
SI&Z-PUB-2205
October I978
(1)

MICRO-CIRCUITS FOR HIGH ENERGY PHYSICS*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, California, U.S.A.

ABsTRAcr

Microprogramming is an inherently elegant method
for implementing many digital systems. It is a
mixture of hardware and software techniques with the
logic subsystems controlled by "instructions" stored
in a memory. In the past, designing microprogrammed
systems was difficult, tedious, and expensive because

the available components were capable of only limited
number of functions. Today, however, large blocks of
microprogramsmd systems have been incorporated into a
single I.C., thus microprograsuning has become a
simple, practical method.

1. INTRODUCTION

1.1 BRIEF HIS'IORY OF MICROCIRCUITS ---

The first question which arises when one talks
about microcircuits is: Wnat is a microcircuit? The
answer is simple: a complete circuit within a single
integrated-circuit (I.C.) package or chip. The next

question one might ask is: What circuits are
available? The answer to this question is also
simple: it depends. It depends on the economics of
the circuit for the semiconductor manufacturer, which
depends on the technology he uses, which in turn
changes as a function of time. Thus to understand
what microcircuits are available today and what makes
them different from those of yesterday it is
interesting to look into the economics of producing
microcircuits.

The basic element in a logic circuit is a gate,
which is a circuit with a number of inputs and one
output and it performs a basic logical function such
as AND, OR, or NOT. Figure 1 shows the basic gate
used in the popular TTL technology. It perforzms the
NAXD function that is only when both inputs are TRUE
does the outpit .&come FALSE. The truLLh table which
describes the operation of the gate would then look
like that shown in figure 2 . From this basic gate
one can form other logical functions. For example,
the NZT function can be generated by tying the two
inputs toge'her as shown on the left of figure 3 .
It is usually represented by the INVEKIER symbol as
shown on the right of the figure. Another example is
the OR function which may be generated from the NAND
gates as shown on the left of figure 4 and usually
represented by the symbol shown on the right of this
figure. It can be shown that all the Boolean
operations can be generated with combinations of the
basic NAND gate.

The cost of a integrated circuit depends on the
number of gates required to perform the desired
function, but the cost of a gate depends on the
number of gates in the chip. Figure 5 is a plot of

Figure 1: Basic !I% Gate

A input B input

false false
false true
true false
true true

c output

true

l--l true
true
false

Figure 2: Truth Table for NAND Gate.

Figure 3: Logical NOT Circuit.

Figure 4: Logical OR Circuit.

Silicon
Infenrlvr

GATES/CHIP
0 -70 3458Al

Figure 5: Integrated Circuit Cost Curve.

* Work supported by U. S. Department of Energy, EY-76-U-03-0515

-2-

the cost per gate versus the number of gates per
chip. There are three distinct regions on this
curve. The labor intensive region is where the labor
of assembly, testing, and processing the order, as
well as the fixed company overhead dominate the costs
of the chip. In this region the manufacturer can
double the number of gates on the circuit without
changing its cost, thus the cost per gate would drop

- a factor of two. The silicon intensive region is the
technically di?ficult region, where the manufacturer
produces a small percentage of functioning circuits
for his effort and hence the cost per circuit begins
to rise rapidly. The flat central region is the
region, where the cost of the circuit is proportional
to the number of gates on the circuit. It is the
optimal region for producing circuits.

As the technology of producing circuits improved,
what was technically difficult at one time became
standard practice at a later time. Figure 6 shows
the cost curve for three periods of time. These
periods COKKeSpOnd roughly to three generations of
microcircuit manufacturing. The optimal region in
the first generation, Small Scale Integration (SSI),
had three to six gates per circuit. The circuits
that were prcduced were simple logic functions and
the technically difficult was a flip-flop. An
example of an SSI integrated circuit package is the
7400 as shm in figure 7 . It is simply fOUK
independent NAND gates requiring 3 pins each. With
the supply voltage and ground pins it makes the
standard 14 pin package still in use today. .

II
IO 100 1000

GATES/CHIP

3 -70 3458A2

counters, multiplexers, decoders, registers, etc.,
which were of general enough use that the manu-
facturer could sell them in large enough quantities
to make a profit. An example of an MS1 integrated
circuit package is the 74157 as shown in figure 8
(a). It is called a Quad 2-Input Multiplexer since
it multiplexs one of two inputs to.one output four
times over. A single Select input controls all four
channels. With one pin left over to make it an even
number, the manufacturers have added a Gate to fcrce
the outputs to Zero and one has a standard 16 pin
package. The conventional symbol for this circuit is
also shown in figure 8 (b).

EXAMPLE OF MS INTEGRATED CIRCUIT PACKAGE
74157 WAD 2 INPUT MULTIPLEXOR

INPUT

IA

IS

OUTPilT

IY

2A

48 --

SELECT +-++-

Figure 6: I.C. Cost Curve versus Time. e-1, (b) >.>..I.

Figure 8: Example of MS1 Integrated Circuit Package,
(a) Circuit, (b) Symbol.

Figure 7: 7400 Integrated Circuit Package

When the optimal region for manufacture became 20
to 50 gates per circuit, the second .generation of
microcircuits was born: Medium Scale Integration
@ISI) . The semiconductor manufacturers faced a
problem as to what circuits to produce, since the
simple extrapolation of more simple logic functions
per circuit runs into some problems such as too man!7
pins per package. The problem was solved b:l
producing larger blocks of digital systems such as

A few years ago, the optimal region of manufacture
became 200 to 500 gates per circuit, Large Scale
Integration (LSI), and the semiconductor manu-
facturers were again faced with the problem of what
circuits to provide with these many gates. The
problem was solved by producing an even larger block
of digital systems so that we now find that
microcircuits are arithmetic/logical processor
elements, microprogram sequencers, direct memory
access controllers, etc.

The LSI microcircuits will be the topic of these
lectures. They offer the best economy because large
subsystems of digital circuits are available on a
single I.C. package. Within a given type of tech-
nology (e.g. Tl!L, ECL, MOS, etc.) they often produce
faster systems because there is less lost of speed
with interconnection between packages. They also
reduce the amount of circuit board real estate
required for a given logic system and large Systems
are less expensive to make.

-3- I
With ISI microcircuits, the semiconductor manu-

facturers have made available large digital sub-
systems within a single I.C. But they still had to
provide a means by which the circuit was flexible in
its use in order to be able to sell enough of them to
make a profit. The flexibility of these circuits was
obtained in part by designing them to be used in a
microprogramd type of architecture. That is to
WY t that the function a circuit performs is con-
trolled by an n&r of input signals which form an
instruction word. The instruction word is assumed to
coma from the microprogram memory. The manufacturer
also is making circuits for use where there is
potentially the largest volume of users, which for
digital systems is probably the computer and computer
peripheral manufacturers. In this market, the micro-
programmed technique of logic design offers many
advantages as we will see in these lectures.

High Energy Physics is not a high volume user for
semiconductor manufacturers. If we are to make use
of LSI, we must, in general, bend our needs to those
circuits which are already commercially available.
In addition, in order to profit from the LSI micro-
circuits, we must learn the microprogram method of
implementing digital systems, and we must be able to
understand the digital subsystems that are available
as a single I.C. In the following sections, we will
first study the basics of microprogramming from a
point of view which is biassed by the microcircuits
that are commercially available. Then we will study
in some detail a microprogrammed controller with a
High Energy Physics application. Finally we will
study two of the most important LSI circuits which
have become available.

2. ,BASICS OFMIC~PKXZAMMING

2.1 COFFEE VENDING MACHINE ---

To understand the basics of microprogramming let
us take a simple example: an automatic coffee
vending machine. Figure 9 is a block diagram of such
a machine which has two basic parts; the machine
hardware and the sequential control logic. The
coffee machine hardware is the system to be con-
trolled. It contains the values and solenoids that
release the water, coffee, sugar, etc. which are
needed to produce the desired result: a cup of
coffee. The sequential control logic is the system
controller. It sends signals to the hardware in the
correct order and timing. It starts the hardware
into operation when it receives a signal from the
coin detection logic and alters the sequence
according to what kind of coffee has been requested
via the front panel push buttons.

The seguence control can be imagined as a series
of steps, each lasting a fixed length of time, say
l/2 second. The list of steps might be as shown in
figure 10 . The coffee machine sequence controller
could be implemented using combinations of flip-flops
and one-shots as shown in figure 11 . This approach
is commonly called hard wired or random logic, and is
typical of how designs have been done in the past.
The advantage of this approach is that it uses the
minimum number of logic gates and it is relatively
simple for a given sequence.

The coffee machine sequence control may also be
implemented with a binary counter and a read only
memory (ml) as shown in figure 12 . In this figure,
only one of the sequences has been implemented. The
binary counter serves to count the steps and the w3M

PUSH
BUTTON

CONTROLS

CUP RELEASE

COFFEE RELEASE

SUGAR RELEASE

CREAM RELEASE

Figure 9: Block Diagram of Coffee Vending Machine

L
FUR

C FGE
F

EAAB
ERMU

RLwd
ETEEE
LELLLL
EREEEI
A AAAG
SOSSSH
ENEEET
X

::
x

E
x"
X

xx
f$

f:

ff
ii
X

x s
S ::

3: s x
:: z
f

cx
c x

X
xx

2

::
f

X xx

CO>lblENTS

STAKT
X = ALL SEQUENCES
S = SUGAR SEQUENCES
C = CREL4M SEQUEhCES

STOP

Figure 10: Coffee Machine Combined Sequence List.

serves as a programmable decoder to produce the
required signals at each step. Note that the input
address of the memory is the output of the counter
and that each bit of the memory's output is used
directly as one of the signals for the hardware under
control. In order to do the black coffee sequence,
one would want the contents of the memory to be as
shown in figure 13 . A binary '1' corresponds to
sending a signal, while a binary ‘0’ corresponds to
not sending a signal. A coffee machine sequence
controller implemented in this way is said to be
microprogrammed.

In order to include the other kinds of coffee one
could increase the size of the counter from 5 bits to
7 bits and the size of the memory from 32 locations
to 128 locations as shown in figure 14 . The encoder
circuit generates a binary code from 0 to 3 depending

COIN REFUNDS 0.5 set
ONE SHOT CUP

RELEASE
T

BLACK
CREAM

SUGAR
-BOTH

2.5 set (f

SUGAR ON

0
CREAM ON

Figure 11: Random Logic Implementation of Coffee Vending Machine.

SIMPLE SEOUENCER

CLOCK

COIN
-

I READ ONLY
MEMORY I

CUP RELEASE -
WATER ON L
COFFEE RELEASE -
SUGAR RELEASE -
CREAM RELEASE -
BUSY LIGHT -

Figure 12: Microprogrammed Coffee Vending Machine.

on which of the push buttons was activated. This
code is then used as the two high order bits to the
collnter when it is loaded. The loading of the
counter is under control by one additional bit of
output from the memory. Thus, for example, at memory
address 1 the load bit may be turned on so that the
next address of the sequence will be either 2, 34,

66, or 98 depending on the output of the encoder.

BIT
NUMBER

~123456
IDLE
STAFT

;A, = SIGNAL ON
= SIGNAL OFF

'X' = DON'T CARE

E%~NS 25-31
ARE NOT USED

Figure 13: Memory Contents of Coffee Vending Machine
for Black Only.

-5-

CLOCK

PUSH BUTTONS

READ ONLY

MEMORY

L-

TO COFFEE
MACHINE

L HARDWARE

s-7. ,.>..l.

Figure 14: Microprogrammed Coffee Vending Machine
with Multiple Sequences.

2.2 MICRoSEQUENCERS GENERAL

The coffee machine sequence controller is an
example of a microprogrammed processor. The
processor's memory contains two fields; the load
control bit and the other bits to control the
hardware signals. A generalized version of this
processor is shown in figure 15, where the encoder
has baen replaced by an instruction register. The
OP-COCE field of the instruction register contains
the high order bits of the starting address of a
sequence. The push buttons of the coffee machine
hz?e been replaced by the machine instruction.

I r t

Figure 15: Basic Microsequencer.

In a more general processor, one may have
sequences of widely different length and the circuit
shown in figure 15 will lead to large areas of unused
memory. The introduction of another memory, the
MAPPING m+l, between the OP-CODE and the program
counter will allow the flexibility of starting a
squence at any arbitrary address. The OP-CODE is
used as the address of the iWPING ROM and the output
of the MAPPING ROM becomes the starting address for
the program counter. This MAPPING ROY is shown in
figure 16 and it is another example of using memory
as a programmable decoder.

I'ACHINE
INSTRUCTION

I
t

INSTRUCTION REG

OP CODE 1 OTHER

I
KVPING

PROK
I

t
CLK

Lzr---J CiNTROL SIGNALS -

Figure 16: Microsequencer with MAPPING FUXl.

With the microsequencer shown in figures 15 or 16,
the flow of the program can only be the next
sequential address until another sequence is started
when the LOAD bit is present. This sort of flow is
show schematically in figure 17 . At instruction 50
of the figure, for example, the next instruction can
only be instruction 51. In this sequential flow the
processor is said to execute the CONTINUE (CONT)
instruction.

50

51

52
i

53

9-n t 3.58*4,

Figure 17: Continue Instruction.

One useful way to add flexibility to the micro-
processor would be to allow the program the jump to
an address which is contained in the microprogram. A
method of doing this is shown in figure 18 . A
multiplexer has been added between the output of the

-6-

INSTRUCTION REG

-' A

llAP

I I - :LK

BRANCH OTHER
- L - - -

II' I ' I

, ADR

I

I I C0Nrt.a
SIGNALS

7-n ul..1\

Figure 18: Microsequencer with JUMP logic.

MAPPING ROM and the input of the counter. One input
of the multiplexer is the MAPPING Rcx4 while the other
comes from a part of the output of the microprogram
memory. The latter is called the BRANCH ADDRESS
field of the microprogram memory. One additional bit
from the microprogram memory is routed to the SELECT
input of the multiplexer so that when the bit is in
one level the output of the Mapping ROM is routed to
the input of the counter and when the bit is in the
other level the BRANCH ADDRESS field of the micro-
program memory is routed to the input of the counter.
This bit is called the ADDRESS SELECT (ADR-SEL) field
of the microprogram memory. The flow of the micro-
program can now be altered as shown in figure 19 .
After execution of instruction 53, the next
instruction is 90. The processor is said to execute
a JUiQ (JMP) instruction at location 53.

Figure 19: JUMP instruction.

A very important feature to add to this basic
processor would be the ability to alter the flow of
the program depending on the results of a previous
operation. This is called CONDITIONAL BRANCHING and
it can be implemented as shown in figure 20 . The
LOAD input to the program counter is now taken from
the output of multiplexer which is called the
CONDITION CODE MULTIPLEXER. One of its inputs is
selected by part of the output of the microprogram
called the CONDITION CODE field. Note that one of
the inputs to the multiplexer is a logic '0'. When
this input is selected, the LOAD input to the counter
is always '0' so that the counter goes to the next
sequential address. Another input to the multiplexer
is a logic '1'. When this input is selected, the
counter will always be loaded. These two inputs are -
necessary in order that this processor can execute
the CONTINUE and Ju;4P instructions, respectively.
When the third input to the CONDITION CODE MULTI-
PLEXER is selected, the counter will either go to the
next sequential instruction if the conditional input
is '0' or be loaded if the conditional input is '1'.
Thus we have added the CONDITIONAL BRANCH instruction
to the processor. An example of this flm is shown
in figure 21 at instruction 53.

'1" - COND .

COND - 'ODE CLK
NUX

'0

I

I I t
RlCROPROGRAPl

-,a >..n

Figure 20: Microsequencer with Conditional
Branching.

50

51

52

53 -v 05

54 0 (1 86

55 0 0 07

56 0 00

Figure 21: Conditional Branch Instruction.

-7- I
At this point it is appropriate to take a look at

the timing of the processor. Figure 22 shows the
time sequence of the signals within the processor.
Each microinstruction starts with the leading edge
(i.e. the '0' to '1' transition) of the clock
signal. When this signal is received by the micro-
program counter, it increments its contents by one.
The change of its output does not occur instan-

-taneously, however. Each logic gate within the
counter circuit has a response time called its
"propagation delay". Thus it is only some time after
the counter receives the clock signal that its output
switches to the next address. For example, with a
standard Schottky !J.TL counter the delay from clock to
output is 13 nsec.

The microprogram memory also has a delay between
the time an address is presented to its input and
valid data is available at its output. This delay is
called the "access time" of the memory and for
Schottky 'ITL memories it is on the order of 50 nsec.
The period of time from the generation of a new
address until the output of a memory is steady is
called the "fetch" time. Note that for the micro-
processor we are studying, the total fetch time is
equal to the sum of the propagation time of the
counter and the access time of the microprogram

CLCCK

COUNTEK

PKOCRAM
MEMORY
PKCCESS

ACCC;IULATOK

CLOCK

COUNTEK

i'H 0CKAi.I
HE'-IOYY . /
PKCCESS

ACCL'NHLATOR

I t U-CYCLE -
I

memory.

After the fetch time, the process under control of
the microprogram memory starts its execution. Again
this process is only finished after a delay called
the "execute time" which may be on the order of ljti
nsec depending on what is being done. At the end of
this period we have the results which may now be
saved at the leading edge of the next clock signal in
say an accumulator. Thus the minimum crcle time of
the microprocessor is determined by the sum of the
fetch and execute times. With the next edge of the
clock signal the processor starts the next
instruction.

Let us consider the microprocessor timing when a
conditional branch instruction is executed. In the
timing shown in figure 23 microinstruction i
generates a result upon which we wish to
conditionally branch. The result of this instructicn
is available during execution oE microinstruction
i+1, thus we should make microinstruction i+l the
conditional branch instruction. At the time of the
third microcycle, we can start microinstruction i+2
or the instruction of the'branch address depending on
which path the result has taken us.

1
--I

u-INST i
ADR
FETCH
u-INST i

RESULT OF
u-INST i- I RESULT OF

I

RESULT OF
1 u-INST i u-INST i+l

u-INST i+1 u-INST i+2
ADR ADR
FETCH FETCH
u-INST i+l u-INST-i+2

EXECUTE EXECUTE EXECUTE
u-INST i u-INST i+l u-INST i+2

Figure 22: Sequential Timing with Program Counter.

I
t u-CYCLE __,

I

u-TNST 1+3
ADR
FETCH
u-INST i+3

EXECUTE
u-INST I+3

KESULT OF
u-INST i+2

u-INST i
.4DR
FETCH
u-INST i

EXECUTE
u-INST i

RESULT OF
u-I NS’C i- 1

u-INST i+l
ADK
FETCH
u-INST i+l

EXECUTE
u-INST i+l

RESULT OF
u-INST i

next u-INST
ADK
FETCH
next u-INST

EXECUTE
next u-1 NST

Figure 23: Conditional Branch with Program Counter.

m-w

--v

RESULT OF
next u-1 NST

One of the frequent requirements of logic systems the execute. The condition upon which we want to
in High Energy Physics is speed. With speed in mind, branch would not be ready until the end of the
one could ask why do we use up a whole microcycle to execute time. It would be at that time that the
do a branch instruction ? So let us consider for a condition would begin to propagate through the
moment how the timing would change if we attempted to CONDITION CODE MULTIPLEXER and be presented to the
do the conditional branch in the same microcycle as LOAD input of the counter. Before the clock signal

-a-

can be asserted at the counter, we must wait a period
of time called the "set-up" time so that the counter
can do the LOAD or COUNT function correctly. Using
standard Schottky TTL ,circuits, the sum of the
multiplexer propagation delay and the counter set-up
time would add another 35 nsec to the minimum micro-
cycle time. If the microcycle time is constant, then
this additional time would be added to all micro-

- instructions ether they contained a branch or not.
Thus depending on the number of branches in a program
and the execute time, program execution time may be
faster with the separate branch and execute
instructions.

A much more important improvement can be made in
program execution speed by using the technique of
"pipelining". Note that in figure 22 that during the
FETCH time the process under control is effectively
idle since it is waiting for the output of the
microprogram memory to become steady. Also during
the execute time, the microprogram memory is
effectively idle since it is merely holding its
output steady for the execution. By inserting a
register at the output of the microprogram memory as
shown in figure 24, one can overlap or "pipeline" the
fetch and execute times. One can see how this works
by looking at the timing in figure 25 . With the
leading edge of the first clock signal, the
microprogram counter advances to microinstruction i
and after the FETCH time the output of the micro-
program memory is presented to the input of the
PIPELINE REGISTER. As with the counter, one must
wait a set-up time before the clock can be asserted
to the register. When the clock does arrive, the
microprogram memory output is stored in the PIPELINE
REGISTER and after its propagation delay, the micro-
instruction i is presented at the output of the
register so that the execution of that instruction
can begin. With this same clock edge, the micro-
prcqram counter advances to microinstruction i+l and

I
<-- u-CYCLE ->

I

the FETCH of this instruction begins. Thus the FETCH
of one instruction is done simultaneously with the
EXECUTE of the previous instruction. The minimum
microcvcle time is now determined by the longer of
theFtiH or EXECUTE times rather then the sum of

r

Figure 24: Microsequencer with Pipeline Register.

CLOCK

COUNTER

PKOCKAM

PIPELINE KEG
PKOCESS

ACCWULATOK

u-INST i
ADR
FETCH
u-INST i
u-INST i-1
EXECUTE
u-INST i-l
RESULT OF
u-1 NST i-2

u-INST i+l
ADR
FETCH
u-INST i+l
u-INST i
EXECUTE
u-INST i
RESULT OF
u-INST i-l

u-INST i+2
ADR
FETCH
u-INST i+2
u-INST i+l
EXECUTE
u-INST i+l
RESULT OF
u-1NST.i

u-INST i+3 u-INST i+4
ADR ADR
FETCH FETCH
u-INST i+3 u-INST I+4
u-INST i+2 u-INST i+3
EXECUTE EXECUTE
u-INST i+2 u-INST i+3
KESULT OF RESULT OF
u-INST I+1 u-INST i+2

u-INST i+5
ADK
FETCH
u-INST I+5

u-INST i+4
EXECUTE
u-INST i+4
RESULT OF
u-INST i+3

Figure 25: Sequential Control with Program Counter and Pipeline Register.

The circuit shown in figure 24 leads to faster
program execution. It has one difficulty with
conditional branch instructions however. Consider a
conditional branch on the results of instruction i as
shown in the timing diagram in figure 26 . With the
first microcycle we have the FETCH of micro-
instruction i and with the second, we have the FETCH
of microinstruction i+l and the EXECUTE of micro-
instruction i. The results of this instruction are
ready to be tested in the third microcycle so clearly
microinstruction i+l should be the conditional branch
instruction. At the end of the third cycle we begin

the FETCH of the next microinstruction which is
either microinstruction i+3 or the microinstruction
located at the BRANCH ADDRESS. The problem is: what
can the execution unit do during the fourth micro-
cycle? The answer is that it can only do something
which does not depend on which path the procjram has
taken after the branch instruction. In most cases,
nothing useful can be done by the execution unit
during this cycle so that the microinstruction after
the branch instruction (microinstruction i+2 in this
case) becomes a NO OPERATION (NOP), which is a waste
of execution time.

-9-

I <-- u-CYCLE ->
I

CLOCK

COUNTER

PROGRAM "
MEMORY
PIPELINE REG
PROCESS

ACCUMULATOR

u-INST i
ADR
FETCH
u-INST i
u-INST i-l
EXECUTE
u-INST l-l

RESULT OF
u-INST i-2

u-INST i+l
ADR
FETCH
U-INST i+I
u-INST i
EXECUTE
u-INST i

RESULT OF
u-INST i-l

u-INST i+2
I

next u-INST
I

ADR ADR
FETCH FETCH -mm
u-INST i+2 next u-INST

u-INST i+l u-INST i+2 next u-INST

EXECUTE EXECUTE EXECUTE
u-INST i+l u-INST i+2 next u-INST
(BRANCH) (NOP)
RESULT OF
u-INST i

I

Figure 26: Condition Branch with Program Counter and Pipeline Register.

The circuit of the processor can be changed to fix
this branching problem without slowing down the
program execution as is shown in figure 27 . The
microprogram counter has been replaced by an
incrementer and a register, whose output is routed to
an additional input to the address multiplexer, and
the CGNDITION CODE MULTIPLEXER has been replaced by
some combinational logic. The address multiplexer is
now routed directly to the address inputs of the
microprogram memory. This multiplexer is called the
NEXT ADDRESS MULTIPLEXER. An incrementer is a
circuit whose output is equal to its input plus one.
The new register is called the MICROPROGRAM COUNTER
even though it is no longer a counter. In the
circuit shown the current microprogram address plus
one is stored into the MICw)PRxR%l COUNTER with each
clock edge. Thus when the MICROPmRAM COUNTER is
selected as the output of $he NEXT ADDRESS
MULTIPLEXER, one has the CONTINUE instruction in
effectively the same way as when we forced a COUNT of
the counter in figures 15, 16, 18, 20, and 24 . A
jump instruction is accomplished by selecting the
BPANCH ADDRESS as the output of the NEXT ADDRESS
MgLTIPLEXER and a conditional branch instruction is
accomplished by selecting either the BRANCH ADDRESS
or the MICROPRXRAM COUNTER depending on the state of
the CONDITION input.

The timing of this circuit for non branching
instructions appears to be the same as the previous
one as is shown in figure 28 . The minimum
microcycle time is still determined by the longer of
the FETCH or EXECUTE times. But the conditional
branch timing is math improved as is shown in figure
29 . With the first microcycle in figure 29 we have
the FETCH of microinstruction i and with the second
we have the FETCH of microinstruction i+l and the
EXECUTE of microinstruction i as before. With the
third microcycle we begin to test the results of
microinstruction i so clearly microinstruction i+l is
the branch instruction. The condition input selects
the next address during the third microcycle so that
the FETCH of the next microinstruction begins and
ends during this cycle. Thus with the leading edge
of the clock of the fourth microcycle, the next

RESULT OF
next u-INST

L
L

t .
MICROPROGRAM

ElEWRY

NEXT
ADR

BRANCH

SELECT
ADR OTHER

1 I I -

PIPELINE REG
I / I
I I i

J C3NTROL'
SIGNALS

:LOCK

CLOCK

Figure 27: Microsequencer with Microprogram Counter
and Incrementer.

microinstruction is stored into the PIPELINE REGISTER
and the EXECUTE of this instruction begins. At the
same time the next+1 instruction address is stored
into the MICROPflCGRAM COUNTER so that the FBICH of
this instruction can begin. Thus even with a
conditional branch instruction, this circuit for a
microprocessor makes efficient use of microcycle
time. It is this type of circuit that we will find
to be commercially available as a LSI microcircuit

when we study microsequencers.

-lO- I

I c u-CYCLE--,
I

CLOCK

PROGRAM
MEMORY

PIPELINE REG

PROCESS

ACCUMULATOR

FETCH
u-INST i

u-INST i-l
EXECUTE
u-INST i-l

RESULT OF
u-INST i-2

FETCH
u-INST i+l

u-INST i

EXECUTE
u-INST i

RESULT OF
u-INST i-l

FETCH
u-INST ii2

u-INST i+l

EXECUTE
u-INST i+l

RESULT OF
u-INST i

FETCH
u-INST i+3

u-INST if2

EXECUTE
u-INST i+2

RESULT OF
u-INST i+l

FETCH FETCH
u-INST i+4 u-4 NST i+5
U-INST i+3 u-INST i+4

EXECUTE EXECUTE
u-INST if3 u-INST id-4

RESULT OF RESULT OF
u-INST i+2 u-INST i+3

Figure 28: Sequential Control with Program Counter Register.

I
- u-CYCLE--,

I

CLOCK

PROGRAM
MU,IOKY

PIPELINE REG

PROCESS

ACCUMULATOR

FETCH
u-INST i

u-INST i-1

EXECUTE
u-INST i-l

RESULT OF
u-INST i-2

FETCH
u-INST i+l

u-INST i

EXECUTE
u-INST i

RESULT OF
u-INST i-l

FETCH
next u-INST

u-INST i+l

EXECUTE
u-INST i+l
(BRANCH)

RESULT OF
u-INST i

s-w

next u-INST

EXECUTE
next u-INST

RESULT OF
next u-INST

m-m

e-w

-v-

Figure 29: Conditional Branching with Program Counter Register.

3. AN ?ZXMlPLE:ASIMPLE SCANNER

With the next address instructions we have defined
so far it is already possible to look at a practical
example. Suppose one had a large set of devices
which potentially contain a data point on a given
event, but for a given event let us say that only a
small fraction of the devices have any valid data.
Let us design a controller which would scan the
devices for data and store the data into a buffer

memory along with the address of the devices with
data. Figure 30 shows a block diagram of the
proposed scanning set-up. For simplicity let each
device be interrogated (or addressed) by a signal
sent on a cable which we will call the NEXT signal.
If the device had data it would send back the data on
a bus along with a response signal which we will call
DATA-VALID. If the device did not have data it would
send a '0' on the DATA-VALID bus. The NEXT signal
would be daisy chained from device to device so that
after each device received one NEXT signal it would
pass the next NEXT signal to the next device until
the system was reset for another scan. The NEXT
signal from the last device on the chain is routed

back to the scanner where it is called the DONE
signal so the scanner knows when to stop.

DONE ___

--N h NEX>-M
__* /--

SCANNER

DATA VALID 1 ---
DATA BUS :~~~- i? ---

a-71
,‘,M.

Figure 30: Block Diagram of Scanner Set-up.

-11-

For the moment we shall ignore all details on how
the data is read into the devices, read out of the
buffer memory, etc. The scanning processor should
have two internal counters, a DEVICE COUWER (D.C.)
to keep track of which device has valid data, if any,
and an ADDRESS COUNTER (A.C.) to point to the next
buffer memory address to be filled. The sequence of

_ events the scanning processor should follow is shown
in the .flow cWart given in figure 31 . Wnen the
pKOCeSSOK StaKtS, it should first reset the DEVICE
COUNTER, reset the ADDRESS COUNTER, and send the
first NEXT signal as shown in step 0. In the next
step, it can test the DATA VALID signal to see if any
data was found in the first device. If it is false,
it should then test the CONE signal (step 2). If
this signal is also false, it can proceed to the next
device by incrementing the DEVICE COUNTER and sending
another NEXT signal. The processor continues by
going back to step 1, in OKdeK to see if any data is
found in that device. If data is found, it can write
the data along with the contents of the DEVICE
COURIER into the buffer memory (step 4). Then it may
increment the ADDRESS COUNTER (step 5) and try the
next device by going to step 3. The sequence
continues until the CONE signal is detected at step
2, in which case the process goes into a STOP state
at step 6.

Figure 32 shows a possible implementation of a
IniCKOpKogKammed PKOCeSSOK t0 peKfOKm this task. The
micKopKcgKam memory contains five fields as shown in
figure 33 . Let us examine each field in order to
understand how the processor works. The first two

r

6
55 -_

Figure 31: Flow Chart Of SCaMing PKOCeSSOK.

r START

> NEXT

DATA

MEMORY

WRITE ADDRESS

t

Figure 32: Block Diagram Of
Simple Scanner

fields control the next address of the processor. next address instructions may be executed. That is,
The first field is the BRANCH ADDRESS field (bits when the ADDRESS SELECT field is '00', the '0' input
Q-31, which is four bits wide. These four bits are is selected and the next address will always CON
routed from the output of the PIPELINE REGISTER to from the NICROPRCGPAM CWNTBR. When the ADDRESS
the '1' input of the NEXT ADDRESS MULTIPLEXER as SELECT field is Ill', the '1' input is selected and
snown in figure 32 . Whenever the SELECT input of the next address will always come from the BRANCH
this multiplexer is a logic 'l', the BRANCH ADDRESS ADDRESS field of the PIPELINE REGISTER. The two
becomes the address input to the microprogram memory. conditions which must be tested to control the
The next field is the ADDRESS SELECT field which is program flow, DATA VALID and !XNE, are also inpUtS to

tdo bits wide and it controls the CCNDITION CODE this multiplexer. When the ADDRESS SELECT field is
MJLTIPLEXER. The conditions '0' and '1' are inputs '011, the DATA VALID signal is selected and the state
to this multiplexer in order that CONTINUE and JUMP of this signal will determine whether the

-12-

I Bits I
o-3 4-5 6-8 9-11 12
Branch Cc&ition Buffer Device End
Address

Multiplexer
Memory
Control E%::i

The fields have the following meaning
Bits O-3: BRANCFADDRESS for Branch or Jump

instruction.

Bits 4-5: CONDITION CODE MULTIPLEXER Control
00 CONTinue next address is PROGRAM

COURTER REGISTEK.
01 BRDV If DATA-VALID is '1'.

next address is from
BRANCH ADDRESS.

00 BRDONB If DONE is 'l',
next address is from
BRANCH ADDKESS.

11 JUMP next address is from
BRANCH ADDRESS.

Bit 6: Resets buffer memory ADDRESS COUNTER.

Bit 7: Er&reeFts buffer memory ADDRESS
.

Bit 8: Sends WRITE to buffer memory.
Bit 9: Generates NEXT signal.

Bit 10: Increments DEVICE COUNTER.

Bit 11: Resets DEVICE COUNTER.

Bit 12: Stops Scanner.

Figure 33: Definition of Simple Scanner
Microinstructions.

MICRCPROZRZQj COUNTER or the BRANCH ADDRESS field is
used as the next microprogram address. The same
holds true when the IXINE signal is selected when the
ADDRESS SELECT field is '10'.

The next 3 bits (bits 6-8) is the BUFFER MEMORY
CONTROL field. Each bit of the field is wired to a
control point of the buffer memory: if bit 6 is '1'

the ADDRESS CiNiVER is reset to zero; if bit 7 is '1'

the ADDRESS COUNTER is incremented; and if bit 8 is
'1' the contents of the DEVICE COUNTER and the DATA
lines are written into the buffer memory.

The next 3 bits (bits 9-11) is the DEVICE CONTROL
field. Again each bit of this field is wired to a
control point dealing with the devices: if bit 9 is
'1' a NEXT signal is sent out; if bit 10 is '1' the
DFJICE MUMTER is incremented; and if bit 11 is '1'
the DEVICE COUNTER is reset to zero. The last field
contains only one bit (bit 12), when it is '1' the
PKOCeSSOK Stops.

The program can now be written to perform the scan
operation. Let us go through the flow chart shown in
figure 31 again. At step 0, we want to reset the
ADDRESS COUNIYER SO bit 6 should be '1'. We don't
want to increment this counter OK write to the memory

so bits 7 and 8 should be '0'. Thus the BUFFER
ME%XY CONTROL field should be set to '100'. The
DEVICE COUNTER should be reset and a NEXT signal sent
out, so the DEVICE CONTROL field should.be set to
'101'; i.e. bits 9 and 11 should be set to '1' and
bit 10 to '0'. The next microprogram address can be
the next sequential instruction, so the ADDRESS
SELECT field should be set to '00' in OKdeK to
execute the CONTINUE next address instruction. It
doesn't matter what the BRANCH ADDRESS field is set

to since they are not USed fOK the CONTINUE
instruction, so we set it to '0000'. Thus the
Contents Of the first miCKOpKOgraJII location (address
0000) should be as shown in figure 34 .

micro
prog. addr.

%I:
ii!

0 100 0 0 0 101 0 0 0

%Y 2 KG 000 110 iii

oo%! 3 001 010 000 :
0000 11 000 i% ':

unused

Figure 34: PKCCJKSII of Simple Scanner.

The next step tests the DATA VALID signal and
leaves the buffer memory and device control alone.
Thus both the BUFFER MEMORY CONTROL and DEVICE
CONTROL fields both contain '000'. The ADDRESS
SELECT field is set to '01' to route the state of the
DATA VALID signal to the NEXT ADDRESS FFJLTIPLFXER.
The BRANCH ADDRESS field is set to the next micrc-

PKO~K~II? address if DATA VALID signal is present which
we will set to '0100', i.e. step 4. Thus the
contents of microprogram memory at location 0001
should be as show in figure 34 .

At microprogram location 0010, which will be the
instruction if the DATA VALID tests fails, we should
test the state of the DONE signal. The only changes
from the previous instruction is that the ADDRESS
SELECT field needs to be set to '10' and another
BRANCH ADDRESS needs to be chosen. Thus, if location
0110 is to COKKeSpond to step 6 on the flow chart
(figure 311, the contents of the miCKOpKqKam mell-0Ky

at location 0010 should be as shown in figure 34 .

At microprogram location 0011, which will be the
next instruction if the DONE test fails, we should
increment the DEVICE COUflPER, send a NEXT signal, and
go back to the DATA VALID test at location 1. Thus
we set bits 9 and 10 to 'l', the ADDRESS SELECT field
to '11' and the BRANCH ADDRESS field to '0001' as
shown in figure 34 .

The remaining steps are programmed in a Similar
fashion. The whole PKO~KELITI is summarized in figure

.34 . Only six microprogram instructions were needed
to program this processor to control the simple
scanning operation. Locations 7 through 15 of the
microprogram memory are unused.

4. WHY MICROPRO%@!

Up to this point, we have studied the basics of
microprogranrming and a simple ezcmple. We are now
ready to evaluate whether we should OK should not
build our logic subsystems using the microprogramming
tec'hnigue. Keep in mind that most logic subsystems

have two parts: one is the part under control and
the other is the part which generates the timing

-13-

sequences. One can identify these parts in logic
systems as small as the simple scanner or as large
the central processing unit of a major computer
system.

An advantage in a microprogrammed system is its
very clean and orderly structure. The simple scanner
described in the previous section is an example. All
control points Zithin the processor are controlled by
the microprogram memory. All registers, counters
etc., can be synchronized by the same clock which
makes it much easier to find faults in the circuit.
The system is very easy to describe and document.

There are still other advantages, especially for
larger, more complex logic systems. One advantage is
the ease in which changes can be made. Suppose, for
example, that one wanted to change the simple scanner
so that it would stop scanning if the buffer memory,
became full. From the ADDRESS COUNTER one could
obtain a signal indicating that the maximum buffer
memory address had been attained. This signal could
be routed to an additional input to the CONDITION
CODE MULTIPLEXER and the program could be changed so
that the buffer full condition would be tested after
the ADDRESS COUNTER was incremented. Although this
change would require changing some circuits such as
the CONDITION CODE MULTIPLEXER, the change is quite
simple to understand and implement compared to
changing a hard wired or random logic design for the
simple scanner. The more complex a logic subsystem,
the easier it is to change a microprogrammed circuit
compared to its random logic counterpart.

It is also much easier to add special features to
a microprogrananed logic system. One desirable
feature, for example, would be self diagnostic
programs in the microprogram memory. These features
probably require only additional memory space and a
few extra circuits. But for a random logic design,
the additional logic required to perform diagnostics
may be as complex or difficult as the original logic
itself.

There will be cases, however, where the random
logic design is more suitable for a logic subsystem.

The microprogrammed system may be slower, for
exayle. The random logic design avoids the
difficulty of progra..ming the RoI\I. But if one is to
use the LSI microcircuits, which we will be studying
in the following sections, one must use the
microprogramming technique.

5. LSI MIcROCIRCuITS

There is an increasing number of LSI microcircuits
becoming available. They all fit very well into a
microprogra%Ted architecture. This is clearly
becoming the "nouveaux vague" in bipolar technology.
Most of these components are intended to be used in
building computers and computer peripherals where the
s,peed of biplar circuits is necessary. In our field
of High Energy Physics, we are not in the business of
building computers but these microcircuits can
nevertheless simplify ho-4 we build many of our logic
systems.

The circuits can be classified by what part of a
co.rputer they are intended to be used. The following
list shows some of the computer parts that currently
available as LSI microcircuits:

Arithmetic/Logical Elements
Microprogram Control
c2;m1r2r ,4on.nrv

Interrupt Control
Input/Output Elements
Direct Memory Access Control
Timing Control
Shifting Elements
Status Storage and Multiplexing
Memory Address Control
Program Logic Arrays

For the logic designer in High Energy Physics, one
would layout a sketch of the control task he wants to
build. Then scan through the semiconductor catalogs
to find which circuits have the capabilities of parts
of his logic diagram. Frequently, one would find
that only a fraction of an LSI circuit is needed to
implement his circuit and it would seem wasteful to
use it. On the other hand the cost of implementing
the logic in traditional SSI and MS1 may exceed the
cost of this LSI circuit and the amount of space
required on the circuit board may be reduced by using
the LSI microcircuit.

There is clearly not enough time in these lectures
to cover all of the above kinds of LSI microcircuits.
We will therefore study only two of them, the
microprocessor slice and the microsequencer. These
two in some ways are the most interesting and the
most different from the older SSI and MS1 circuits.

5.1 THE BIPOLAR MICROPROCESSOR SLICE -___

The microprocessor slice is designed to be the
principal arithmetic/logic element within the central
processing unit of a computer or peripheral
controller. The most widely used microcircuit of
this type is the 295lA. It was introduced by
Advanced Micro Devices in the summer of 1975 and has
since been manufactured by most of the bipolar semi-
conductor manufacturers. Figure 35 shows a block
diagram of this circuit. All the data paths shown
are four bits wide. To form a processing unit with a
larger number of data path bits, the circuit has
appropriate inputs and outputs to allowed it to be
cascaded with other slices. Thus four such slices
can form a unit with 16 bits of data path and eight
slices forms a unit with 32 bits of data path.

Let us start studying this microcircuit with its
arithmetic logic unit (ALU). An ALU performs
arithmetic and logical operations on two inputs,
called R and S in figure 35, and produces an output
which is called F. The ALU of the 2951 can perform
one of eight functions on the operands R and S. The
function is selected by three input signals which
form a three bit function code which is part of the
microinstruction of the circuit. That is, the user
provides a three bit binary number, from 5 through 7,
on three input pins of the circuit to control which
function is to be performed. There are three
arithmetic functions:

R PLUS S,
S MINUS R, and
R MINUS S;

and five logical functions:

R OR S,
RAND S,
NOTRANDS,
R FXLUSIVE-OR S, and
R EXCLUSIVE-NOR S.

The R and S operands are each outputs of separate
multiplexers. The R MULTIPLEXER has as inputs the
DIRECT DATA inputs (D), the output of the A-LATCH, or

-14- I
I

MICROINSTRUCTION

1.

DECODE

RAM3+l I-+ RAMo

4 45 +
SHIFTER

A ADDR L
(READ) 16

B ADDR
REGISTERS

I
(READ/WRITE) ”

B

CLOCK LATCH

037 II r-90
lh i - lh i - F 0 F 0

SHIFTER- SHIFTER-
SELECTOR SELECTOR

II II

O-REGISTER O-REGISTER

DIRECT
DATA

INPUT ‘0’ '0' A 8 0
tf -2 -.f

MULTIPLEXER MULTIPLEXER

Figure 35: Block Diagram of 2Y0lA
Microprocessor Slice.

-3 -3
DATA OUT

CARRY - OUT, OVERFLOW - -
ZERO, NEGATIVE, G, P

f
:

a binary '0'. The D input allows the user to bring
in data from outside the circuit, say from memory, SO
four pins of the circuit is used for this purpose.
The significance of the A-LATCH and the usefulness of
providing a '0' as one of the inputs will be seen in
the following paragraphs. The S-MULTIPLEXER has for
its input also a binary '0' and the A-LATCH as well
as the output of a B-LATCH and the contents of a
@-,REGISTER. With these inputs there are twelve
combinations possible for the R and S operands.
Twelve is not a nice number, so the manufacturer has
chosen eight of these twelve that he feels are the
most useful. That is, three bits of the micrp
instruction are used to select which combination of
the R and S inputs are used as operands to the ALU.
These three bits is called the Source Code of the
microinstruction.

The Source Codes can be best seen in a matrix of
the Source Code versus the Function Code as is shown
in figure 36 . Note that the entries of this matrix,
look very much like computer operations, i.e.
A PLUS B, A OR B, D MINUS A, B PLUS 1, etc. It is
essentially a sufficient set to allow the user to do
any operation on two binary or logical quantities.
Note also that some of the elements of 'this matrix
have two entries. The difference between these
entries is whether the CARRY-IN to the least
significant bit of the ALU is '1' or '0'. For the
addition of two numbers the CARRY-IN should be '0',
but for subtraction in 2's complement form, the
CARRY-IN to the least significant bit should be '1'.

Thus we realize that in order to control this
microcircuit we must provide every small detail to
get what we want. We are truly programming at the
microinstruction level.

Let us now return to the A- and B-IATCHes. Within
the 2YOl.A there are 16 registers which are organized
as a "dual port memory". That is, two addresses can
be read from the memory simultaneously. The 16 word
memory is called a register file and the user

provides a four bit address to select one of 16 words
in the register file for each port of the memory.
These are called the A and.B addresses. The clock
signal input to the circuit is used to hold the
outputs from these two ports in a special kind of
register called a latch. Thus the output of the A-
and B-LATCHes are the contents of the register at the
A and B addresses when the clock signal makes the
transition from low to high.

The are two sets of results from the ALU. The
first is called F in the figure 35 and it is the
result of the function on the two operands. The
other is a set of status conditions indicating if the
operation resulted in a carry out of the most
significant bit, a 2's complement arithmetic
overflow, a zero result, or a negative result. In
addition to these status signals the ALU incorporates
the standard Carry-Look-Ahead techniques to speed up
operations over many slices which requires the
generation of the Carry Generate (G) and Carry
Propagate (P) signals. .

- - -- ~
7 R EX.NOR S AVQ AYB 0 B a DVA DWCI a

8 -78
+ = PLUS; - = MINUS; V=OR; A = AND; CL = EX-OR. 345**3

Figure 36: Source Operand and
ALU Function Matrix.

Figure 37~. 290lA Destination Codes.

Generally, one would like to do something with the
results of the ALU operation. The data paths within
tile 2901 provide us with many possibilities. First,
the results may be written back into the register
file. At this point we start running out of pins
available on the circuit package, so the manufacturer
has made a cor;promise in that when results are
written to the register file they are written into
the register oE the B address. But before writing
into the B address the 290lA has the capability of
shir'ting the results to the right or to the left. It
can also write the results to the O-REGISTER. Ke can
also output the results on four pins of the package
or we can use these output pins to output the
contents of the A-LATCH. Of all the possibilities
the iranufacturer has again used 3 pins on the package
to allow us to select one of eight &possibilities.
These 3 bits are called the Destination Code of the
m,icroinstruction and these codes are shown in figure
37 . Note that one of the Destination Codes doesn't
write the results anywhere (Code 1). It is a
No-Operation code (NOP) and is useful when we want to
do a CCWARE operation without destroying the
contents of any register. Note also that there are
Gestination Codes where the ~REGISTER is shifted
while shifting the results written into the register
file. The purpose oE this code is to allow the user
to program the circuit to do multiplication,
division, and double length shifts and rotates.

In summary, a microprocessor slice can form the
core of a central processor unit within a computer.

It is controlled by providing it with a micro-
instruction which it uses internally. In the case of
the 290lA, the microinstruction must be at least 18
bits in length: 3 bits for the Source Code, 3 bits
for the Function Code, 3 bits for the Destination
Code, 1 bit for the CARRY-IN to the least significant
bit and four bits each for the A and B addresses.
Although the 2YOl.A is the most widely used micro-
processor slice today, there are others on the market
which may be more suitable in certain applications.
Table 1 lists all the microprocessor slices currently
available with a few comments on their individual
features. For more details, the reader is referred
to the specification data sheets from the various
manufacturers, or to some of the numerous articles in
some of the journals[l,2].

5.2 AN EXAMPLE WITH THE 2901A ----

An example of the use of the 290l.A is a micro-
processor called the 168/E which was developed by my
colleagues and me at S.L.A.C. Figure 38 is a block
diagram of the processor. As with other designs
using it, the 2901 forms the core of the data
processing and there are circuits around it to form a
complete microprocessor. For the 168/E, the choice
of the circuits around the 2901 was based on what
would be easy to program. For this purpose some
assembly code written for the IBM 370 computer was
used as a model for the kind of operations that would

-16-

TABLE 1
List of Microprocessor Slices Currently Available.

Part no. Originated by Second Source (bits) Tech. Comments

4 S-TTL 2901A Advanced
Micro Devices

Fairchild,
Monolithic
Memories,
National,
Raytheon,
Motorola, and
Signetics.

most popular slice, dual-port
architecture

4r

4 S-TTL

4 S-TTL

2

4

'4

4
4

S-TTL

S-TTL
C-MOS

S-TTL

ECL
IIL

2903 Advanced
Micro Devices.

National. Improved version on 2901A,
~~r~~",~",~ed5:f~~~e~t~~le, built-in

similar to 2901A

accumulator orientated

smaller package

similar to 2903, but has no
register file
has no register file
very slow

6701 Monolithic
Memories.

3002 Intel

9405 Fairchild

ITT

Signetics

Signetics

74S481 Texas Inst. none

10800 Motorola Fairchild
SBP0400 Texas Inst. none

CONTROL
WITH C.L.A. AND

BRANCH

MEMORY 18 ..- - 6
PROGRAM DATA BUS

,2 IMULTIPLEX~R~

2 t
15

I6

PROGRAM
COUNTER

MULTIPLEXOR

Y BUS ~~

4.’ ,,4

)RY

L

Figure.38:

Block Diagram of 168/E Microprocessor.

+
BRANCH

5 CTRL 32 ,‘I6

3-s
BUFFER

PROGRAM
,‘24 I’ I6 MEMORY

BUS

v
ADDRESS

24 BIT MEMORY

DATA OUT

I6

ADDRESS

32 BIT MEMORY

be necessary to have a useful processor. An example
of a typical Co LOOP found in many of the programs we
wished the microprocessor to be able to handle is
shown below.

LOOP C 0,ED(9,10)
BL GOTE
m 9,1
BNM KOP

Let us consider how this piece of code is executed
on the 168/E in order to understand the functions of
the circuits around the 2901.A microprocessor slices.
The first IBM instruction is a memory to register
comparison. The memory address is calculated as a

. sum of the contents of registers 9 and 10 plus the
contents of a 12 bit displacement field (ED) which is
part of the instruction. The IBlY 370 has 16
registers and so does the 2901A. Thus a one to one
identification of the registers in the 370 with those
of the 168/E was inade. We have already studied the
2901.A well enough to see how one can add the contents
of two registers together and output the sum. This
would be the first step the 168/E should do in order
to follow the example of the IW 370 program. That
is, a 168/E microinstruction with the 290lA Source
Codel, Function Code 0, and Destination Code 1 as
can be seen from figures 36 and 37 .

-17-

The next step would be to add to this sum the 12
bits of the displacement field. The 168/E performs
this operation in a separate microinstruction with an
additional Adder circuit. In this microinstruction,
12 bits of the microprogram memory are routed to one
input to the adder. The other half of the adder is
connected to the output of the 290lA. The sum of
this addition is strobed into a MEMORY ADDRESS
REGISTER whose output is connected to the address
inputs of the data memory. The access time of the
data memory is fast enough for the data memory output
to be strobed into the D-REGISTER at the end of the
microcycle.

Tne last step of the CCt4iARE instruction is to
make the comparison between memory, which has now
been strobed into the D--REGISTER of the 168/E, and
the contents of register 0. This step is performed
by another microinstruction in which the instruction
for the 290lA uses its D input as one of the ALU
solurce o,perands, i.e. Source Code 5, Function Code 1,
and Destinaticn Code 1.

The next IBN 370 instruction is a conditional
branch in which the next instruction is to be taken
from an address labeled 'GOTE', if the result of the
comparison was negative. Thus to the 168/E micro-
instructions we have already defined, we must add
conditional branch microinstructions. The 168/E uses
a binary counter to control the next microinstruction
instruction address. As in figu:e 20, the flow of
the prcqram execution can be altered by asserting a
signal on the LOAD pin of the counter circuit. To
coi1tro1 the conditions with which one wants to
branch, the IBi4 370 is again used as a model. The
conditional branch instruction of the I&Y 370 has a 4
bit field called the mask which specifies what
conditions are required to force a branch. The
conditions after arithmetic operations are a zero
result, a negative result, a positive result, and a
arithcetic overflow result. The arithmetic
instructions sets one of these conditions to be true
after the operation. If the condition which was set
matches with a set bit in the mask of the conditional
branch instruction, then the branch is taken,
otherwise the next sequential instruction is
executed.

The status outputs of the 2901A do not exactly
correspond to those of the I@4 370 but wi+h a few
logic circuits one can produce identical codes. Thus
the 168/E conditional branch microinstruction has
been set up with the s&me 4 bit mask as the IE:4 372.
If there is a match between the 4 bit mask and the
modified 290lA status bits then the program coilnter
is put into the LOAD state. Fifteen bits from the
microprogram memory contain the branch address ,;;hich
is routed to the parallel load inputs of the prorjram
counter.

The rest of the instructions of the IX LCCP can be
emulated by the 168/E with the microinstructizns
already described. The structure of the 168/E is
typical of structures in which the 29aLq forms tne
core of data processing. iie can identify the parts
which are under control and the part which pror;idcs
the timing sequences. The result of tha struct-to
chosen among the many that were possible is +&it it
easy to translate the IaM 376 instructions into t?.e
microinstructions of the 168/E. In fact if one nsr~
looks at the list of the primary I%1 360/373
instructions, as shown in table 2, one sees thet an
impressive number of the. instructions can be exactly
emulated by the 168/E. These instructions turn out
to be about the same subset of the instructions that
the IBN FORTRAN H complier generates when deling
with 2 or 4 byte integer or 4 byte logical varlzbies.
The Floating Point instructions are executed in a
separate processing unit not show in figure 38 .
Thus the 168/E microprocessor can be proqrax;:ed in
FORTRAN by using the IBY E'OKX?A!~ compiler to generate
machine instructions, then using a program wnicn runs
on a I&l computer to translate these machine
instructions into the microinstructions of the 168/E.
This is possible because the 29Ql.A has the s&me
number of registers a's the IF&l 360/379 and it can
perform all the integer arithmetic and logical
operations of the I&U 360/370 (in fact, it can do
some operations that the IBM computer can not).
Also, the circuitry around the 290lA makes a
processor with the same form of memory addressing and
conditional branching. Thus either the 2901.A with
some circuitry around it forms a very powerful
microprocessor or the IBM 360/370 is a very simple
computer depending on your point of view.

We have already mentioned speed of execution as
one of the frequent requirements for logic systems in
High Energy Physics. So one can ask what is the
speed of the 168/E? The 168/E was implemented with
mostly Low Power Schottky circuits which have a
typical gate propagation delay of 5 nsec, yet the
speed of execution of a program is only between 1.3
and 1.8 times slower than the IBY 370/16d. Compared
with typical minicomputers, the 168/E speed is about
3 to 10 times faster. And what about the cost? The
main cost of the 168/E processor is the eight 29QlAs
which is about 150 US$. The other circuits, circuit
board, sockets, and power supply add less than
another 300 US$. Thus the user of these LSI
microcircuits can build for himself very powerful and
fast processors with standard "off the shelf"
components at a price he can afford.

5.3 THE MICROPRCGRAM CONTROLLER CIRCUIT

Let us now take a look at another LSI micro-
circuit. Another important circuit which has
recently &come available is the microprogram
sequencer. These circuits are designed to serve as
the next address control of the microprogram memory.
They incorporate most the circuitry we discussed in
section 2.2. Essentially every bipolar semi-
conductor manufacturer has a circuit of this type.

Fixed
Point
Arithmetic
and
Logical

Braaching

Operation
LOAD

STORE
ADD

SUBTRACT
COMPARE

MULTIPLY
DIVIDE
AND
OR
EX-OR
SHIFT

LOAD

STORE
ADD

SUBTRACT

CO?lPARE
NULTIYLY
DIVIDE
HALF

-18-

TABLE 2

Partial List of IBM 360/370 Instructions

Type of Second Data Operand*
REG HW FW MUL

KR LCR
LPR LNR

DR
NR

2
SD. SRDA
SLA SLDA
SKL SRDL
SLL SLDL

BALR
BCTR
BCR

LER' LDK"
LTER' LTDR"
LCEK' LCDR"
LPER' LPDR"
LNEK' LNDR"

AER' ADR"
AUK' AWR"
SER: SDR"
g;;. SWK"

CDR"
MER'
DER' "dg::
HER' HDR"

LH

STH
AH
SH
CH
MH

BAL
BCT

%H
BXLE

LE'

LM

LD"

STD"
AD"
AW"
;w"::
CD"

IMD CHR

STCt

NC i/
oc II
XCSL

DEC

*Type of Secorld
REG
H !J

KL
IElD
CHR
DEC

!/ fjot implemented in 168/E
' Implemented with optional Floating Point Processor
11 In lemented with optional Floating Point Processor as

R E.f ~"6 rather than REAL*4

It is interesting to study one of them in detail in
order to both have a basic understanding of their
features and to illustrate some of the techniques
used in microprogramming. A list of the currently
available microsequencers is shown in table 3 .
Unlike the case of the microprocessor slice, none of
these circuits seems to have taken a clear lead in
,popJlarity. As an example of a microsequencer to
study, I have taken the newest and probably the most
interesting one: the 2910.

Figure 39 is a block diagram of the AM2910 made by
Advanced I4iCrO DPJiCeS. From this Eigure one
recognizes the same basic structure that we used in
the figure 27; i.e., the NEXT ADDRESS MULTIPLEXER,
the incrementer, the I'IICRoPRcX;R?!M COUNTER register,
and the condition cede input (CC). To the basic
structure of figure 27 some additional features have
been added in order to make the circuit of more
general utility. The NEXT ADDRESS MULTIPLEXER, for
example has two additional inputs: one from a 5 word
last-in first-out program counter STACK and the other
from a register which can also be used as a counter.

The D input to the multiplexer come directly from
the data inputs pins on the chip. They are intended
to be used for both the BRANCH ADDRESS field of the

PIPELINE REGISTER and the output of the MAPPING ROM
as is shown in figure 40 . In order to chose be
tween these two possibilities the 2910 provides two
outputs, PL and MAP which enable the outputs of the
PIPELINE REGISTER or the NAPPING IXXl respectfully.
An additional OUTPUT-ENABLE signal is available for
another register and/or R@l called VECT. The 2910
will generate a signal on.only one of the OUTPUT-
ENABLE (OE) signals at a time, thus the three sources
for the D inputs are effectively multiplexed. In the
2910 the NEXT ADDRESS MULTIPLEXER is really a six
input circuit, with 3 internal and 3 external
sources.

Let us consider each of the NEXT ADDRESS
MULTIPLEXER's inputs. First the MICROPROGRAM COUNTER
input is identical to the one we studied in figure
27 . The Carry-In (CI) should be set to '1' to make
the incrementer add one to the current microprogram
address.

A new feature is the R REGISTER/COUNTER. It has
several uses which illustrate some of the other
techniques one can use with the microprogramming. As
a register, it is an auxiliary storage location to
the BRANCH ADDRESS field of the program memory
PIPELINE REGISTER. It is be loaded from the Direct

-19-

TABLE 3

List of Available Microprogram Sequencers.

Part no. Originated by Second Source (bits) Tech. Comments

2909

2?11

2910

3001

67110

74s4a2

8X02

9406

9408

Advanced Raytheon,
Micro Devices. National.

Advanced Raytheon,
Micro Devices. National.

Advanced
Micro Devices.

Intel

Monolithic
Hemories

Texas Inst.

Signetics.

Fairchild

Fairchild

none

Signetics

none

none 4 S-TTL Slice, simple

none 10 S-TTL Very simple

none 4 S-TTL Slice

none 10 IIL Condition Code Register

4 S-TTL Slice

4 S-TTL

12

9

9

S-TTL

S-TTL

S-TTL

CLOCK /=’ 9 u
I/ STACK

POINTER

n
CCEN

I
1

p PROGRAM
MULTIPLEXER

) 12 BIT DATA PATH

---+ CONTROL PATH

Figure 39: Block Diagram of 2918
Microsequencer

OZPTT
ENA3LES

Slice, similar to above
with additional features

With Condition Code logic

Complex but saves
memory space
With ALU shift matrix

Data (D) inputs whenever the LOAD signal is received. an alternative branch to the normal one. This
At a later time in the program one could execute a structure may be used for example in certain
conditional two way branch or subroutine CALL, to iterative instructions such as multiplication and
either the D input or the R RKZSTER. division.

The R REGISTER can also be used as a counter. As with ordinary programming, there are advantages
This allows one to repeat an instruction or a series in using subroutines for certain sections of the
of instr'lctions in the following way. The counter is program so that they need not repeated in the memory
initially loaded with a value. During certain as many times as they are used. In order to make a
microinstructions the counter is decremented by one. subroutine CALL one needs to add two capabilities to
'r?hen the value of the counter reaches zero, a ZERO the hardware structure we have already studied.
DETECT signal is generated. Other microinstructions First, when we make a BRANCH to the subroutine, we
can use this signal in place or in conjunction with must have the capability of storing the address to
the CC input of the circuit in order to select the which we should return after the subroutine execution
next address. Thus when the counter has been is completed, and second, we must be able to return
decremented to zero one can have an instruction take to that stored address.

-2o-

MACRO
INSTRUCTION

2910

6
n+lO CONTROL n TO
- PIPELINE 74 SYSTEM

REGISTER ? CONTROL

The 5 word STACK in the 2910 with its connection
to the MICROPROGRAM COUNTER and to the NEXT ADD,RESS
MULTIPLEXER gives us both capabilities. It is used
in conjunction with the STACK POINTER which is a
up/down counter that always points to the last data
entered into the STACK file. When the counter is
incremented it is called a PUSH and conversely when
it is decremented it is called a POP. A subroutine
CALL is executed in the following way. The sub-

= .routine address is selected as the next microprogram
address from either the D input or the R REGISTER.
The :~lICROPRCEP&l COUNTER will thus be address of the
subroutine CALL plus 1. The STAG< POIKTER is first
PUSHed and then the MICROPROGRAX COUNTER is stored
into the top of the STACK. The next cycle will be
fro-i the first location of the subroutine. The
subroutine ,RETiJRi? is executed by selecting with the
NEXT ADDRSSS M!!LTIPLEXER the output of the STACK.
Thus the next instruction to be executed will be one
instruction beyond the instruction which made the
subroutine CALL. At the end of the RETURN cycle the
STACK is POPed to complete the linkage. Since the
STACK contains 5 words, the subroutine CALLS can go
to 5 deep; beyond that the highest level subroutine
return address will be lost.

Tne circuit has a number of parts which need to be
controlled. The output of the NEXT ADDRESS
MULTIPLEXER must be selected from one of the four
inputs or forced to zero; the STACK must be PUSHed,
FQ,led (HELD, or ZEROed; the R REGISTER must be
L,&?J Cdc! , DECRemented, or HELD; and one of the OUTPUT-
EiXXES may generated. Of all the combinations
possible, the manufacturer has selected 16 and he
provides a four bit input so the user can provide a
binary code for which possibility he wants. These
four bits are called the 'microprogram controller
inst-uctio,l' L . In most applications, four bits of
output from the microprogram memory are used to
provide tnis instruction in the same way that bits 4
and 5 were used in tine simple scanner example. Some
of the instructions use the CC input for.conditional
branching. In When the CC input is 'true' it is
called the PASS state and when it is 'false', it is
called the FAIL state. In addition the CONDITION
CODE EKA3LE (CCEN) input can be used to force the
internal condition code (TEST) to PASS. Finally, the
LoAD input of the R REGISTER can be independently

Figure 40: Typical Control Uni
with 2910 Microsequencer

.t

controlled. Thus we have really 6 bits of
instruction input, although sorne of the ~64
combinations are redundant.

We will now go through all 16 of the 2910's micro-
instructions. This exercise will serve to illustrate
the special techniques cne can use in micropro-
gramming. It is also rather interesting and run.
For each instruction we shall consider the state of
the TEST input and the contents of the R REGISTER/
COUNTER since they may alter the resultant operation
of the microinstruction. When their states do not
affect the operation, it is called a "Don't Care0
condition which is indicated by an "X" in the figures
that are to follow. The microinstruction may affect
the contents or status of the STACK, next address
source, the R REGISTER/COUNTER, and/or the OUTPUT-
ENASLES. If the operation does not affect any one of
them it is called a “No Change" condition which is
indicated by “NC” in the figures. As we study the
2910's microinstructions, one can try to imagine an
analogy with FORTRAN statements that control the
program flow.

5.3.1 Continue.

Instruction 14 is a Continue (CONT) which is the
simplest instruction. The next address source is
always the contents of the MICROPRCGRAX COUNTER. One
should recall that the MICROPRCGRXM COUNTER is always
the current address output of the 2910 plus one. As
show in figure 41, the status of the TEST input and R
REGISTER don't influence the operation, the STACK and
R REGISTER don't change their value and the PIPELINE
REGISTER is enabled. The Continue instruction is
probably the most frequently used instruction since
it is used when a series of microinstructions are
executed.

5.3.2 Jump Map. --

Instruction 2 is a unconditional branch
instruction in which the Mapping RCM OUTPUT ENABLE is
turned on. It is called a JUMP MAP (JMAP). The

-21-

14 CONTINUE (CONT) 3 COND JUMP PL (CJP)

Figure 41: 2910 Instruction 14 . Figure 43: 2910 Instruction 3 .

status of the TEST input and the R REGISTER are Don't
Care. The next address source is always taken from
the D input. In the example given in figure 42,
microinstruction 53 has the JMW instruction. When
it appears in the PIPELINE REGISTER, the MAPPI% ROM
is enabled and its output is routed through the 2910
to the address input of the microprogram memory. If
the contents of the MAPPING F&M were 90, then the
program flow would jump from 53 to 90 as shown. In
FORTRAN the JMAP instruction is analogous to the GO
TO statement.

force the internal condition to ?ass. Doing this
changes the CJP instruction into a unconditional jump
to the contents of the PIPELINE RFGISTZR. The CJP
instruction corresponds to the FORTRAN statement
"IF(...) Go To".

5.3.4 Conditional jump Vector.

An almost identical instruction is instruction 6
which is illustrated in figure 44 . The only
difference is that the VECT OUTPUT-FNAELS is turned
on instead of the PIPELINE OUTPUT--LE.

2 JUMP MAP (JMAP)

CONT 50

CONT 51

CONT 52

JMAP 53 90 CONT

91 CONT

6 CON0 JUMP VECTOR (CJV)

CONT 50

CONT 51

CJV 52

CONS 53

CONT 54 t-----7

20 CONT

21 CONT

REGICNTR ADDRESS
TEST DATA STACK SOURCE REG/CNTA E a. .I v,,.,.

PASS x

FAIL
NO -

D __--- --___- NC VECT

Figure 42: 2910 Instruction 2 . PC

..I. ,.,a.:,

Figure 44: 2910 Instruction 6 .
5.3.3 Conditional Jullrp Pipeline.

Instruction 3 is a conditional branch instruction
in which the PIPELINE REGISTER OUTPIJT-FNABLE is
turned on. It is called Conditional Jump Pipeline
(CJP) ano it is illustrated in the example given in
figure 43 . If the status of the TEST input is Fail,
then the next address source is taken from the
MICROPR~RM COLWIER. So in the example, the program
flow would be from instruction 52 to instruction 53.
On the other hand, if the status of the TEST input is
Pass, then the next address source is the D inputs.
Thus the program flow in the example goes from
instruction 52 to instruction 30. The contents of
the R REGISTER are Don't Care and the STACK and R
REGISTER are unaffected. One should recall that one
can use the Condition Code Enable (CCEN) , input to

5.3.5 Jump Zero.

A very special instruction is instruction 0. In
this instruction the output of to 2910 is forced to a
binary zero, thus it is called the Jump Zero (JZ)
instruction. In the same instruction the STACK is
cleared and the PIPELINE REGISTER is enabled. The
intention behind this instruction is to put the
microseguencer into a well defined state when the
power is first turned on. It is easy for the user to
add circuits so that on power up the microinstruction
0 is issued to the 2910. Figure 45 illustrates this
instruction.

-22-

I COND 88 PL (CJS)

0 JUMP ZERO (JZI

CONT 0

CONT 1

I------

93 JZ

CONT 2

RE;WC&TT ADDRESS
TEST ,STACK SOURCE REGICNTR E

X X CLEAR 0’ NC PL
../I 1.3.41.

Figure 45: 2910 Instruction 0 .

5.3.6 Conditional Jump R/PL.

Instruction 7 is the first example which uses the
R REGISTER. It is a Conditional Jump R OK PIPELINE
REGISTER (JRP) and is illustrated in figure 46 .
When the TEST input is PASS, the next address source
is from the D inputs with the PIPELINE REGISTER
enabled. When the TEST input is FAIL, the next
address source is from the contents of the R
REGISTER. One should recall that the R REGISTER may
be loaded in any instruction by generating the LOAD
signal. This instruction is effectively a two way
Jump, since the next sequential address is never the
next address source. In FORIRAN it would correspond
to two statements: an "IF(...) GO To" followed by
"Go To" . In a microprogram with the 2910, the two
way branch is only one instruction.

7 COND JUMP R/PL (JRP)

CONT 50

CONT 51

CONT 52 t

CONT 70 @O CONT

CONT71) + 81 CONT

Figure 46: 2910 Instruction 7 .

5.3.7 Conditional Jump Subroutine Pipeline.

Subroutine CALLS can be made with instruction 1.
AS shu+m in figure 47, the Conditional Jump
Subroutine (CJS) instruction is actuallqr a
ccnditionil subroutine CALL. If the TEST input is
FAIL, the next address source is the contents of the
Li Y.OPRXR&l COUKTER which is the next sequential
instruction. If TEST input is PASS, then the next
?!-lfiKeSS source is the D input with the PIPELIPjE
PXISTER enabled. The STACK COUNTER is PUS:ied and
the current contents of the MICROPRXFWI COUXTER are
stored in the STACK, thus saving the address to which
the subroutine return should be made. The CJS
instruztion can be modified to a unconditional
subroutine jump by using the CCEN input to force the

CON7 50

CONT 5f

CJS 52

CONT 53

CONT 54

CONT 55

Figure 47: 2910 Instruction 1 .

TEST input to the PASS state. The FORTRAN equivalent
of this microinstruction would be "IF(...) CALL".

5.3.8 Conditional Return. . .
The return from subroutine is executed by

instruction 1Q. As shown in figure 43, it is also a
conditional instruction. If the TEST input is FAIL,
the next address source is taken from the
MICROPROGW.1 COUNTER with no other change. If the
TEST input is PASS, then the next address source is
the contents of the top of the STACK and at the end
of the microcycle the STACK POINTER is POPed. Again
this instruction can be modified to a unconditional
return by using the CCRN input. The FORTRAN
equivalent would be "IF(...) RETURN".

!O COND RETURN (CRTN)

90 CONT

91 CONT

92 CONT

93 CRTN

34 CONT

95 CONT

96 CONT

97 CRTN

Figure 48: 2910 Instruction 10 .

5.3.9 Conditional Jump Subroutine R/PL.

Another method for making subroutine CALLS is the
Conditional Jump Subroutine Register/Pipeline (JSRP)
as shown in figure 49 . If the TEST input is FAIL,
then the next address source is taken from the
contents of the R REGISTER. If the TEST input is

-23-

12 LO CNTR 8 CONTINUE (LDCT)

5 cow JS~ R/PL (JSRP)

CONT 50

CONT 51 t

CONT

CONT

CONT

CONT

CRTN

CONT

- CONT

JSRP

52 I
STACK

80 CONT

81 CONT

82 CONT

83 CONT

84 CRTN

COhT 50

LDCT 51 N COUNTER

CONT 52

CONT 53 t

Figure 50: 2910 Instruction 12 .

Figure 49: 2910 Instruction 5 .
9 REPEAT PL CNTR f 0 (RPCT)

PASS, then the next address source is taken from the
D inputs with the PIPELINE REGISTER enabled. In
either case the STACK POINTER is PUSHed and the
contents of the MICKOPRCGIRW COUNTER is stored at the
top of the STACK. Thus the TEST input determines
which subroutine is CALLed and not whether one CALLS
a subroutine or not. The FORTRAN equivalent is
somewhat more complex then the ones we have seen so
far. It might be written as "IF(...) CALL X"
followed by "IF(.NCYT.(...)) CALL Y". In some other
high level programming languages this micro-

.instruction might be expressed as a "IF(... 1 THEN
CALL X ELSE CALL Y". Again we see that in the
microprqram it is only one instruction.

5.3.10 Load Counter and Continue. -~-

The "Load Counter and Continue" (LDCT) instruction
provides an aiternate method of loading the R
REGISTER. As shown in figure 50, the next address
source is always the MICROPROGRAM COUNTER just like
tiqe Continue instruction. The R REGISTER is loaded
from the D inputs with the PIPELINE: RHGISTER enabied.
Xany microprocessors could use this instruction as
the only method of loading the R REGISTER thus
eiirTi;latinCJ the need to control separately the LOAD
input to the 2910. In FORTRA?J, this microinstruction
might be equivalent to setting the end point of a Co
LOOP as will be seen below.

5.3.11 Repeat Pipeline Counter Not m to Zero ~- --

The next instruction is the first example of using
the R REGISTER as a counter. It is called "Repeat
Pipeline Counter Not Equal To Zero" @XT). If the
contents of the R CORNIER are not equal to zero then
the next address source is taken from the D inputs
with the PIPELINE REGISTER enabled. At the end of
the cycle, the R COUNTER is also decremented by one.
If the contents of the R COUNTER is zero, then the
next address source is taken from the MICROPRXIWI
CCWTER and the R COUNTER is left unchanged. As
illustrated in figure 51, the RPCT instruction can be
used to force execution of the same micro-
instruction many times by letting the contents of the
PIPELIME EGISTER be equal to the address of the
instruction. This may be used, for example, to do

CONT 50

LDCT 51

RPCT 52

CONT 53

REGICNTR ADDRESS ; I
TEST DATA STACK SOURCE REGICNTR c?i -.-----.A- _._. -

=o X -------- NC - --P-C_--
#O D

1.1 ,ll..,l

Figure 51: 2910 Instruction 9 .

iterative multiplication or division micro-
instructions. The combination of 2910 micro-
instructions 12 and 9 look very much like the FORTRAN
statenents

Do 10 I=l,N
(one or more statements)

10 CONTINUE

5.3.12 Push/Conditional Load Counter. --

Another instruction which loads the R RFGISTER/
COUNTER is show in figure 52 . It is in fact a
conditional load of the counter and it is called
*Push and Conditional Load Counter" (PUSH). If the
TEST input is FAIL, then the R P.EGISTER/COUNTER is
not loaded while if it is PASS then it is loaded from
the D inputs with the PIPELINE REGISTER enabled. In
either case the next address source is from the
MICROPRCGRAM COUNTER, the STACK COUNTER is PUSHed and
the MICKOPRCGRAM COUNTER is stored at the top of the
STACK. The purpose of this instruction will not be
clear until we study the next and last 4 micrc-
instructions.

4 PUSH/COND LD CNTR (WSH)

-24-

5.3.14 Test End of Loop. ---

REGICNTR ADDRESS
TEST DATA STACK SOURCE REGICNTR ti.i

?!-% x
FAIL

PUSH PC ---$$J~--PL

1 I. Y,..l.

Figure 52: 2910 Instruction 4 .

5.3.13 Repeat Loop, Counter Not Eaual 0.

The next instruction works with the PUSH to
perform a microprogram IX-LOOP as is shown in figure
53 . It is called "Repeat Loop for Counter not equal
to Zero" (RFCT). The instruction is a conditional
jump using the contents of the R REGISTER/COUNTER as
the TEST input. If the contents are not equal to
zero, then the next address source is taken from the
top of the STACK and the R COUNTER is decremented.
In other words the program branches back to the
beginning of the loop. When the contents of the
COUNTER becomes zero, then the next address source is
taken from the MICROPFUXRAM COmER and the STACK is
POPed while the COUNTER is left unchanged. In other

I .WOKdS th2 Program drops through the bottom of the
loop. Thus we see that the R REGISTER/COUNTER is
used like the running index of the Do LOOP. The
S1:CK is used in this case to save the beginning of
the Leo? rather then for saving the subroutine return
&.jyyS . In fact the STACK can be used as a
co,;oination of both up to 5 levels of loops and
szbroutincs. The combination of the PUSH and RFCT
microinstructions looks very much like the FORTRAN
statements:

W 10 I=l,N
(one or more statements)

10 COtNTINUE

8 REPEAT LOOP, CNTRfO (RFCT)

PUSH 50

CONT 51

CONT 52

CONT 53

RFCT 54

CONT 55
i

REGICNTR ADDRESS
TEST DATA STACK SOURCE REGXNTR E

x -
=o POP PC NC ---------------------------PL
#O NC STACK DEC

I.” ,ll.YI

Figure 53: 2910 Instruction 8 .

Another example of looping is an instruction
called "Test End of Loop" (ICOP). It operates the
same way as the RFCT instruction except tnat the
Condition Code input is used as the TEST input rather
than the contents of the R REGISTER/COtiXTER and the
counter is not affected. Note that in the exaiiple
shown in figure 54 if one never got a 'TEST input PASS
status one would have an infinite loop. Note also
that although the PUSH instruction was used at
instruction 51 in order to save the beginning address
of the loop, the R REGISTER/CO~VTER is not used in
the loop. In FORTRAN, the LOOP microinstruction
looks like a simple "IF(...) CO 'IO".

13 TEST END LOOP (LOOP)

CONT 50

PUSH 51

CONT 52

CONT 53

CONT 54

CONT 55

LOOP 56

CONT 57

Figure 54: 2910 Instruction 13 .

5.3.15 Conditional Jump PL and POP. ---

Each PUSH of the STACK must be followed somewhere
by a FOP in order to not to lose the subroutine
linkage. Instruction 11 has been designed to enable
one to conditionally jump out of a loop and restore
the STACK at the same time. It is called the
"Conditional Jump Pipeline and POP" (CJPP) and it is
illustrated in figure 55 . If the TEST input is FAIL
the next address source is the MICROPROGRAM COUNTER
and the STACK is left unchanged. If the TEST input
is PASS, then the next address source is taken from
the D input with the PIPELINE REGISTER enabled and at
the same time the STACK is WPed.

5.3.16 Three-Way Branch

The next and last instruction is the most complex
of all. It uses both the TEST input and the contents
of the R COUNTER to determine one of three next
address sources. It is appropriately called "Three
Way Branch" (?wa). It is also used with the PUSH
instruction as shown in figure 56 . As long as the
TEST input is FAIL, the instruction operates like the
RFCT , that is, it the microprogram branches back to
the address contained at the top of the STACK as long
as the R COUNTER is non-zero. When the RCOLJNTER
reaches zero, however, tne next address source is
taken from the D inputs with the PIPELINE REGISTER
enabled. If the TEST input is PASS, then the program
drops out of the loop by taking the next address
source from the MICROPROGRAM COUNTER and the STACK
POINTER is POPed. In this case the R COUNTER is
decremented or unchanged depending on its value.

-2s

II COND JUMP PL 8 POP (CJPP)

PUSH 50

CONT 51

CefNT 52

CONT 53

CJPP 54

LOOP 55

CONT 56
b----l

80 CONT

61 CONT

62 CONT

Figure 55: 2910 Instruction 11 .

15 THREE WAY BRANCH ITWE)

CONT 62

PUSH 63

CONT 64

TWB 65

CONT 66

STACK

REGISTER/
COUNTER

72 CONT

73 CONT

This strange instruction turns out to be quite
useful. If in a loop one were searching for a data
point in memory, for example, then the loop could end
when either the data point is found (TEST input
becomes PASS) OK by reaching a certain limit (R
COUNTER becomes zero). Note that the in the two
ending conditions the program goes to two different
locations. Thus when compared to a FORTRAN program,
this instruction is like having an "IF(...)GO To"
statement as the last statement in a DC+LCCP.

5.3.17 SUIiXXIKy Of 2910.

This completes the study of the microinstruction
of the 2910. To the MRTPAN pKograTmer these
instructions should not seem too strange at all.
There is a big difference, however, in the mannet in
which the instructions are executed. With a FORTRAN
program running on a normal computer the compiler has
generated various machine instructions to get the
desir'ed program flow. With the miCKOpKOgKam
sequencer, the program flow is controlled within one
microinstruction. Hence we see that microse;luenceKs
are designed to make microprogram fast and efficient
is memory space by minimizing the number of
instruction steps to control the program flow. One
must remember that besides the PIPELINE REGISTER bits
which control the microsequencer, there other bits
which control that which is being controlled. The
sequencer does not do useful data manipulation
itself.

REFERENCES

1. [l] Martyn Edwards 'and Erik Dagless,
Microprocessors 2, 407 (1977).

2. [2] Phillip M. Adams, SIGMICRD Newsletter vol 9 --
no 1, 23(1978); and vol 9 no 2, 7(1978). -- ----

Figure 56: 2910 Instruction 15 .

