
SLAC-PUB-2206
October 1978
(1)

SOFIWARE FOR MICRCXXRCUIT SYSTEMS*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305, U.S.A.

INTRODUCTION

Modern Large Scale Integration (LSI) microcircuits
are meant to be programmed in order to control the
function that they perform. In referencell], I have
already discussed the basics of microprogramming and
have studied in some detail two types of new micro-
circuits. In this course, I will explore the methods
of developing software for these microcircuits. This
generally requires a package of support software in
order to assembly the microprogram, and also‘some
amount of support software to test the microprograms
and to test the microprogrammed circuit itself.

1. MICROPRGRAM ASSEMBLERS.

1.1 ASSEMBLERS INGENERAL.

An assembler is a support software program which
allows the progranuner to write a program in a
s*lic l_anguage. It does many tasks for the
programmer which greatly relieves to tedium of
writing programs. These tasks are illustrated in an
example of assembly language program given in figure
1 which comes from the outout of the IBM 360/370
Assembler. Of interest to us-are the columns labeled
'LK' , 'OBJECT CODE’, and 'SOURCE STATEMENT'. Under
the colurm labeled '&I is to relative address of an
I@1 360/370 instruction which is represented in
hexadecimal format under the column labeled 'OBIIECT
CODC'. The symlxlic program is presented under the
CO~!I~ lakkd 'SOURCE STATEXENT'.

The first task of the assembler is to convert the
sytilic operation codes into the machine binary
code. For example, in figure 1 the operation code
'SR' was converted into the machine code '1B' and
placed in the proper field of the machine instruction
as shown at 1. A second task is to substitute for
symbolic variable names the machine binary form. One
can see at 1 in figure 1 that the symbols '3,2' have
been converted to a binary form and placed in the
proper fields of the machine instruction for the
source and destination registers. Also, at point 2
of the figure the symbolic variable name '7&S(7) has
been substituted with the proper form of memory
addressing. The third task is to substitute svmholic
addresses with the binary addresses. In fig&e 1 at
point 3, the instruction at location '17A' was given
the syrrbolic label 'A22'. All references to this
location made by the program used the symbolic name
such as the one at location '1X'. The assembler
substitutes for the symbolic name the actual address.
This was also the case for the address of the
symbolic variable given at point 2. The fourth task
for the assembler is to supply after all the
COi~Jer:~iCns and substitutions a complete binary

program that can be loaded into the processor. In
the case of the IBM assembler, this machine code is
called the Object Code.

With the aid of the assembler, the programmer can
write programs of great length and complexity which
would be too difficult to write directly in machine
code. Instructions can be inserted or moved without
difficulty when all variables and branch addresses
are referred to symbolically because tte assembler
will do the work of calculating the real addresses in
generating the Object Code. The programmer is also
almost completely relieved of having to know about
the placement of the. fields in the machine
instruction and the details of addressing memory.

The assembler is generally given by or bought from
the manufacturer of the computer when one receives
the computer as part of a package of support
software. It is written expressly for the computer.
If one is to supply an assembler for a microprocessor
of one's own design, then one has the problem of
having an assembler written for that machine.
Methods of doing this will be discussed in the next
sections.

1.2 MICROPRCCESSORASSE&lBLERS INGENERAL. --

An assembler written expressly for a micrc-
processor should have the same general features as an
assembler for a computer. One should realize,
however, that there may be some major differences
between the instruction set of a microprocessor and a
that of a computer. Take for example the question of
the operation codes. A computer typically has a set
of about 100 to 400 instructions. Each instruction
may have a few parameters, and these parameters are
specified in a way which is comron
instructions.

to many
For example, the 'Subtract Register'

(SR) instruction of the IBM 360/370 discussed above
had two parameters, the source and destination
registers. An 'Add Register' instruction has the
same two parameters and they are specified in the
same way.

A microprocessor might have an several orders of
magnitude more operation codes if we tried to define
them in the same way as computer operation codes.
For example, a processor with a 290l.A bit slice
microprocessor requires that the source, function and
destination fields be specified as was shown in
figures 36 and 37 of reference [l]. Since each of
these fields is 3 bits in length, there would be 512
combinations which could be considered operation
codes. And since the CARRY-IN to the least
significant bit also needs to be specified, we find
that there are really 1024 combinations. The A and B
addresses, of course, may be considered as operands,
as were the source and destination registers with the
IBM 360/370.

Besides the fields of the microinstruction
defining the operation of the 290lA, we may find a
microsqdencer in the processor. The 2910 micrc-
sequencer, for example, has a 5 bit microinstruction

* Work supported by U. S. Department of Energy, EY-76-C-03-0515
(Presented at the 1978 CERN School of Computing, Jadwisin, Poland, May 2R, - June 10, 1978.)

LOC OLJ.JECT CODG- ADDRl ADDRZ STHT SOURCE STAlEqENT
ItI *

3rJ’1156 4107 0?‘)4 QO’)OQ 112 AZ1 LA 11*4(.11)
OOOlSA SH30 8300 00000 113 L 3*0(,111
00315E 1233 h 114 1-r R 3.3

33 x34
OOOIGA 4740 D14A 0015G 118 HC ‘%.A21
3001CE 5530 9040 00338 119 C 3.MXZA
139172 4721 DlAE J’J li3A i ,> 6) dC ?;A10

121 *

000176 41CO 9320
OJ017A 41C0 CO04
00017E 5040 coo0
OOOlH2 1244
933184 474Q Dl4A
00018fl I?43
00018A 4745 31RC
‘)601RE 1948
060193 4720 D14A
300194 47F0 0194
000108 1044
00019A 194h
)0013C 472) DlhE

OOOlAO 4159 SC01
00’31A4 lR64

0031A
00004
00000

3’) 156

00190

00 156
00 1AO

,3017A

122 4
123 *

12,LZA3X-4
12.4(. 12)

1.34 A23

131 *
138 *
139 *
140 A24 LA 5*1(.5)
141 LH 6 . 4

COO106 47F0 016E 0017A 146 f!C lli.A22
147 4

OOOlDA 1255
OO~~RC 47ac 01~0
OOOiCO 4i70 7004
0001C4 5A50 9078
OOllC8 S?S’) 9778
COOICC 41AO A002
000100 46FO D134

OOOlD4 5910 D?TC
00ClI-~8 5017 9044
OOOlDC SO17 9osc
0001EC aA 3002

i4fi A10 1. TR 5315
00 ICC 14‘) tic Y.All
00004 150 LA 7rZ(17)
90370 151

5AT
Cz.AYTCH

,J ‘1 .3 7 0 152 S*A~TCH
“OE:; 153 bll L. A lO*;?(* 101

I54 DC? 141A20
155 *

0023H 156 L lr=F’-1’
3’)33c 157 ST 1 .ZAS(7)
00 354 15’3 1 .YAS(71
00002 159

%A
792

LOOP OVER U

NEXT 5*U

A3=-1 => EN3 5*U STRING
S*U-4*Y+KA

GET NEXT 5*U IF R3 < HNZA

GET NEXT Y IF R3 > i4XZA

LCDF’ C1VER 2

(ADDRESS-4) OF 3*ZA

NEXT 342

H4=-1 => END 3*Z STRING
3CZ-WUt4*Y-KA

CDh:PARE R4 Ah0 TEST A lR41
GET NEXT 5*U IF R4 > TtSTA

AdSOLUTE VALUE
COKPARE ~14 AND TESTA
GET hEXT 36;Z 1F ii4 > TESTA

GDDD YATCH

CANFA=CANFAt 1
NEW TESTA

342 P!ATCH PT

Y MATCH PT

GOOD MATCH FCR THIS Y 7

1NCREMENT AST INDEX

INCHEMEFiT Y ADDRESS
(KNT=KNT- 1 1 EN3 YA 7

ENTER -1 AT END OF STRIvG

MATCH PTS = (R7)/4

---. -. .

Figure 1: Example of Assembler Output.

code if we include the condition code enable bit
along with the four next address instruction bits.
If the next address control circuit were as shown in
figure 48 of reference [l], then we must also
condsider the four bits which control the condition
code multiplexer. All the co;nbinations of next
address control must be joined with the 2901
instructicn which would lead to a total of 524,288
operation codes.

Thus, it is general practice for microprocessor
assemblers to divide the microinstruction into
several fields each with its own set of operation
codes and operands. Whereas an ordinary computer
assembler generates one machine instruction for one
operation code, the microassembler may expect several
operation codes to be concatenated into one micro-
instruction.

LMother difference between ordinary computer
instructions and microinstructions is the appearance
of Don't Care fields in the microinstruction. In the
case of the simple scanner described in section 3 of
reference [l], the branch address field was not used
for instructions in which the next address was taken
as the next sequential address (CONTinue
instructions). As we will see below, it is also
convenient to have "Default" fields in the micrti
instruction. A microassembler must be able to handle
these situations as well as the multiple operation
codes.

2. GENERATION OF MICR3PKJZhblS

There are many methods for generation of miCKC?-
prograrrs and we will study four of them. The choice
of which method to use depends on many factors, such
as the length of the expected programs, the execution
efficienq required, the complexity of the
instruction set, etc. And as with programming
COmpUteKS, a programming language that generally
leads to efficient code such as assembly language may
be rejected in favor of a programming language which
is easier to use by a average programmer, such as
FOF?JlUN.

2.1 HANPCODL!Xl BINARY.

Hand-Coded binary programming is a method in which
the programmer writes directly in the binary bit
pattern of the processor's microinstruction set.
This method was used in prograrmning the simple
scanner in section 3 of reference [l]. Figure 33 of
reference [l] gave the instruction set of the
processor. The program to perform a scan of devices
with data was written in only six instructions as was
shown in figure 34 of that reference.

The Hand-Coded binary method was a perfectly
viable method in the case of the simple scanner.
Uniike the methods which wili be discussed in the
following sections, it requires no support software
in the form of assembler programs. The only support

-3-

software that may be needed is a way of actually
loading the microprogram memory and even there one
could think ways to get around using software to do
this.

If the program should become very long this method
can be v-y tedious. It is also relatively difficult
to read the program many months after is was written.
Modifying the program may also be very time con-
sunming. For example if one inserted a few new
instructions in the middle of a program, then one
might need to change many other instructions in order
to correct the branch address field for those
instructions which have changed their address. The
hand-coded binary method should probably only be used
for very short and simple microprograms which do not
need to be modified often.

2.2 DEDICATED MICROASSEMBLER.

A dedicated microassembler is an assembler which
has been written to assemble programs for one
microprocessor. If'the processor is simple, and one
does not expect an assembler with many of the
sophisticated features we normally associate with
assemblers that come with computers, then one can
write a dedicated microassembler relatively quickly.

As an example of a dedicated microassembler, let
us study a microprocessor designed by Guzik for use
at experiment at FermiLab[2]. It's purpose was to
read data from a CAMAC crate and make a decision on
whether the event should be read out by the host
computer. Figure 2 is a simplified block diagram of
the processor which is based on the 2901A bit slice
microprocessor and a 2909 microsequencer.

16 0

i-i-

CAMAC
NAF CAMAC

I
I 0

2909 SO.Sl,elc. CONTROL
SEOUENCER - LOGIC

Y

1
1 :i

SEOCLK . ‘I

Figure 2: Block Diagram of Guzik's Processor.

As is shown in figure 3, the microinstructions are
24 bits in length with an 8 bit control field and a
16 bit operand field. The control field has bits
that are routed directly to the control points within
the processor. Two bits control the next address
multiplexer of the 2909 (SQ,Sl). The SEN bit enables

the stack file of the 2909. The CND bit allows the
SIGN bit from the 2901A to be ORed with the least
significant bit of the microinstruction address.
This is the only form of conditional branching the
processor can execute. The MPL bit was used for
iterative multiplication. The DAT bit controls
whether the operand field is clocked into the
accumulator register or the CANAC address register.
The MPX bit controls the multiplexer at the input to
the 290lA. It selects either the accumulator
register which could be loaded from the 16 bit data
operand field of the instruction or the data on tne
CAMAC READ lines. And finally, the MOD bit
controlles whether the 29611 or a register is clocked.
The operand field may be used for one of four
purposes: a 16 bit data word, a 16 bit micro-
instruction address, a instruction for the 2901, or a
CAMAC comaand. Figure 4 shows the bit assignments in
the Operand field.

Figure 5 is an example of the processor's
microassembly source code. The control field and
operand fields are handled in different ways. For
the control field the source is divided into 7
columns corresponding to the 6 control bits and the
one 2 bit field. In these columns, the program
writes a symbol to generate a '0' or '1'. These
symbols are easily interpreted in terms of what the
processor is controlling during that micro-
instruction. For some of the fields, the a blank
means the Don't Care state of that subfield, while in
others it means the Default value.

As discussed above, the operand field can have one
of four different meanings. The first character of
the o,perand field of the source code contains a
symbol which tells the assembler which kind of
operand follows. These symbols are

$ for data operand
* for microinstruction address
& for 290l.A instruction field
for CAMAC command

Within the rest of the operand field are further
symbols to indicate parameters to put into the
subfield, if any, of the operand. The micro-
instruction address may have a symbolic name or label
and it is placed in the left most column of the
instruction. The right most column is reserved for a
comment field.

If we look in detail at a few instructions we
should be able to see how the assembly language is
used. The first instruction has the symbolic label
'START'. The ?4OD column has the symbol 'OPR'
indicating that the 290lA will not function for this
cycle. The DAT column has the symbol 'NAF' so that
the operand field will be loaded into the C.&MAC KAF
register. The SFQ field has the symbol 'CNT' so that
the next microinstruction .will be taken from the
microprogram counter register of the 2909. The
operand field‘starts off with a '#', thus the operand
contains the CAMAC address and function. The symbol
'N(3)' means that the station number subfield should
be filled with a '3'. Similarly, the symbols 'A(0)'
and 'F(0)' cause the subaddress and functions
subfields to be filled with '0'. The net effect of
this instruction' is thus a CAMAC Read at station 3
subaddress 0.

The next instruction is similar to the first
except that the operand field is loaded into the
accumulator as is indicated by the symbol 'DAT' in
the DAT column. The operand field starts with the
symbol '$' to show that what follows in a single data
word and the symbol 'AX' is used for this word. Thus
this instruction loads a 16 bit data word from the

I

24 BIT MICKOINSTKUCTION WORD
---------Nm-p ---------------------------
I OPERAND FIELD 1 CONTROL FIELD I

8 BIT CONJJKOL FIELD
----.---------..-__
I I I I I I I I I -------------____

) ‘-
---w-m

I

for 2909 00 =

2
next address

Program Counter (Cm)

multiplexer
01 = K-Re ister (KEG)
10 = Staca (STK)
11 = Direct Data (DIR)

SEN 0 = Stack disabled (default)
1 = Stack enabled (S&N)

CND O= SIGN flag disabled (default)
1 = SIGN flag enabled (CCU)

MPL 0 = normal 2901A operation (default)
1 = conditional ADD in 2901A (MPL)

DAT 0 = operand field to ACC. Kegister (DAT)
1 = operand field to CAMAC Command Register (NAF)

MPX 0 = ACC. Register to 2901A D input (ACC)
1 = CAMAC Read lines to 2901A D input (CAM)

MOD 0 = 2901A operation
1 = Data or Address

ALU)
OPR)

Figure 3: Control Field of Guzik's Microinstruction Word.

16 BIT OPERAND FIELD
DATA Operand

I DATA I

Microinstruction Address Operand __-----_------------__I____
I ADDRESS I -------------------------

2901 Instruction Operand
_-----------------------------
I A I B I D 1 F 1 S ICI _-----_-------_------_________I_

I
------ CAURY-IN

---------- 2901 Source code

--------------- 2901 Function code
--------------------- 2901 Destination code

______---------------------- B-Register address
______-__-__---------------------- A-Register address

CAMAC Command Operand

IEtLl N I A I F 1 _I-_-____----__-----__________^_

I
I ---------- CAMAC Function code

---mm.------------- CmC SubAddress
---------------------------- C&Q& Station Number

--_-_----------------------------- CmC L&f generation
-----__----------------------------- END (stops processor)

Figure 4: Operand Field of Guzik's Microinstruction Word.

operand field of the microinstruction into the indicated by the 'ACC' in the MFX column. The
accumulstor register. operand field starts with the symbol I&' which means

that the operand field source is be read as subfields
The 290l.A will function in the next instruction as of the 2901 instruction. In this instruction the

indicated by the symbol 'ALO' in the I4OD column. The 2901 source, function and destination codes are
D input multiplexer selects the accumulator source as progranvned to be 'D,O', 'OR', and 'F-)Q'. The A and

-5

MOD MPX DAT MPL CND SEN SEQ, OYERAND FIELD ;CO>lMENr

;,$START: CI.If:
E"T

E$, ;N$) A(O) F(O) ;
ALU ACC
ALU CAN

&IT: &X)B(X) D,O OR FQ 0 ;

041 OPR
CNT, &A(X)B(Z) D,O OR FBF 0 ,

051
SEN DIR, *MULTI

ALU
061 OPK NAF

CET, &A(2)B(O) O,A OR FBF 0 ;
CNl', #N(3) A(1) F(0)

AiU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
OPR

MPL
MPL
MPL
MPL
MPL
MPL
MPL
MPL

Ch, 6A(X)B(
CNi dA(2)B(
CNL' &A(2)B(

STK, $0.

I) 0.B AND FBF 0 ;
1) A,B ADD UFQ 0 ;
1) A,B ADD UFQ 0 i
1) A,B ADD UFQ 0
1 A,B ADD
1 A,B

UFQ 0 :
ADD 0

1 A,B
UFQ

ADD
;

0
1 A,B ADD

UFQ ;

1
UFQ 0 ;

A,B ADD FBF 0 ;
;

Figure 5: Example of Guzik's Kicroprcgram.

0 register address are not used which is indicated by
the 'X' in the symbol 'A(X)B(X)'. In the next
instruction, however, the data on the CAMAC Read
lines are loaded into register 2 of the 2901. Note
the symbol 'CAN' in the MPX column and the operand
field symbol 'A(X)B(2)'.

The next instruction illustrates how a subroutine
call is prcgrakured. The stack enable bit (SEN) is
turned on with the next address multiplexer of the
2909 selecting the D inputs ('DIR' in column SEQ).
The operand field must then contain a micro-
instruction address so it starts with a I*@ The
operand field contains the symbol 'MULTI' which is
also used further down in the program to label a
microinstruction address. The microassembler will
substitute the binary address of MULTI into the
operand field of this instruction.

It is left as an exercise to the reader to read
the rest of the program. One might accuse this
microassc;ilbler of being rather primitive, but the
author feels it fits well to the task it must do.
The processor was designed to execute a simple
program and one can even notice that not all the
functions of the LSI microcircuits were implemented
in the circuit. Likewise, the microassembler only is
capable of doing what the programmer needs: to write
the relative short programs that this processor will
ix used for. Programming this processor witn the
assembler is considerable easier than using the hand-
coded binary method and yet the assembler is not so
complex that it is difficult to write.

2.3 META ASSEMBLERS.

Assemblers for microprocessors or ' computers
Perform very similar tasks. The code that must be
written to write an assembler is also very similar.
It is possible to divide the task into those parts
which are the same for all machines and those parts
which depend on the processor's instruction set.
Then, if an assc.mbler would be written to accept as
input the definition of the processor, we could reuse
this sort of assembler for many different processors.
Such an assembler is called a an assembler assembler
or a "metsassembler".

A meta assembler operates in two phases, the
definition phase and the assembly phase. The
definition phase, which must be executed first, sets
up tables with the programmer's defined set of

instructions and their model format. That is to say,
the programmer specifies the symbols which will be
used in the assembly phase to produce the binary bit
pattern of the microinstruction. The asse;nbly phase
then uses the output of the definition phase and the
source program input and operates in the sam2 way as
an ordinary computer assembler.

~NAFKEG:=NAF(X:)
ACC:=AX

K%MAC (X1)
JSR MULTI
RO:=Rl
NAFREG:=N4F(X2)

Kl:=O
COND-ADD AN’3 SHIFT
CON ADD AND SHIFT
COW ADD AND SHIFT
COND ADD AND SHIFT
COW ADD AND SHIFT
CCND ADD AND SHIFT
COW ADD AND SHIFT
ADD
RETURN

In order to study the properties of a meta
assembler, we will study in some detail a meta
assembler called AMDASM which was written by Advance
Micro Devices for users of their LSI microcircuits.
We will only discuss only the some of the features of
ANDASM in order to bring out the basic ideas. More
details may be had in the reference manual which is
included with the book on circuit specifications[31.

2.3.1 Definition Phase example.

The definition phase of the AMDASM meta assembler
has two basic statement types: the EQU statement and
the DEF statement. An EQU statement is used to
generate a symbolic name for a constant value or
expression. An example would be:

S4: EQU B#l00

which sets the value of the symbol 'S4' to a 3 bit
binary number '100'. Once the Ego statement is made,
any further reference to the bit pattern '100' may be
made by using the symbol 'S4'. A choice of four
number systems may be made. The programmer selects
which one by the letter in front of the 'II' symbol as
follows:

B for binary,
Q for octal,
D for decimal, and
H for hexadecimal.

The purpose of the EQU statement is the same as in
ordinary assemblers, it relieves the programmer of
the tedious task of always coding the bit pattern.
Instead he can code a symbol which makes the program
not only easier to write but also much easier to read
and understand at a later date. Also, if the
constant bit pattern need be changed, it may be done
pnly at the F.QLI statement rather then throughout the
program where that Pattern may be used. Consider for
example setting up the function code field of the
2901. We may write the following EOU statements:

-6-
I

ADD: WJ QW ; R PLUS s
SUBR: EQU Q#l ; S MINUS R
SUBS: EQU Q112 ; RMINUS S
OR: K’u Q#3 ;RORS
AND: EQU Q%4 ; R AND S
NOIRS:FQU Q#5 ; (NOT R) AND S
BXOR: Jm Q#6 ; REX-ORS
EXNOR: NU Q#7 ; R EX-NOR S

The DEF atement is a model of the micro-
instruction that is to be generated by a symbol in
the assembly phase. The microinstrucion word is
broken up into fields of specified length with the
sum of the lengths being equal to the length of the
microinstruction word. There are three kinds of
field specifications: constant, variable, and "Don't
Care". A constant field is one which always supplies

_ the same constant bit pattern each time the micro-
instruction is invoked in the assembly phase. A
variable field is one in which a variable value may
be supplied in the assembly phase. One feature of a
meta assembler which is not common to an ordinary
assembler, is that if the variable value is not
explicitly stated in the assetily phase then a
default value for the field is supplied by the
assembler. The DEF statement also provides a
mechanism for specifying the default value. The
"Don't Care" fields are those which are unaffected or
not needed by the model microinstruction.

;AMDASM MICRO ASSEMBLER EXAMPLE
;SIMPLE SCANNER
; DEFINE WORD LENGTH

WORD '13
i DEVICE CONTROL EQUATES
~DAC: W NEXT: EQU 3:
ZDAC: WJ B 111
i NEXT ADDRESS CONTROL DEFINITIONS

As an example of the DEF statement, consider the
simple scanner example again. Figure 33 of reference
Ill defines the fields associated with that
processor. Using the A;mAs."I assembler we can define
the folloiiing microinstrcctions to handle 'he
branching portion of the microinstruction as folloas:

cmr : DEF 4?i,B#00,7X ; CONTINUE

l3RDv : DZF 4VIltF,B;;'111,7X ;BR OKI?, Vz'LID
B.WNE: DEF 4VH;lr',B#10,7X ;BR m:qE
JLW: DEF 4VHIF,ti11,7X ;JU>W

In the first statezent, the symbol 'COp?I' is a micro-
instruction with 3 fields which are separated by
a I,'. The first and last are Don't Care fields
which is indicated by the 'X'. These fields are 4
and 7 bits in length respectively. The second field
is 2 bits in length and contains the constant vAue
'00' binary. The same number system specification as
the EQU stateilents are used in the DEF statements.
In the re;n;lining statements the first field is a
variable field four bits in length. The default
value will have the value 'F' hexadecimal. Tne
second and third fields in these statements are like
those of the first statement except the constant
value is different. A complete input to the
definition phase of the AF'iASM assembler for the
simple scanner is shown in figure 6 .

CONT: DEF 4X. 25100.7X
BKDV: DEF
BKDOSE: UEF

4vx, 2H101,lX
i CONTINUE

JUPlP: DEF
4VX,ZB#10,7X

, BRANCH IF 'DATA-VALID'
4VX,ZB#11,7X

; BRANCH IF ‘DONE’
; JUMP

f Ilt>;OKY CONTROL DEFLNITIONS
iEIAC : DEF ; ZEKO MEIJORY ADDRESS COUNTER
IblAC : DEF pp$y;

; INCKENENT MENOKY ADDRESS COUNTER
W:IE:+l: DEF
F!i\'0P: DEF

6X:O//l:4X
6X,Qli!l,4X

; WRITE TO MEMORY
; EIEYORY NO OPERATION

Figure 6: Definition Phase Input
for Simple Scanner.

; DEVICE COhTROL DEFINI'TIONS
BEVICE: DEF 9X,1VUtO,lVB~O,IVB~~O,lX ; VAKIABLE FIELDS ARE:

; 'NEXT' PULSE
; INCRENEhT DEVICE COUNTER
; ZEKO DEVICE COUNTER

; STOPPING CONTKOL
iTOP: DEF lZX,lVB#O ; SET TO '1' TO STOP
E LX II

x

2.3.2 Assembly phase example. ~--

The assembly phase reads the source program
statements, substitutes values for the constants and
labels, and generates the bit pattern which is to be
lea&d ino the microprogram memory. The symbols used
in the source statements must be either those defined
in the definition phase or from EQU statements given
in the assembly phase. The meta assembler in this

phase looks very much like an ordinary assembler
except for its ability to overlay or concatenate
several microinstructions into a single micro-
instruction word. This feature is made clear by
considering statements for the program of the simple
scanner.

The program flow of the simple scanner is given in
figure 31 of reference 111. In the first
instruction, the processor must reset the DEVICE
COUNTER and ADORESS COUNTER and send the first NEXT
signal. The next instruction will be the next
sequential address. This instruction may be coded as

I -7-

;AMDASM MICRO ASSEMBLER EXAMPLE
;SIMYLE SCANNER

; PROGRAM PHASE

START: CON-T
DVCHK: BRDV DVON

& ZMAC & DEVICE NEXT,,ZDAC ; RESET ALL
6 MNUP & DEVICE

BRDONE FINI & MNOP & DEVICE
; TEST 'DATA-VALID'

NXTDV:
; TEST 'DONE'

DVON:
JUMP DVCHK & MNOP & DEVICE NEXT.IDAC
cola & WMEM & DEVICE

; TKY NEXT DEVICE

JUMP NXTDV & IMAC & DEVICE
; WRITE TO MEMORY

FINI: JUMP START & STOP 1
; INCREMENT MEM ADR

STOP

shown in the first program statement of figure
Reading this statement from left to right, it
explained as follows. The 'START:' is a label

7 .

this microinstruction address. It does not effect
the instruction generated for this location in any
way. The 'CONT' is a symbol from the definition
phase which sets bits 4 and 5 to '00' and leaves all
the other bits in the Don't Care condition. The
symbol '&' means concatenation or overlay is to be
performed by the assembler. The symbol 'ZMAC' is
also from the definition phase and it sets bits 6
through 8 to '100'. Because the overlay symbol has
been used the bits affected by both the 'CONT' and
'ZMAC' will be set by this instruction. Continuing
to the right another I&' symbol follows which means
that even more bits are to be set. The 'DEVICE'
symbol comes next and from the definition phase we
see that it sets three variable fields. Only two
variable symbol names follow: 'NEXT' and 'ZDAC'.
The value of the variable 'NEXT' is equal to '1'
because of the EQU statement in the definition phase.
Thus the with combination 'DEVICE NEXT', the
assembler will generate a '1' in bit 9 of the
microinstruction. The next variable field of the
'DEVICE' instruction is not specified as we can see
by the two commas occurring in a row. Thus the
assembler will use the default value for this field
and generate a '0' in bit 10. The last variable
field is specified, and from the EQU statement for
'ZDAC', one can see that the assembler should
generate a '1' in bit 11.

The next instruction is labeled 'DVCHK' and it
overlays a 'BRDV', 'I'SOP' , and 'DEVICE' micro-
instructions into this single instruction. The
'DRDV' contains a variable field which is the first
bits of the microinstruction. The variable to be
used is 'DVON'. This symbol is used as the statement
label for the fifth microinstruction in the program
assexbly . Thus the assembler takes the address of
this instruction as the value of the variable DVON
and puts this value in bits 0 through 3. The net
effect of this code is for the program to branch to
the instruction labeled 'DVON' if the 'DATA-VALID'

;A:lDASM MICRO ASSEMBLER EXAMPLE
:SIMPLE SCANNER

Figure 7: Assetily Phase ExaTle
for Simple Scanner.

signal is being received while doing no operation on
either the buffer' memory control or the device
control signals. Step 1 on the flow diagram in
figure 31 of reference [l] corresponds to this
instruction.

One should now be able to follow the complete
program for the simple scanner shown in figure 7 .
Note that for the fields of the microinstruction
which control the buffer memory and the device
counter, I have used two different methods of setting
the bits in order to illustrate variable
substitution. I could have used either method for
both fields or combined them into one
microinstruction model.

One would think that the program given in figure 7
would yield the same bit pattern for the
microinstructions as shown in figure 34 of reference
[ll . One mistake, however, has been made in the
program as shown. It illustrates that micro-
programming with a meta assembler is not as easy at
it seems. The 'STOP' microinstruction model was used
in the program statement in order to halt the
processor. The use the 'STOP' symbol followed by t!le
variable field '1' is correct in the last statement
of the program shown in figure 7 . In all the ether
instructions, however, this bit of the micro-
instruction is left in the Don't Care state because
the symbol 'STOP' does not appear. The default value
'0' which is desired for these instructions will not
be invoked unless the symbol 'STOP' appears in the
source statement. As will be seen in section 3, all
the Don't Care fields must be translated to either
'0' or '1' when they are moved into the micro-
instruction memory since obviously a memory can't
store a Don't Care. Thus, unless all Don't Cares are
translated to '0', the processor will not function
pass the first instruction. Figure 8 shows the
program corrected with the symbol 'S'IUP' appearing in
each statement. In all but the last statement the
default value '0' is generated because no variable is
specified.

; PROGRAM PHASE

START: C0.W
ll\lCIiK: BRDV DVON

& ZPAC & DEVICE NEXT,,ZDAC & STOP
& MNOP 6 DEVICE & STUP

; RESET ALL
; TEST 'DATA-VALID' Figure 8: Assembly Program

BKDONiE FIN1 & MKUP & DEVICE 6 STOP
NXTDV:
DVUN:

JL':ll' DVCHK & MN0 & DEVICE NEXT,IDAC & STOP
; TEST 'DONE' for Simple Scanner Corrected.

cori h WMPL & DEVICE & STOP
; TKY NEXT DEVICE

Jtib!P NXTDV & IMAC & DEVICE
; WRITE TO MEMORY

& STOP
FINI: JUl\lF START & MNUP & DEVICE

; INCREMENT MEM ADR
6 STOP 1 ; STOP

2.3.3 Other features in meta assemblers.

Even a meta assembler as simple as that part of
the AMDASM assembler described above can make
programming a microprocessor much easier when
compared to hand-coded binary. It may also be used
for many different microprocessor projects and
programs can be easily be modified when a processor
is modified. There are other desirable features one
would like to have in a meta assembler which would
make programmi= even easier and .a few of these
features are described below.

First of all, one would like to remove the
positional dependence of the variable substitutions.
This may be accomplished if the assembler has what is
called a 'keyword' ability. Consider the following
source program statement which might come from a
processor with a 290lA:

ALtJ=(A(l),B(3),0R,AB,FBF),BR=[Z,LOOP)

From the description of the 290lA, we can imagine
that this statements calls for registers 1 and 3 to
be selected for the A and B outputs respectively, an
OR ALU function code with A and B as the two ALU
operands, and the results loaded back into the
register file. In the same microcycle the program
should branch to the location labeled by the symbol
'UWP' if the result is zero. The Keywords can be at
least 'ALU=', and 'BR=' as well as 'A()’ and 'B()'.
A meta assembler which could correctly interpret the
statement this way would be much easier to write
programs for and the programs would be much easier to
read. One could also imagine that sy&ols such as
'OR', 'AB', and 'FBF' could be defined in such a way
that they would cause certain fields of the
microinstruction to be generated independent of the
position within the microprogram statement.

Another feature, which is sometimes very useful in
ordinary assemblers, is the macro capability. It
allows the programmer, in the assembly phase to
define one or ‘more instructions to be generated by a
symbol defined as a macro. For example one could
define a macro 'OR' which when written in a program
statement thusly:

OR A(l),B(3) BR=(Z,LooP)

would generate exactly the same microinstruction
shcn*n in the previous paragraph. Some ordinary
assemblers with macro capabilities alloM the user to
test for the number of operands. With such a
capability in a meta assembler, the statement

OR A(l),D,B(3) BR=(Z,LCOP)

could be assembled as

ALU=(A(l),B(3),OR,DA,FBF), BR=(Z,LCOP)

where the use of the D inputs for one operand was
understood by the assembler because there were three
operands in the argument list.

Another use of the macro capability is the
generation of multiple microinstructions with one
macro. Consider a macro called 'LOAD' which when
written in a statement like

JAAD 0,X4

would generate

MOPR=(X4,READ),CONT
ALU=(A(X),B(X),OR,DB,FQ), CONT

-8-
which might be a memory read cycle with address X4
followed by passing the memory contents through the
2901 ALU in order to load it into the 2901 Q
register.

One might also want an automatic default feature
to avoid the kind of error that was made with the
simple scanner program as shown in figure 7 . That
is, with the automatic default feature, any mcdEl
microinstruction not appearing in the microprogram
statement would be set to its default field. Such a
feature however, might lead to other kinds of
programning errors if the programmer had to make a
real choice of possible variables. On the other
hand, in all the microprogram statement examples we
have shown so far, one had to always specify a
'CONTINUE' for the next address selection. It would
be easier for the pKogKEUMk?K if the assembler
defaulted to 'CONTINUE' unless a 'Branch' was
explicitly stated.

2.3.4 Difficulties with meta assemblers. --

It seems that with an assembler of the type
described with the AMDASM assembler that micro-
programming can be quite easy. One way of analyzing
the difficulty is the consider scme of the errors one
might make and when these errors can be detected.
Table 1 gives such a possible list of errors and also
shows what kind of errors are unique to
microprocessor assemblers as compared to ordinary
assemblers.

2.3.5 Obtaining a meta assembler. --

The meta assembler is a good, if not essential,
starting point for developing the necessary micro-
programs. The question is: . How does one obtain a
meta assembler which has the capabilities required
fOK microprocessors we would find in our
laboratories. The decision is basicly whether to buy
one or to write one.

One can write a meta assembler in FORTRAN Or
assembly language. It is not as formidable task as
it might appear if one keeps the definition and
assembly phases simple enough. Probably the most
tedious part of the task is writing the code which
recognizes the syntax of the character strings. One
should consider a programming language which is good
at this. The rest is simple.

Since the task of recongizing character strings is
already done by the assembler one has with a
computer, one might like to find a way to use this
assembler to do most of the work. One way to use an
existing assembler is to make use of its macro
capabilities. This approach is highly desirable
because many of the necessary capabilities of an
assembler will be taken care of by-the host assembler
so the user will not need to rewrite them. These
include the assignment of symbols to constant values,
the handling of address labels, and the substitution
of. variable values into instructions. Also the
writing of the assembler is made easier by the macro
language capabilities for decoding of parameter
fields and the general ability for manipulating
character strings and bit patterns. There are also
some higher level languages which have a macro
capability, such as PL/l, which should be good for
writing a meta assembler.

An example of this latter approach is the MIMIC
assembler written at SLAC by Edward Frankf41. It

-9-

TABLE 1 Errors in Microprogramming

DEFINITION PHASE
Ille al character strings
Unde ined P symbols
Duplicate labels
Bad word length
Bad field length

ASSEMBLY PHASE

RUN PHASE
Bad field

P
osition

Bad field ength
Wrong constants
Bad timing
Don't Cares are not

makes extensive use of the capabilities of the IBM
360/370 assembler. It consists of a set of macro
definitions so that, except for EQU statements, every
SymboiiC Source statement calls a MIMIC macro. The
general format rules of the IBM Assembler program are
preserved, along with its 2KKOK handling
capabilities.

In the definition phase of the MIMIC meta
assembler, the ~K~~KZLINWK writes the definition of
his fields with a set of MIMIC macros. The maccos
generate a table of symbol names and may generate
other macKos. The table of generated macros are
"Punched" to an output file which is in fact the
output of the definition phase and they may be saved
for future use.

In the assembly phase of the MIMIC meta assembler,
the ~KO~KZMEK codes the program using the symbols
defined in the definition phase. The "Punched"
output file is the s2t of macros necessary for this
phase. 'These macros assemble the bit pattern of the
&Sired microinstruction into assembler constants.
Th2 binary output is generated by a "DC" (Defin2
Constant) IHM assembler directive. It may then be
saved using all the normal facilities of the
operating system.

F?il alternative to writing a n;eta ass2mbler is to
rent one. There are several meta assemblers
availa!, from the time sharing comgut2r services.
In the U.S., fOK example, the Computer Sciences
CoKporation rents the AMDAS>l that we have already
studied. Output is available on paper ta,pe ready to
pro;ram Pi?c&l'S. The cost of such a service is about
U.S. $190~SlU00 per month depending on the ?znount of
programming done. Despite tne s2eming high cost for
th2 rental, this may be the best answer when one has
a a.?.11 project and does not expect to need the m2ta
assembler for other projects.

The same meta assemblers that one can Kent are
g2ncrally available to buy in tiE! form of either a
FC%TcJ?N couKce FK~JKZL? or a Load nlcdule for a mini OK

IAiCK0 CCXpU;2K. In addition, there are other meta
asse:rblcK that on2 can buy. Maily of the semi-
conr;uctor manufacturers, realizing that potential
LlS"LS of their LSI microcircuits need progrannung
aids, are also in the business of selling meta
assemblers. FOK example, Signetics sells a meta
assc!iSleK written i n mi3Tm.i , while fidvanced Micro
Ccvic2s sells an assembly program written for the

Ordizary
I,

Microazsemblers

Ordinary
18

Microassemblers
,,
II
II

Microazsemblers

8088. There are also independent Software houses
which have developed meta assemblers which are geared
for the microprocessor logic engineer. Even IEM has
a software product which is a meta assembler. It
requires that the installation has APL. The cost of
these meta assemblers is around U.S. $2000. FOK a
survey of cc~mm2rcially available m2ta asseKbl2rs, the
reac!er iS KefeKKed t0 a Kecsnt article by V. !',.
Powers and J. H. Hernandez [5].

It is interesting to ncte that the interest in
meta assemblers has increased dramatically sinc2 the

availability of the LSI microcircuits. The 33x '-
COndUCtOK manufacturers find theinseives not only
supplying the circuits but also some software to bclp
their customers use- them. In addition, Ei!l~d~
colmpanies are publishing extensive application notes
which give examples for the us2 of their circuits.
Whereas microprogramming was the domain of a few
acadenics and professional computer designers in the
past, it is now the focus of a large public education
campaign waged by semiconductor companies interested
in bring the technique to the largest body of people
as possible.

Another method to obtain a meta assembler is to
"steal" one . That is to say, get a copy of one from
someon which is willing to give you a meta assembler
he has written. Since the LSI microcircuits ace
becoming more and more in use in the High Energy
Physics Laboratories, one will certainly find that
some good meta assemblers will be developed. I have
already mentioned the MIMIC meta assembler written at
six , for example, which may be used by anybody who
has access to an IBM 360/370. Another on2 has been
written oy W. Wimmer at DESY[6].

2.4 EMULATION OF EXISTIMG CCr?l'UTER. -

FOK a given project in which a microprocessor is
to perforin some task, one has a generally a great
deal of design flexibility. That is to say there aKe
many ways in which the circuit could be designed to
peKfOKm the task. Given a processor with a
reasonable instruction set, the PK~KZdTUlEK can
accomplish almost any calculation he desires. One
microprocessor on the market (the 8X300, made by
Signetics) has only 8 machine instructions and yet
one could imagine doing very complicated calculations
with it. Obviously, if the main feature of a

-lO-

microprocessor is speed of calculation for one
particular problem, then the choice between many
possible designs becomes smaller. An example is the
M7 processor[7] which was designed to calculate the
effective mass from two particles in the detector.

- It has, the capability of doing two multiplications
and one addition in a single cycle.

For a microprocessor which is designed for general
Purse,
design.

there is generally a larger choice of
However, there is one choice which can

greatly reduce the programming difficulty. It is to
emulate an existing computer which one has access to,
so that software development can be done on it. An
example comes from my own work with a microorocessor
called the 168/E which I have described in section
5.2 of reference [I]. The rational behind the 168/E
was the following. A general purpose microprocessor
must have three basic features:

1. arithmetic and logical operations perhaps
with a register file or accumulator,

2. a Ilh~n:; of I~hWlOCy addressing with efficient
indcsily capanbilities, and

3. a means of condition branching on
previous results.

The design of the 168/E chosen so that all these
conditions was satisfied in a fashion which is so
similar to the instruction set of the IBM 360/370
series of computers that one can easily translate IBM
360/370 programs into microprograms for the 168/E.

The advantages of emulation can be seen if one
follows the steps for writing and debugging a
program. First, a program is written in a language
which is available for the emulated computer such as
FO2T.P.W or assembly. One can then use a complier
that exists for this machine to generate object code.
Then the program is tested with real or simulated
data on the emulated computer using all of that
co:?>uter’s resources for program debugging such as
line printers, interactive terminals, graphics, and
histogram and debug software packages. The working
program can then be translated from the object code
into the microprogram code of the,microprocessor and
:;i:2n loaded into it, it should work the first time.

The reduction in overall effort can be quite
substantial. For one thing, no software
documentation for a microprocessor instruction set
need be written or maintained. There would be no
need to write an asse,mbler or use a meta assembler.
Simulators for a microprocessor are sometimes written
to aid prograz~ testing, but no such simulators need
to b" written for a emulating microprocessor since
the enulated computer serves this function. One
should also realize that no retraining of programmers
noeii be done which is important since most
pro:lralXWrs only get very proficient with a
particular machine langluage after they have much
experience with it. The greatest advantage of all is
tnat because of the emulation of another computer,
the experimenters on th2 project can program the
:l:icrcprocersor themselves in a higher level language
tney understand, such as FCZ?TRAii.

Tne emulation technique requires a restriction of
tt:e d2sign of the microprocessor so that it best
cor;~3sponds to L&e c:rulated cowuter, w!>ich is
CL’.-:.c times called tine “target machine”. The
translator, which is the only special software which
needs to be written, is a partner with the hardware
design to prod~e the desired result. The net result
is that one has a processor which is considerably
easinr to program yet is probably no slower in
~xcc:ztion spzed nor not n!dch more costly then designs

based on the same LSI microcircuits. They will be
slower, however, than processors with a lot of
dedicated high speed arithmetic units.

3. POST-PRXESSING MICROPROClRW ASSE!lBLY.

After assembling a program for a microprocessor on
a host cowuter, one is ready to load it into the
microprogram memory of the processor. This task is
simple in concept but nevertheless requires soze
additional software which must be considered as part
of the software for microcircuits.

The Output from the assembly stage is a object
code file containing the bit pattern to be loaded
into the microprogram memory. It is in a form which
is probably convenient for storage on the host
computer such as a disk file. It must be transformed
into the farmst for loading into the ptocess3r i:r.ose
memory may be in the form of Program72ble Read Only
Gmi~y (PKN) or as a writeable control store (PW.) .
It also must be transported from the host computer to
the microprocessor.

The programming of PiWMs is a software task which
must have knowledge of the microinstruction format
and the particular PK%l circuit chosen. First, the
“Don’t Care” states which may still exist in the
program must be changed to either a logic ‘D’ or ‘1’
since the memory circuit can only store one state or
the other. Some P,KX+ circuits invert or co+ement
all of its outputs and in such cases one would need
to complement the object program file before loading
into the PF01. l3oth of these problems are relatively
easy to take care of during program transport.

The number of bits available in PROM circuits is
increasing all the time. Yet, in most cases one can
not put all of the microprogram into one single
circuit. For example, the microinstruction for the
simple scanner processor (figure 33 of reference [l])
has a width of 13 bits and requires at least 6 words.
A survey of the available memory circuits shows that
the economical choice for the simple scanner is to
us2 PRGls with 32 words of 8 bits. There simply does
not exist on the market a memory circuit with 6 words
of 13 bits. Thus the implementation of the
instruction memory may be as shown in figure 9 .
Eere two memories each containing 8 bits have been
placed in parallel so that the first has outputs for
the first 8 bits and the second contains the
remaining 5 bits. Three bits of the second PRCM are
not used and we are force to waste these bits. The
same microprogram address is applied to both
circuits. Since the next address logic of the simple
scanner has an address field of only four bits, we
have one address input line on both memories which is
unused. In figure 9 we have tied that input to
ground which forces that address line to ‘11’.

The simple scanner example is a case where the
program is smaller but the program instruction width
is larger than any available memory circuit. When
this PXM is programmed it is inserted into a special
circuit which applies the required voltages to blow
the fuses within the circuit or deposits the charge
in the cells of EPKNs. In either case, the
programming circuit needs as input from the object
code only the bits from the whole instruction word
which will be placed into one PROM circuit. This
means one of the post-processing steps is to take the
object file and generate a programming file for eac!l
PRN which is required to contain the whole
instruction word.

-ll-

_.

F%FRPSESXT interface needs to be designed between the host
MULEXOR computer and the memory bus of the microprocessor.

In many cases, as will be discussed later, this
interface may contain a micro or mini computer. In
such cases, one must provide for the software for
these two computers to communicate with each other
and software which enables the computer directly
attached to the microprocessor program memory to
write into that memory. The software necessary is
generally simple and straightforward. Yet it must be
written, tested and debugged and as we all know even
the simplest of software programs can sometimes lead
to days or weeks of effort. All of this software _
should be considered as part of the software
necessary for microcircuits even though it has
nothing to do with the programs that run in the
microprocessor. But once ths software iS functioning

Figure 9: PROM layout for Simple Scanner. properly, it may be reused for many different
microprocessor projects.

Some microprocessors will have programs which are
longer than the number of words available in PRGls.
In this case, one would use multiple PROMS to contain
the whole program as shown in figure 10 . In this
figure, we have illustrated how one can use the same

' 32 word by 8 bit PRCNs to make a program memory of 64
words by 16 bits. The low order 5 bits of the micro-
program address are bused to each memory circuit.
The most significant bit and its complement is
generated so that a "Chip-Select" signal is sent to
only one bank of PROMS at a time. Most memory
circuits have a "Chip-Select" input which disables
the output of the circuit when a False signal is
received by the circuit. One can then tie the
outputs of two circuits together to form what is
called a "Wired-Or" . Since only one memory bank is
"ChipSelected" at any time, the two circuit banks in
figure 10 act as if they were one memory circuit of
64 words in length. The Wired-OR function is
generally accomplished by having the outputs of the
PF?CHs being either an Open Collector or a Tri-State
output.

6 BITS

4. SOFTWARE FOR TESTING MICROCIRCUITS.

Testing the microprogram may be a very difficult
task, especially at the early stages of the project
development when the microprocessor itself is not
know to function properly. With ordinary random
logic design if one does not get the correct results,
then the fault must lie in the hardware. With
ordinary micro or mini computers, if one does not get
the correct result, then the fault must lie in the
software. With microprogrammed processors, if one
does not get the correct result, then the fault could
be in either the hardware or software and one must
try to isolate the problem. Thus, as well as
carefully designing the processor' and writing
programs for it, one should also carefully design a
means of testing the processor, and testing the
programs that will run on it.

Let us consider for a moment, what the hardware
faults in the processor might be. First of all there
may simply be a logic design error, for example a
circuit may not perform as expected because one did
not read the specifications carefully enough.
Secondly, there may errors in the fabrication of the
processor, for example wires may be misplaced. There
may be errors in the timing, for example, some
results may be strobed into a register before they
are ready. There may be "glitches", that is to say,
noise pickup on some lines so that the wrong results
are strobed into register or a clock input is
generated at the wrong time. Although unlikely,
there may even be some bad IC packages that need to
be replaced with working ones.

I I PWGRAM o ,5
BITS

Figure 10: Expanding Memory Space.

Thus in transporting the microprogram object file
to the PRCM burner, we must reformat the file to take
into account the width of each memory circuit, its
position in the microinstruction word, and its depth
in the memory address length. if the microprogram
memory is to be implemented as PAM memory, then one
has other needs in the transport of the file. An

4.1 -- TEST BOXES.

In the classical random logic design, one can
usually "drive" the circuit with a pulse generator,
and examine the functioning of the processor with an
oscilloscope or logic probe. If the circuit has
multiple input sources, one could build a test box to
generate these inputs. The test bench setup would
look like the one shown in figure 11 . If we try to
apply this same testing technique to micro-
processor, we will undoubtedly run into some
problems. The microprocessor is "driven" by its
program and the processor operates on data coming
from or going to external devices or memory. Tnus we
have three separate subsystems as shown in figure 12
and each of the subsystems must be tested to see if
they function properly.

-12-
I

Figure 11: Traditional Random Logic Test Set-Up.

Figure 12: Microprocessor Subsystems to be Tested.

1 I I J

Figure 13: Microprocessor With Test Box.

One could follow the same approach as with random
logic, that is by building a test box as shown in
figure 13 . This test box can be more co:aplex than
the random lcqic test box, however. For exe@e, if
the microprocessor will eventually have a program
memory in PFXX circuits, the test box may contain a
3% memory so the user can put into it a variety of
test programs. When using ti?e R&i, one would
disconnect the normal memory circuits from the micro-
processor. Of course, some switches and lights need
to be provided in order to read, write and modify tha
conknr3 of tne memory. Also the device or data
m.xxy my need to be simulated or at least a means
of preloading a data pattern into them must be

provided in order to test the processor.

A means of seeing what the processor has done must
be provided as well as a means of controlling it.
One could take as an exzxple of the numoer of lights
and switches that should be provided, those items
that are used by a typical minicolfiputer. Taz.?le 2
lists what one finds on the front panel console of a
PDP-11/20 minico‘mputer. Indicator lights are
provided for the 18 address lines, the 16 data lines,
and several other miscellaneous status conditions
such as RUN, @US, FETCH, etc. Sixteen switches are
provided for entering data or address information
which is controlled by the switches LOAO A!XXSS,
EX&YINE, and DEPOSIT. Tne processor itself in
controlled by the switches FX,T/CONTINUE, SILIGLE
STEP, and START. These indicators and switches are
about the minimal set that one could imagine in order
to test programs on the POP-11/20. A test box should
at least contain these to test programs on a micro-
processor. With a microprocessor, however, the test
box might be even bigger than with a minicoquter
because typically the program memory has a width
greater than the data path and it is on a separate
bus, so that the test box must have enough switches
t0 handle both the program and data memory.

TABLE 2
PDP-11/20 Front Panel

INDICATOR LIGHTS:
ADDRESS BUS (18)
DATA BUS (16)
RUN
BUS
FETCH

TOGGLE SWITCHES:
DATA (16)
LOAD ADDRESS
EXAHINE
HALT/CONIINUE
SINGLE STEP
DEPOSIT
START

Such test boxes have been build in the past to
control CAMAC. This approach has the advantage that
the box can be specialized to the needs of a
particular processor and it is a conr&etely stand-
alone system. On the other hand, the test box
approach has certain disadvantages.
limited capability,

It may have
since it itself is probably

random logic. If one starts to add capabilities such
as stopping the processor at certain address or
loading the memory from some storage medium, the test
box may be more complex than the processor itself.
If tne microprogram grows in size, it becomes
extremely tedious and vulnerable to error to manually
load the memory each time the power needs to be shut
off to Imake a hardware change.

4.2 USE OF LGIC ANALYZER. ---

Even with a very good test box, there are
difficulties in testing a microprocessor with certain
programs. For example, an error in either the
hardware OK software may cause the pKOCeSsOK to jump
to some unusually address and begin to do seemingly
random operations that make it difficult to trace
back to the source of the error. With an
oscilloscope or logic probe one sees only one or two
signals at a time and then only after the scope is
triggered. If the processor halts after the error
than one has only a single trace to see on the scope
or one must use a storage scope.

A very useful instrument which aids in testing the
microprocessor is a logic analyzer. It is an
instrument which records in an internal memory the
logic level (i.e. 0 or 1) of its input in fixed time
intervals. Since with microprocessor circuits, we
are always dealing with standard logic signals, it is
usually sufficient to look only at the logic level
rather than the real signal. The advantage of doing
this is that an logic analyzer can be build with many
more channels of input than an ordinary oscilloscope.
Logic analyzers are available on the market with up
to 16 independent input channels. The number of
samples recorded is limited by the size of the
internal memory and it is typically up to 1024
samples. The sampling rate, or inversely the time
between the samples, is limited by the speed of the
internal memory. With the analyzers available today,
it is typically 20 nsec, and with some models 10

-13-

nsec. The analyzers generally have switch selectable
thresholds for the standard logic families such as
ECL and TTL. The analyzer does-not, however, record
short signals OK glitches if they don't occur at the
instance the signals are sanpled. Some models have
special input circuits called "glitch catchers" which
take any transition in an input as the recorded
level.

There are many other advantages of a Logic
Analyzer over an ordinary oscilloscope. For exanple,
a very important advantage is in triggering. With an
oscilloscope, one can see the input signals for a
time period after the trigger signal. Similarly, the
logic analyzer can record its inputs after a trigger
signal has arrived which is called the "Pre
,Triggeriug" mode. But the analyzer can operate in
tine other sense, that it is, it can be continuously
recording the input signals in a wrap around buffer
and then stop recording when the trigger signal
arrives. This mode is called "Post-Triggering" and
it allows one to see all the input signals before the
trigger signal. Some analyzers even allow one to put
the triggering time in the middle of the memory
storage so that one can see the input signals before
an1 after the trigger time. Another im&portant
advantage is that once the analyzer is triggered, it
can keep the recorded signals indefinitely, so that
single shot events can easily been seen <and studied.

The triggering abilities can be augmented by the
use of a Word Reccqnizer which is frequently built
into commercially available Logic Analyzers.- This
device allows the user to form his trigger on the
combined state of many input conditions. The trigger
can then be formed from something simple such as the
transition of one signal input or as complex as
particular bit pattern on the memory bus. Most
available Word Recognizers accept up to 18 inputs to
form the trigger and even allow one to make the
trigger only after a number of occurrences of the
same input pattern.

With most of the available Logic Analyzers, one
has a choice of the way the recorded inputs are

displayed. With an oscilloscope, one has only one
mode. In this mode the signal levels are displayed
vertically on the screen and time is displayed
horizontally from left to right. Logic Analyzers can
also display their data in this way and it is called
the “'Time Dcrain" mde . But tiey can also display
their memory as data words with possibly a choice of I.
binary, octal, or hexadecimal format. This mode is
called the "Data Domain" and it is very useful for
program development since it seems moKe like a
program trace that the programmer is used to. \,'c t
another mode is called the "Nap" mode. It treats the
input signals as one data word and plots a pint on
the screen for each possible data word. The most
significant bits of the word form an displacement
vertically while the least significant bits are used
for a displacement horizontally. Thus one can get a _
feel of the flow of a program and the human eye can
spot unusual events by pints being very displaced
from the normal pattern.

4.3 CCiPUTER BISED DEVEIOP:.lEVT SYSTEX.

The logic analyzer greatly improves ones ability
to find errors in the microprocessor even with a
simple test box. But not all the problems are solved
with it. One still has the problems of loading by
hand the processor's memories and reading the
results. Another approach is to use a micro or mini
computer as the "test box". In this approach the
design of the microprocessor would be made so that
one could build an interface from a computer to the
processor which allows the computer to gain access to
the memories and various control points of the
pKOCeSSOK, for example the processor's clock. One
can than emulate the test box functions with software
in the computer. Such a setup is illustrated in
figure 14 . The micro or mini computer in this setup
is called the “Host Ccixputer”. _

CRT
TERMINAL

MASS
STORAGE

+--[Olcll

MICRO OR MINI
COMPUTER

X-Y DISPLAY

Figure 14: Computer Based Developnt System

-14-

The use of a micro OK mini computer for a test box
may seem to be an expensive and overkill solution to
a simple problem. But the cost of small computers is
so low that they are probably not much more exp:nsive
then a test box with many
switches. Throqh

its softzdItor lights and
'a it offers runy

advantages over all but the most sophisticated test
boxes. However, the software needs to written and
debugged and one should consider this software as

*part of .the so&are supprt for the microprocessor
project.

Let us consider what software one might like to
have for the host computer. The software can be
organized as two set of programs, one set to move
blocks of data as files and the other which allo! the
user to dynamically interact with the processor under
test. FiKSt of all, one needs to be able to load the
memory of the microprocessor from the memory of the
host compute: or some storage medium. The LOAD
prcgzam may have a few options such as loading only a
segment of the program or starting the load at some
specified starting address. Since the processor's
rwmory is also to be tested at som3 stage of the
project, one should include a means of verifying that
the memory was loaded correctly.

During the testing one would like to be able to
examine and display individual words in the micro-
processor program or data memory. The data should be
formated for display on the host computer's terminal
in a fashion that is easy to understand such as
binary, octal, or hexadecimal or even a mixture in
some applications. For example, the display program
mY recognize the fields in the microprocessor
program ,memory and display them as rrnexonics. One
should also be able to modify individual words in
order to correct p~og~m errors or to try different
cases. All of the above features are available on
most micro or mini co.mputers that don't have front
panels. For exanple, the DEC LX-11 has a subset of
the ODC program built into the processor to provide
these functions. Finally, one should be able to read
blocks of the microprocessor's memory and save it in
t!?z host co.?puter or its storage medium, This would
be useful after the program has been modified until
!t wrks and one would like to be able to reload it
at a future date or use the saved file as input to a
Pi..& burning prcqam.

The next set of programs to be written on the host
computer are programs to control the processor
itseif. Tne basic set are used to emulate the normal
front panel console switches such as P&T, START, and
s I >.;':. E-srgp -u . One should also be able to load and
display tne microprcqram counter and perhaps some
other important registers. A very useful function
would be to and . single step the processor
automatically display the contents of a register in
orcar to trace inhere sc‘mething went wrong. Ar,d
finally, if one could cause the processor to stop
w>;:: a certain address or data word is encountered,
oile would nave all the capabilities that most
con-xte:s have to trace down
dlfficultics.

prcgrar~ or hardjJare

The usefulness of comp&er based development
SySkC6 has be recognized by many semiconductor
manu+a:uturers. Some are offering for sala complete
systris; designed for microprocesso; development.- An
exz$e of such a systen is the System/29 which is
made by 2 company -called Advance Xicro Computers
which is a partnership het,~aen Advanced Kicro Devices
and Siemens. This system is also described in a
microcircuit scecification bcoki31. It includes a
stand-alone W&I nicrocoquter with floppy disks, CRY.
terminal, optional hardcopy printer, and a box in
which one puts his own designed microprocessor.

Prototype boards are available to simlatc the
eventual microprogram ?ikKlt witn RX.1 and E standard
next address logic bsard usiq a microso.rce::cer .
ThlS sy'tem costs U.S. $25,!Wd. This price includes

other software to aid in dst~gging the mic-ropro<essor
under test.

The use of a micro or xhi. ccizp,. tr: r to hg the
controlling element for the micropro.cescsr is nst
unique in tile computeZ field. Gne can fir.2 si::ilar
ex.k+es in large ccquter systems. For p:;&,:Dl.' _ -, the
Amdahl 47Q,'V6 ccrquter has a Data General i<GiJA
computer built into it's console display. T,ie ‘;O',IA
can read almost every rqiscer in the large machine.
Another cxt,1ple is the Digital ELql i; :;".I t
Coqporation's X%-11/783 in which an s;ji-li
microcomputer handles the system terminal. In mth
co.7@lters the micro or mini co,nputer handles the
. oiagnostic routines ana - the system corsole. N?it::,2r

;nachine has anything in the way we normally think of
computer front panel consoles.

4.4 USE OF CCXWUTER CEN'IER'S CYWUTER. --____________

Given that one has a host ccvputer that acts as
the front panel for the microprocessor, one still nas
to consider on how one is going to store files and
run the microprocessor's assembler program. This
assembler program could well run on the host corrqter
but not without soma additional peripherals on this
computer such as mass storage, and line printers. In
High Energy Physics, most of the laboratories i:;:ere
one would be doing tie microprocessor d~e‘/~ilopTmt
work have a co+uter center and the question arises
as to wiiether one should use the computer center for
file storage and program development. In many cases
a simple connection between tbe host COKputei and t!:e
computer center for the transfer of files is an
approach which offers many advantages,

First of all, the peripherals are the most costly
part of a computer system, especially with micrc-
computers since the CPU cost is very low. By using
the Computer Center's peripherals one can greatly
reduce the cost of the local computer system. Even
with some local peripherals such as floppy disk, one
generally has a more limited program developent
ability on a small micro or mini computer. One is
also more likely to find useful cross assemble;
software available for the computer center computers
than the inexpensive local computer.

All of the above advantages are obvious at first
'glance and may very well justify using the computer
center for microprocessor program development. But
there are also many hidden advantages which may be
equally important from the point of view of hardware
costs and more important in terms of man power costs.
First of all, one can reduce the cost of the local
computer to the bear minimum. This could mean tiiat
it wculd consist of only the CPU, some RAM memory, an
interface to a terminal, an interface to the computer
center, and a some RW memory to get started. Since
there will be no moving parts, the cost is only in
in,expensive components. The reduction on peripherals
also leads to a substantially reduced maintenance
cost. Very little space in the laboratory would &a
required for the system which ailows more room to
work on the microprocessor or allows more flex-
ability on where to place the equipment.

There is also a very large reduction of time
consuining tasks for the personal involved in the
project. All the facilities of the corquter center

-15-

are presumably already known so there is no lost of
time to retrain people with a new system. The
computer center most likely has a better text editing
system than those found on small systems. There will
also be a file management system with much more space
available to the user. Included with the file system
will a routine data management system, that is, a
system where by files are archived and backup tapes
are regularly made. When batch jobs are to be
submitted to_rfo cross assembly work one can use the
job entry system which is already well know including
all the job control language that is necessary. The
computer center will have many more peripherals and
more kinds of peripherals than one would think of
putting on a low cost local computer system. They
may include high speed line printers, microfiche
printers, graphic plotters and terminals, etc. On2
has global access to the computer center from any
terminal in the laboratory rather than the one
terminal for the local computer which allows more
flexibility in working. The computer center is also
set up to be multi-user, so that more than one person
can work at a time on software for the microprocessor
project and yet they can share the same data base
files.

The cost of the connection between the local
computer and the computer center can be minimized
when one realizes that the data transmission rate
need not be very high. For example one can let the
local computer emulate an ordinary terminal from the
point of view of the computer center. Data files
could then be prepared before transmission with
certain keyword characters so the local comptiter can
take the characters as data rather than repeating
them on its terminal. In this way no software for
the connection need be written for the computer
center's computer and the local computer need only
have an ordinary terminal interface to the center and
a very small amount of software. Such a simple
connection was used for the local computer for the
168/E test bench shown in figure 15 . The terminal
emulation program located in R&l is only 256 words in
length.

Many laboratories have or are developing computer
networks which would allow high s-d data
transmission between the computer center and the
local computer. They offer better facilities in
bringing down large programs with error checking and
correcting on the transmitted data.

5. SMQW

We have seen that there are two parts of the
software for microcircuits. The first part is the
programs for the micreprocessors, while the second is
the software support programs. The support software
can turn out to be much more extensive than the
processcr's programs. This does not mean that the
user of microprocessors will drown in a ocean of
support software, but he must simply learn how to
sGrn in deep water.

GDT IN
MICROPROGRAM

TERIMINAL
EMULATOR

4 KW
CRT ROM

TERMINAL

SERIAL
I/O

Figure 15: Test Bench for 168/E Project.

References

[I] Paul F. Kunz, "Microcircuits of High Energy
Physics", PrOC. of the 1978 CERN School of Computing,
Jadwsin, Poland (May-June, 1978).

(21 Zbigniew Guzik, Private Communication.

[31 The Am2900 Family Data Book, Advanced Micro
Devices, Inc., Sunnyvale, California 94086 i1978).

[41 Edward Frank, Private Corsrunication.

[5] V. Michael Powers and Jose H. Hernandez,
"Microprogram Assemblers of Bit-Slice
Microprocessors", Computer, pp 108-120, (July 1978).

[6] W. Wimmer, DESY Report DV-78/04(1978), in German.

[7] Tom Droege, Transactions of I.E.E.E., NS-25,
p 698,(1978).

