, the
reader 1is referred to a recent article by V. M.
In the definition phase of the MIMIC meta Powers and J. H. Hernandez [5].
assembler, the programmer writes the definition of
his fields with a set of MIMIC macros. The macros It is interesting to ncte that the interest in
generate a table of symbol names and may generate meta assemblers has increased dramatically since the
other macros. The table of generated macros are availability of the LSI microcircuits. The semi-
"Punched"” to an output file which is in fact the conductor manufacturers find themseives not orly
output of the definition phase and they may be saved supplying the circuits but also some software to help

for future use. their customers use- then. In addition, many
companies are publishing extensive application notes

In the assembly phase of the MIMIC meta assembler, which give examples for the use of their circuits.
the programmer codes the program using the symbols Whereas microprogramming was the domnain of a few
defined in the definition phase. The "Punched" academics and professional computer designers in the
output file is the set of macros necessary for this past, it is now the focus of a large public education
rhase. These macros assemble the bit pattern of the campaign waged by semiconductor companies interested
desired microinstruction into assembler constants. in bring the technique to the largest body of people

The binary output is generated by a "DC" (Define as possible.
Constant) IBM assembler directive. It may then be

saved using all the normal facilities of the Another method to obtain a meta assembler is to
operating system. "steal” one. That is to say, get a copy of one from
someone which is willing to give you a meta assembler

An alternative to writing a meta assembler is to he has written, Since the LSI microcircuits are
rent one. There are several meta assemblers becoming more and more in wuse in the High Energy
available from the time sharing computer services. Physics Laboratories, one will certainly find that

Iin the U.S., for example, the Computer Sciences some good meta assemblers will be developed. I have
Corporation rents the AMDASM that we have already already mentioned the MIMIC meta assembler written at
studied. Output is available on paper tape ready to SLAC, for example, which may be used by anybody who
proyram PROi's. The cost of such a service is about has access to an IBM 360/370. Another one has been
U.S. $1u96~-$1000 per month depending on the amount of written by W. Wimmer at DESY([6].

programming done. Despite the s=eming high cost for

the rental, this may be the best answer when one has

a small project and dces not expect to need the meta

asscmbler for other projects. 2.4 EMULATION OF EXISTING COMPUTER.

The same meta assemblers that one can rent are For a given project in which a microprocessor is
generally available to buy in the form of either a to perforim some task, one has a generally a great
FORTwAN source program or a Load medule for a mini or deal of design flexibility. That is to say there are
micro computer. In addition, there are other meta many ways in which the circuit could be designed to
asserbler that on2 can buy. Many of the semi- perform the task. Given a processor with a
conductor manufacturers, realizing that potential reasonable instruction set, the programmer can
users of their LSI microcircuits need programming accomplish almost any calculation he desires. One

aids, are also in the business of selling meta microprocessor on the market (the 8X386, made by
assemblers. For exzample, Signetics sells a meta Signetics) has only 8 machine instructions and yet
asscnbler written in FORTRAM, while Advanced Micro one could imagine doing very complicated calculations
DLevices sells an assembly program written for the with 1it. Obviously, if the main feature of a

~10-

microprocessor is speed of calculation for one
particular problem, then the choice between many
possible designs becomes smaller. An example is the
M7 processor{7] which was designed to calculate the
effective mass from two particles in the detector.
It bhas. the capability of doing two multiplications
and one addition in a single cycle.

For a microprocessor which is designed for general
purpose, there 1is generally a larger choice of
design. However, there is one choice which can
greatly reduce the programming difficulty. It is to
emulate an existing computer which one has access to,
so that software development can be done on it. An
example comes from my own work with a microprocessor
called the 168/E which I have described in section
5.2 of reference [l]. The rational behind the 168/E
was the following. A general purpose microprocessor
must have three basic features:

1. arithmetic and logical operations perhaps
with a register file or accumulator,

2. a means of momory addressing with efficient
indexing capabilities, and

3. a means of
previous results.

condition branching on

The design of the 168/E chosen so that all these
conditions was satisfied in a fashion which is so
similar to the instruction set of the IBM 369/379
series of computers that one can easily translate IBM
368/370 programs into microprograms for the 168/E.

The advantages of emulation can be seen if one
follows the steps for writing and debugging a
program. First, a program is written in a language
which is available for the emulated computer such as
FORTRAN or assembly, One can then use a complier
that exists for this machine to generate object code.
Then the program is tested with real or simulated
data on the emulated computer using all of that
computar's resources for program debugging such as
line printers, interactive terminals, graphics, and
histogram and debug software packages. The working
progran can then be translated from the object code
into the microprogram code of the microprocessor and
wien loaded into it, it should work the first time.

The reduction in overall effort can be quite
substantial. For one thing, no software
docurentation for a microprocessor instruction set
need be written or maintained. There would be no
need to write an assembler or use a meta assembler.
Simulators for a microprocessor are sometimes written
to aid program testing, but no such simulators need
to be written for a emulating microprocessor since
the ewmilated computer serves this function. One
should also realize that no retraining of programmers
nead be done which is important since most
programners only get very proficient with a
particular machine language after they have much
experience with it. The greatest advantage of all is
that because of the emulation of another computer,
the experimenters on the project can program the
ricroprocessor themselves in a higner level language
they understand, such as FORTRAN.

Tne emulation technigue requires a restriction of

the design of the microprocesscr so that it best
corraesponds to the erulated computer, which is
sometimes called the “"target machine”. The

translator, which is the only special software which
needs to be written, 1is a partner with the hardware
design to produce the desired result. The net result
is that one has a processor which is considerably
easier to program yet is probably no slower in
execition speed nor not much more costly then designs

based on the same LSI microcircuits, They will be
sloyer, however, than processors with a lot of
dedicated high speed arithmetic units.

3. POST-PROCESSING MICROPROGRAM ASSEMBLY.

After assembling a program for a microprocessor on
a host computer, one is ready to load it into the
microprogram memory of the processor. This task is
simple in concept but nevertheless requires some
additional software which must be considered as part
of the software for microcircuits.

The output from the assembly stage is a object
code file containing the bit pattern to be loaded
into the microprogram memory. It is in a form which
is probably convenient for storage on the host
computer such as a disk file. It must be transformed
into the format for loading into the processzor wnose
memory may be in the form of Programmable Read Only
Memory (PROM) or as a writeable control store (REY).
It also must be transported from the host computer to
the microprocessor.

The programming of PROMs is a software task which
must have knowledge of the microinstruction format
and the particular PROM circuit chosen. First, the
"pon't Care" states which may still exist in the
program must be changed to either a logic '8' or 'l'
since the memory circuit can only store one state or
the other. Some PROM circuits invert or complement
all of its outputs and in such cases one would nead
to complement the object program file before loading
into the PROM. Both of these problems are relatively
easy to take care of during program transport.

The number of bits available in PROM circuits is
increasing all the time. Yet, in most cases one can
not put all of the microprogram into one single
circuit. For example, the microinstruction for the
simple scanner processor (figure 33 of reference [1])
has a width of 13 bits and requires at least 6 words.
A survey of the available memory circuits shows that
the economical choice for the simple scanner is to
use PROMs with 32 words of 8 bits. There simply does
not exist on the market a memory circuit with 6 words
of 13 bits. Thus the implementation of the
instruction memory may be as shown in figure 9 .
Here two meémories each containing 8 bits have been
placed in parallel so that the first has outputs for
the first 8 bits and the second contains the
remaining 5 bits. Three bits of the second PROM are
not used and we are force to waste these bits. The
sane microprogram address is applied to both
circuits. Since the next address logic of the simple
scanner has an address field of only four bits, we
have one address input line on both memories which is
unused. In figure 9 we have tied that input to
ground which forces that address line to '#'.

The simple scanner example is a case where the
program is smaller but the program instruction width
is larger than any available memory circuit. Wwhen
this PROM is programmed it is inserted into a special
circuit which applies the required voltages to blow
the fuses within the circuit or deposits the charge
in the cells of EPROMs. In either case, tne
programming circuit needs as input from the object
code only the bits from the whole instruction word
which will be placed into one PROM circuit. This
means one of the post—processing steps is to take the
object file and generate a programming file for each
PROM which is reguired to contain the whole
instruction word.

FROM NEXT
ADDRESS
MULTIPLEXOR
——

l
I |

*

4370 43210
ADORESS -IN ADDRESS-IN
745188 745188

DATA OUT DATA OUT

01234567| 01234567

i
UNUSED
PROGRAMO [234567 B9I01II2 .o

Figure 9: PROM layout for Simple Scanner.

Some microprocessors will have programs which are
longer than the number of words available in PROMs.
In this case, one would use multiple PROMs to contain
the whole program as shown in figure 18 . 1In this
figure, we have illustrated how one can use the same
32 word by 8 bit PROMs to make a program memory of 64
words by 16 bits. The low order 5 bits of the micro~
program address are bused to each memory circuit.
The most significant bit and its complement is
generated so that a "Chip-Select" signal is sent to
only one bank of PROMs at a time, Most memory
circuits have a "Chip~Select" input which disables
the output of the circuit when a False signal is
received by the circuit. One can then tie the
outputs of two circuits together to form what is
called a "Wired-Or". Since only one memory bank is
"Chip~Selected” at any time, the two circuit banks in
figure 19 act as if they were one memory circuit of
64 words in length. The Wired-OR function is
generally accomplished by having the outputs of the

PROMs being either an Open Collector or a Tri-State
output.
6 BITS
'g
N T m)
H s T b
[1 T
Acchdacs A] A cspedcs A
745188 745188 (745188 45188
bl Db D D
M (THTT T
[t B
PROGRAM

.. BITs O 13 e

Figure 18: Expanding Memory Space.

Thus in transporting the microprogram object file
to the PROM burner, we must reformat the file to take
into account the width of each memory circuit, its
position in the microinstruction word, and its depth
in the memory address length. If the microprogram
memory is to be implewented as RAM memory, then one
has other needs in the transport of the file. An

-11-

interface needs to be designed between the host
computer and the memory bus of the microprocessor.
In many cases, as will be discussed later, this
interface may contain a micro or mini computer. In
such cases, one must provide for the software for
these two computers to communicate with each other
and software which enables the computer directly
attached to the microprocessor program memory to
write into that memory. The software necessary is
generally simple and straightforward. Yet it must be
written, tested and debugged and as we all know even
the simplest of software programs can sometimes lead
to days or weeks of effort. All of this software
should be considered as part of the software
necessary for microcircuits even though it has
nothing to do with the programs that run in the
microprocessor. But once ths software is functioning
properly, it may be reused for many different
microprocessor projects.

4, SOFIWARE FOR TESTING MICROCIRCUITS.

Testing the microprogram may be a very difficult
task, especially at the early stages of the project
development when the microprocessor itself is not
know to function properly. With ordinary random
logic design if one does not get the correct results,
then the fault must 1lie in the hardware. With
ordinary micro or mini computers, if one does not get
the correct result, then the fault must lie in the
software. With microprogrammed processors, if one
does not get the correct result, then the fault could
be in either the hardware or software and one must
try to isolate the preblem. Thus, as well as
carefully designing the processor and writing
programs for it, one should also carefully design a
neans of testing the processor, and testing the
programs that will run on it.

Let us consider for a moment, what the hardware
faults in the processor might be. First of all there
may simply be a logic design error, for example a
circuit may not perform as expected because one did
not read the specifications carefully enough.
Secondly, there may errors in the fabrication of the
processor, for example wires may be misplaced. There
may be errors in the timing, for example, some
results may be strobed into a register before they
are ready. There may be "glitches", that is to say,
noise pickup on some lines so that the wrong results
are strobed into register or a clock input is
generated at the wrong time. Although unlikely,
there may even be some bad IC packages that need to
be replaced with working ones.

4.1 TEST BOXES.

In the classical random logic design, one can
usually "drive" the circuit with a pulse generator,
and examine the functioning of the processor with an
oscilloscope or logic probe. I1f the circuit has
multiple input sources, one could build a test box to
generate these inputs. The test bench setup would
look like the one shown in figure 11 . If we try to

apply this same testing technigque to micro-
processor, we will undoubtedly run into some
problems. The microprocessor is "driven" by its

program and the processor operates on data coming
from or going to external devices or memory. Thus we
have three separate subsystems as shown in figure 12
and each of the subsystems must be tested to see if
they function properly.

TEST
B80OX

A 4 A

. PULSE.,, "omve;
GENERATOR

CIRCUIT
UNDER TEST

LOGIC
PROBE

2assasy

Figure 11: Traditional Random Logic Test Set~Up.

PROM CLock BATA
PROGRAM MEMORY
MEMORY MICRO~ R

PROCESSOR DEVICE(S)

"
3130432

Figure 12: Microprocessor Subsystems to be Tested.

TEST
BOX

v

PROM CLOCK] DATA
PROGRAM [¢*Y-» MICRO~ |—Y—» MegsRY
MEMORY | PROCESSOR DEVICE(S)

° LOGIC
[} PROBE

58)[¢]

Figure 13:

JasBaso

Microprocessor With Test Box.

Cne could follow the same
logic, that is by building a test box as shown in
figure 13 . This test box can be more complex than
the random logic test box, however. For exarple, if
the microprocessor will eventually have a program
menory in PROM circuits, the test box may contain a
RAM memory sO the user can put into it a variety of
test programs. When using the RAM, one would
disconnect the normal memory circuits from the micro-
processor. Of course, some switches and lights need
to be provided in order to read, write and modify the
conzants of tne merory. Also the device or data
memory may need to be simulated or at least a means
of preloading a data pattern into them must be

approach as with random

-12-

provided in order to test the processor.

A means of seeing what the processor has done must
be provided as well as a means of controlling it.
One could take as an exarple of the numpber of lights
and switches that should be provided, those items
that are used by a typical minicorputer. Tacle 2
lists what one finds on the front panel ccnsole of a
PDP-11/280 minicomputer. Indicator lights are
provided for the 18 address lines, the 16 data lines,
and several other miscellaneous status conditions
such as RUN, RUS, FEICH, etc. Sixteen switches are
provided for entering data or address information
which 1is controlled by the switches LOAD ADDREISS,
EXAMINE, and DEPCSIT. The processor itself in
controlled by the switches HALT/CONTINUE, SIRGLE
STEP, and START. These indicators and switches are
about the minimal set that one could imagine in order
to test programs on the PDP~11/20. A test box should
at least contain these to test programs on a micro—
processor. With a microprocessor, however, the test
box might be even bigger than with a minicomputer
because typically the program memory has a width
greater than the data path and it is on a separate
bus, so that the test box must have enough switches
t6 handle both the program and data memory.

TABLE 2
PDP-11/20 Front Panel

INDICATOR LIGHTS:
ADDRESS BUS (18)
DATA BUS (16)
RUN
BUS
FETCH

TOGGLE SWITCHES:
DATA (16)
LOAD ADDRESS
EXAMINE
HALT/CONTINUE
SINGLE STEP
DEPOSIT
START

Such test boxes have been build in the past to
control CAMAC. This approach has the advantage that
the box can be specialized to the needs of a
particular processor and it is a completely stand-
alone system. On the other hand, the test box
approach has certain disadvantages. It may have
limited capability, since it itself is probably
random logic. If one starts to add capabilities such
as stopping the processor at certain address or
loading the memory from some storage medium, the test
box may be more complex than the processor itself.
If the microprogram grows in size, it becomes
extremely tedious and vulnerable to error to manually
load the memory each time the power needs to be shut
off to make a hardware change.

-13~

4.2 USE OF LOGIC ANALYZLR.

Even with a very good test box, there are
difficulties in testing a microprocessor with certain
programs., For example, an error in either the
hardware or software way cause the processor to jump
to some unusually address and begin to do seemingly
random operations that make it difficult to trace
back to the source of the error. With an
oscilloscope or logic probe one sees only one or two
signals at ™3 time and then only after the scope is
triggered. If the processor halts after the error
than one has only a single trace to see on the scope
or one must use a storage scope.

A very useful instrument which aids in testing the
microprocessor is a 1logic analyzer. It is an
instrument which records in an internal merory the
logic level (i.e. @ or 1) of its input in fixed time
intervals. Since with microprocessor circuits, we
are always dealing with standard logic signals, it is
usually sufficient to lock only at the logic level
rather than the real signal. The advantage of doing
this is that an logic analyzer can be build with many
more channels of input than an ordinary oscilloscope.
Logic analyzers are available on the market with up
to 16 independent input channels. The number of

samples recorded is limited by the size of the
internal memory and it is typically up to 1624
samples. The sampling rate, or inversely the time

between the samples, 1is limited by the speed of the
internal memory. With the analyzers available today,
it is typically 260 nsec, and with some models 18
nsec. The analyzers generally have switch selectable
thresholds for the standard logic families such as
ECL and TTL. The analyzer does not, however, record
short signals or glitches if they don't occur at the
instance the signals are sampled. Some models have
special input circuits called "glitch catchers" which
take any transition in an input as the recorded
level.

There are many other advantages of a Logic
Analyzer over an ordinary oscilloscope. For example,
a very important advantage is in triggering. With an
oscilloscope, one can see the input signals for a
tine period after the trigger signal. Similarly, the
logic analyzer can record its inputs after a trigger
signal has arrived which is called the "Pre-
Triggering” mode. But the analyzer can operate in
tne other sense, that it is, it can be continuously
recording the input signals in a wrap around buffer
and then stop recording when the trigger signal
arrives. This mode is called "Post~Triggering" and

it allows one to see all the input signals before the .

trigger signal. Some analyzers even allow one to put
the triggering time in the middle of the memory
storage so that one can see the input signals before
and after the trigger time. Another important
advantage is that once the analyzer is triggered, it
can keep the recorded signals indefinitely, so that
single shot events can easily been seen and studied.

The triggering abilities can be augmented by the
use of a Vord Recognizer which is frequently built
into commercially available Logic Analyzers. This
device allows the user to form his trigger on the
combined state of many input conditions. The trigger
can then be formed from something simple such as the
transition of one signal input or as complex as
particular bit pattern on the memory bus. Most
available Word Recognizers accept up to 18 inputs to
form the trigger and even allow one to make the
trigger only after a number of occurrences of the
same input pattern.

With most of the available Logic Analyzers, one
has a choice of the way the recorded inputs are

displayed. With an oscilloscope, one has onlv one
mode. In this mode the signal -levels are displayed
vertically on the screen and time is displayed
horizontally from left to right. Logic Analyzers can
also display their data in this way and it is called
the "Time Domain" mode. But they can also display
their memory as data words with possibly a choice of
binary, octal, or hexadecimal format. This mode is
called the "Data Domain" and it is very useful for
program development since it seems more like a
program trace that the programmer is used to. Yet
another mode is called the "Map" mode. It trecats the
input signals as one data word and plots a point on
the screen for each possible data word. The most
significant bits of the word form an displacement
vertically while the least significant bits are used
for a displacement horizontally. - Thus one can ¢et a
feel of the flow of a program and the human eye can
spot unusual events by points being very displaced
from the normal pattern.

4.3 COMPUTER BASED DEVELOPMENT SYSTE!M.

The logic analyzer greatly improves ones ability
to find errors in the microprocessor even with a
simple test box. But not all the problens are solved

with it, One still has the problems of loading by
hand the processor's memories and reading th
results, Another approach is to use a micro or mini

computer as the "test box". In this approach the
design of the microprocessor would be made so that
one could build an interface from a computer to the
processor which allows the computer to gain access to
the memories and various control points of the
processor, for example the processor's clock. One
can than emulate the test box functions with software
in the computer. Such a setup 1is illustrated in
figure 14 . The micro or mini computer in this setup
is called the "Host Computer".

o 7

TERMINAL
CINE MASS
Dl PRINTER STORAGE
=

MICRO OR MIN!
COMPUTER

[—— (T

PROM CLOCK[DATA
PROGRAM [¢xXs micro- [MEéwRORY
MEMORY PROCESSOR DEVICE(S)

@k
e
/ LOBIC
ANALYSER
° LOGIC .
° PROBE D
i3] [°] i
Lo
s X-Y DISPLAY

Figure 14: Computer Based Development System.

The use of a micro or mini computer for a test box
may seem to be an expensive and overkill solution to
a simple problem. But the cost of small computers is
s0 low that they are probably not much more exgensive
then a test box with many indicator 1lights and
switches. Through its software it offers rnany
advantages over all but the most sophisticated test
boxes. However, the software needs to written and
debugged and one should consider this software as

“part of .the soffware support for the microprocessor
project.

Let us consider what software one might like to
have for the host computer. The software can be
organized as two set of programs, one set to move
blocks of data as files and the other which allow the
user to dynamically interact with the processor under
test. First of all, one needs to be able to load the
memory of the microprocessor from the memory of the
host computer or some storage medium. The LOAD
pregram may have a few options such as loading only a
segment of the program or starting tne load at some
specified starting address. Since the processor's
memory is also to be tested at scme stage of the
project, one should include a means of verifying that
the memory was loaded correctly.

During the testing one would 1like to be able to
exanine and display individual words in the micro—
processor program or data memory. The data should be
formated for display on the host computer's terminal
in a fashion that 1is easy to understand such as
binary, octal, or hexadecimal or even a mixture in
sone applications. For example, the display program
may recognize the fields in the microprocessor
program memory and display them as mneronics. One
should also be able to modify individual words in
order to correct program errors or to try different
cases. All of the above features are available on
most micro or mini computers that don't have front
panels., For example, the DEC LSI-11 has a subset of
the ODT program built into the processor to provide
these functions. Finally, one should be able to read
blocks of tne microprocessor's memory and save it in
the host computer or its storage medium. This would
be useful after the program has been modified until
it works and one would like to be able to reload it
at a future date or use the saved file as input to a
PEOM burning proaram.

The next set of programs to be written on the host
computer are programs to control the processor
itself. The basic set are used to emulate the normal
front panel console switches such as HALT, START, and
SIWZLE-STEP. One should also be able to load and
display the microprogram counter and perhaps some
other important registers. A very useful function
would be to single step the processor and
autoinatically display the contents of a register in
orczar to trace where scmething went wrong. And
finally, 1if one could cause the processor o stop
when a certain addrecs or data word is encountered,

one would have all the capabilities that most
comzuters have to trace down pregram or hardware

difficulties.

The usefulness of computer based dJevelopment
systens has be recognized by many semicenductor
manufacuturers. Some are offering for sale complete
systems designed for microprocessor devalopment. An
example of such a system 1is the System/29 which is
made Dy & company called Advance ilicro Computers
which is a partnership between Advanced Micro Devices
and Siemens. This system is also described in a
microcircuit specification beok{3]. It includes a
stand-alone 8086 microcoimputer with floppy disks, CRD
terminal, optional hardcopy printer, and a box in
which one puts his own designed microprocessor.

14—

Protocype boards are available to sindlate the
eventual microprogrem PROM witn RAM and & standard
next address logic board using a microscyuzncer.

This system costs U.S. $25,0894.
the AMDASM meta assembler, an o ting systen for
fils manipulaticn in the 8883 microcomduter, and
other software to aid in debugging the microprocesscr
under test.

This price inciudas

.
{01

The use of a wicro or iini computer to be the
controlling element for ihe microprocessor is not
unigue in tine computer field. C. find similar
examples in large corputer svstems. For exampls, the
Amdahl 479/V6é cecmputer has a Data General KNOVA
computer built into it's console display. Tiie LOVA
can read almost every register in the large machine,

Another example is the Digital Equicnent
Corporation's VAX~11/789 in which an LSI-l1
microcomputer handles the system terminal. In both

computers the micro or mini computer handles the
diagnostic routines and the systam console. Neither
machine has anything irn the way we normally think of
computer front panel consoles.

4.4 USE OF CGiPUTER CENIER'S COMPUTER.

Given that one has a host computer that eacts as
the front panel for the microprocessor, one still nas
to consider on how one is going to store files and
run the microprocessor's assemblesr program. Tnis
assembler program could well run on the hcst computer
but not without somz additional peripherals on this
computer such as mass storage, and line printers. In
Hign Energy Physics, most of the lahboratories wiere
one would be doing the microprocessor devilopment
work have a computer center and the guestion arises
as to whether one should use the computer center for
file storage and program development. In many cases
a simple connecticn between the host computer and the
computer center for the transfer of files is an
approach which offers many advantages,

First of all, the peripherals are the most costly
part of a computer system, especially with micro-
computers since the CPU cost is very low. By using
the computer center's peripherals one can greatly
reduce the cost of the local computer system. Even
with some local peripherals such as floppy disk, one
generally has a more limited program development
ability on a small micro or mini computer. One is
also more likely to find useful cross assembler
software available for the computer center computers
than the inexpensive local computer.

All of the above advantages are obvious at first
glance and may very well justify using the computer
center for microprocessor program development. But
there are also many hidden advantages which may be
equally important from the point of view of hardware
costs and more important in terms of man power costs.
First of all, one can reduce the cost of the local
computer to the bear minimum. This could mean that
it would consist of only the CPU, some RAM memory, an
interface to a terminal, an interface to the computer
center, and & some ROM memory to get started. Since
there will be no moving parts, the cost is only in
inexpensive components, The reduction on peripherals
also leads to a substantially reduced maintenance
cost. Very little space in the laboratory would be
required for the system which allows more room to
work on the microprocessor or allows more flex-
ability on where to place the equipment.

There is also a very large reduction of time
consuming tasks for the personal involved in the
project. All the facilities of the computer center

are presumably already known so there is no lost of
time to retrain people with a new system. The
computer center wost likely has a better text editing
system than those found on small systems. There will
also be a file management system with much more space
available to the user. Included with the file system
will a routine data management system, that is, a
system where by files are archived and backup tapes
are regularly made. When batch jobs are to be
submitted todo cross assembly work one can use the
job entry system which is already well know including
all the job control language that is necessary. The
computer center will have many more peripherals and
more kinds of peripherals than one would think of

putting on a low cost local computer system. They
may include high speed 1line printers, microfiche
printers, graphic plotters and terminals, etc. One

has global access to the computer center from any
terminal in the laboratory rather than the one
terminal for the local computer which allows more
flexibility in working. The computer center is also
set up to be multi~user, so that more than one person
can work at a time cn software for the microprocessor
project and yet they can share the same data base
files.

The cost of the comnection between the local
computer and the computer center can be minimized
when one realizes that the data transmission rate
need not be very high. For example one can let the
local computer emulate an ordinary terminal from the
point of view of the computer center. Data files
could then be prepared before transmission with
certain keyword characters so the local compiter can
take the characters as data rather than repeating
them on its terminal. 1In this way no software for
the connection need be written for the computer
center's computer and the local computer need only
have an ordinary terminal interface to the center and
a very small amount of software. Such a simple
connection was used for the local computer for the
168/E test bench shown in figure 15 . The terminal
emulation program located in ROM is only 256 words in
length.

Many laboratories have or are developing computer
networks which would allow high speed data
transmission between the computer center and the
local computer. They .offer better facilities in
bringing down large programs with error checking and
correcting on the transmitted data.

5. SUMMARY

We have seen that there are two parts of the
software for microcircuits. The first part is the
programs for the microprocessors, while the second is
the software support programs. The support software
can turr. out to be much more extensive than the
processcr's programs, This does not mean that the
user of microprocessors will drown in a ocean of
support software, but he must simply learn how to
swim in deep water.

-15-

ODT IN
MICROPROGRAM

LSI-11
cPU
TERIMINAL

EMULATOR

4 KW 4 KW
CRT ROM RAM

TERMINAL
COMPUTER
ISEI%AL 1 ‘{SEl%ALl # CENTER

I

CONTROL MEMORY
REGISTER INTERFACE
L
CLOCK
PROGRAM DATA
MEMORY 168/E MEMORY
@b\
e
// LOGIC
ANALYSER
o { LogGic }
° } PROBE Fﬂ
iy e X-Y DISPLAY

Figure 15: Test Bench for 168/E Projecct.

References
[1] Paul F. Kunz, "Microcircuits of High Energy
Physics", Proc. of the 1978 CERN School of Computing,
Jadwsin, Poland (May-June, 1978).
{2] zbigniew Guzik, Private Communication.

{3] The Am2909 Family Data Book, Advanced Micro
Devices, Inc., Sunnyvale, California 94086 {1978).

[4] Edward Frank, Private Communication.

[5] V. Michael Powers and Jose H. Hernandez,
"Microprogram Assemblers of Bit-Slice
Microprocessors", Computer, pp 168-128, (July 1978).
[6] W. Wimmer, DESY Report DV-78/04(1978), in German.

[7] Tom Droege, Transactions of I.E.E.E., NS-25,
p 698,(1978).

