SLAC-PUB-2205
October 1978
(1)

MICRO-CIRCUITS FOR HIGH ENERGY PHYSICS*

Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford, California, U.S.A.

ABSTRACT

Microprogramming is an inherently elegant method
for implementing many digital systems. It is a
mixture of hardware and software technigues with the
logic subsystems controlled by "instructions" stored
in a memory. In the past, designing microprogrammed
systems was difficult, tedious, and expensive because
the available components were capable of only limited
number of functions. Today, however, large blocks of
microprogrammed systems have been incorporated into a
single I.C., thus microprogramming has become a
simple, practical method.

1. INTRODUCTION

1.1 BRIEF HISTORY OF MICROCIRCUITS

The first question which arises when one talks
about microcircuits is: What is a microcircuit? The
answer is simple: a complete circuit within a single
integrated-circuit (I.C.) package or chip. The next
question one might ask is: What circuits are
available? The answer to this question is also
simple: it depends. It depends on the economics of
the circuit for the semiconductor manufacturer, which
depends on the technology he uses, which in turn
changes as a function of time. Thus to understand
what microcircuits are available today and what makes
them different from those of yesterday it is
interesting to 1look into the economics of producing
‘microcircuits.

The basic element in a logic circuit is a gate,
which is a circuit with a number of inputs and one
output and it performs a basic logical function such
as AND, OR, or NOT. Figure 1 shows the basic gate

sed in the popular TTL technology. It performs the
NAND function, that is only when both inputs are TRUE
does the output become FALSE. The truth table which
describes the operation of the gate would then look
like that shown in figure 2 . From this basic gate
one can form other logical functions. For example,
the NCT function can be generated by tying the two
inputs together as shown on the left of figure 3 .
It is usually represented by the INVERTER symbol as
shown on the right of the figure. Another example is
the OR function which may be generated from the NAND
gates as shown on the left of figure 4 and usually
represented by the symbol shown on the right of this
figure. It can be shown that all the Boolean
operations can be generated with combinations of the
basic NAND gate.

The cost of a integrated circuit depends on the
number of gates required to perform the desired
function, but the cost of a gate depends on the
number of gates in the chip. Figure 5 is a plot of

* Work supported by U. S. Department of Energy, EY-76~C-03-0515

3_—
C
B

8—-78 3458410

Figure 1: Basic TIL Gate

A input B input C output
false false true
false true true
true false true
true true false

Figure 2: Truth Table for NAND Gate.

— =

B-78 438400

Figure 3: Logical NOT Circuit,

oI

3430A12

Figure 4: Logical OR Circuit.

w Labor

= Intensive

<

2]

<

[

0

=4 R

2} Sllicon

Intensive

GATES /CHIP

B -78 1458A)

Figure 5: Integrated Circuit Cost Curve.

~2-

the cost per gate versus the number of gates per

chip. There are three distinct regions on this
curve. The labor intensive region is where the labor
of assembly, testing, and processing the order, as

well as the fixed company overhead dominate the costs
of the chip. 1In this region the manufacturer can
double the number of gates on the circuit without
changing its cost, thus the cost per gate would drop
a factor of two. The silicon intensive region is the
technically difficult region, where the manufacturer
produces a small percentage of functioning circuits
for his effort and hence the cost per circuit begins
to rise rapidly. The flat central region is the
region, where the cost of the circuit is proportional
to the number of gates on the circuit. It is the
optimal region for producing circuits.

As the technology of producing circuits improved,
what was technically difficult at one time became
standard practice at a later time. Figure 6 shows
the cost curve for three periods of time. These
periods correspond roughly to three generations of
microcircuit manufacturing. The optimal region in
the first generation, Small Scale Integration (S8SI),
had three to six gates per circuit. The circuits
that were produced were simple logic functions and
the technically difficult was a flip-flop. An
example of an SSI integrated circuit package is the
7408 as shown in figure 7 . It is simply four
independent NAND gates requiring 3 pins each. With
the supply voltage and ground pins it makes the
standard 14 pin package still in use today.

1000 Tiges/ |

1970
xoo\/ T

1or b 1978

COST/GATE

| ! L

| 10 100 1000
GATES /CHIP

§-78 3458A2

Figure 6: I.C. Cost Curve versus Time.

+5vV
M3 f3 g [i] fio] [5] fel
B ERCEECIE
GND
Figure 7: 7400 Integrated Circuit Package

When the optimal region for manufacture became 20
to 5¢ gates per circuit, the second generation of
microcircuits was born: Medium Scale Integration
(MSI). The semiconductor manufacturers faced a
problem as to what circuits to produce, since the
simple extrapolation of more simple logic functions
per circuit runs into some problems such as too mary
pins per package. The problem was solved by
producing larger blocks of digital systems such as

counters, multiplexers, decoders, registers, etc.,
which were of general enough use that the manu-
facturer could sell them in large enough quantities
to make a profit. An example of an MSI integrated
circuit package is the 74157 as shown in figure 8
(a). It is called a Quad 2~Input Multiplexer since
it multiplexs one of two inputs to.one output four
times over. A single Select input controls all four
channels. With one pin left over to make it an even
nunber, the manufacturers have added a Gate to force
the outputs to Zero and one has a standard 16 pin
package. The conventional symbol for this circuit is
also shown in figure 8 (b).

EXAMPLE OF MSi INTEGRATED CIRCUIT PACKAGE
74157 QUAD 2 INPUT MULTIPLEXOR

INPUT
1A

QUTPUT

1B —

24A ']

3A]

)

_Y

P

38 3y 7

an

ay

/

48

SELECT —{ >o—d—{ >
>

GATE

(o)}
IR I AU NN B B

1A IB 2A 2B 3A 3B 4A 48

Y 2Y 3Y 4y

I

o (b)

Figure 8: Example of MSI Integrated Circuit Package,

(a) Circuit, (b) Symbol.

A few years ago, the optimal region of manufacture
became 200 to 508 gates per circuit, Large Scale
Integration (LSI), and the semiconductor manu-
facturers were again faced with the problem of what
circuits to provide with these many gates. The
problem was solved by producing an even larger block
of digital systems so that we now find that
microcircuits are arithmetic/logical processor
elements, microprogram sequencers, direct memory
access controllers, etc.

The LSI microcircuits will be the topic of these
lectures. They offer the best economy because large
subsystems of digital circuits are available on a
single 1.C. package. Within a given type of tech~
nology {e.g. TIL, ECL, MOS, etc.) they often produce
faster systems because there is less lost of speed
with interconnection between packages. They also
reduce the amount of circuit board real estate
required for a given logic system and large systems
are less expensive to make.

the semiconductor manu-
facturers have made available large digital sub-
systems within a single I.C. But they still had to
provide a means by which the circuit was flexible in
its use in order to be able to sell enough of them to
make a profit. The flexibility of these circuits was
obtained in part by designing them to be used in a
microprogrammned type of architecture. That is to
say, that the function a circuit performs is con-
" trolled by an nuwmber of input signals which form an
instruction word. The instruction word is assumed to
come from the microprogram memcory. The manufacturer
also is making circuits for use where there is
potentially the largest volume of users, which for
digital systems is probably the computer and computer
peripheral manufacturers. In this market, the micro~
programmed technique of logic design offers many
advantages as we will see in these lectures.

With LSI microcircuits,

oy =]

High Energy Physics is not a high volume user for
semiconductor manufacturers. If we are to make use
of LSI, we must, in general, bend our needs to those
circuits which are already commercially available.
In addition, in order to profit from the LSI micro-
circuits, we must learn the microprogram method of
implementing digital systems, and we must be able to
understand the digital subsystems that are available
as a single I.C. In the following sections, we will
first study the basics of microprogramming from a
point of view which is biassed by the microcircuits
that are commercially available. Then we will study
in some detail a microprogrammed controller with a
High Energy Physics application. Finally we will
study two of the most important LSI circuits which
have become available.

2. 'BASICS OF MICROPROGRAMMING

2.1 COFFEE VENDING MACHINE

To understand the basics of microprogramming let
us take a simple example: an automatic coffee
vending machine. Figure 9 is a block diagram of such
a machine which has two basic parts; the machine
hardware and the sequential control logic. The
coffee machine hardware is the system to be con—

trolled. It contains the values and solenoids that
release the water, coffee, sugar, etc. which are
needed to produce the desired result: a cup of

coffee. The sequential control 1logic is the system
controller. It sends signals to the hardware in the
correct order and timing. It starts the hardware
into operation when it receives a signal from the
coin detection logic and alters the sequence
according to what kind of coffee has been requested
via the front panel push buttons.

The sequence control can be imagined as a series

of steps, each lasting a fixed length of time, say
1/2 second. The list of steps might be as shown in
figure 18 . The coffee machine sequence controller

could be implemented using combinations of flip-flops
and one—shots as shown in figure 11 . This approach
is commonly called hard wired or random logic, and is
typical of how designs have been done in the past.
The advantage of this approach is that it uses the
minimum number of logic gates and it 1is relatively
simple for a given sequence.

The coffee machine sequence control may also be
implemented with a binary counter and a read only
memory (ROM) as shown in figure 12 . 1In this figure,
only one of the sequences has been implemented. The
binary counter serves to count the steps and the ROM

-3

PUSH
BUTTON
CONTROLS
— CUP RELEASE —=
BLACK - — HOT WATER ON =~
CREAM = SEQUENCE L cOFFEE RELEASE = MACHINE
sucar | CONTROL L oiGAR RELEASE —=| HARDWARE
BOTH - | CREAM RELEASE —»]
—— BUSY LIGHT -
CO!N
DETECT o
TR §-78
J458A1%
Figure 9: Block Diagram of Coffee Vending Machine

C
0scC
FUR
C FGE
U EAAB
P ERMU
W S
RARRRY
ETEEE
LELLLL
EREEETI
A AAAG
STEP S0SSSH
NUMBER } E NE E E T | COMMENIS
1 X X | START
2 X X = ALL SEQUENCES
3 X S = SUGAR SEQUENCES
4 X C = CREAM SEQUENCES
5 X X
6 X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X S X
i3 X S X
14 X S X
15 X C X
16 X C X
17 X C X
18 X c X
19 X X
20 X X
21 X X
22 X X
23 X X
24 X X STOP

Pigure 18: Coffee Machine Combined Sequence List,

serves as a programmable decoder to produce the
required signals at each step. Note that the input
address of the memory is the output of the counter
and that each bit of the memory's output is used
directly as one of the signals for the hardware under
control. In order to do the black coffee sequence,
one would want the contents of the memory to be as
shown in figure 13 . A binary 'l' corresponds to
sending a signal, while a binary ‘@' corresponds to
not sending a signal. A coffee machine sequence
controller implemented in this way is said to be
microprogrammed.

In order to include the other kinds of coffee one
could increase the size of the counter from 5 bits to
7 bits and the size of the memory f£rom 32 locations
to 128 locations as shown in figure 14 . The encoder
circuit generates a binary code from # to 3 depending

COIN REFUNDS 0.5 sec
ONE SHOT cupP
RELEASE
1.5 sec 10 sec WATER ON
BLACK L .
CREAM % ONE SHOT ONE SHOT BUSY
SUGAR c
- BOTH H
- == 1.0 sec
- ONE SHOT
LATCH
COFFEE ON
2.5 sec
[:: 1.5 sec
SUGAR ON
T |
CREAM ON
L4 2.0 sec

—

Figure 1l:

SIMPLE SEQUENCER

CLOCK
CoIN l
STARTY L COUNTER
RESET |
sTOP
2DR
READ ONLY
MEMORY
QUTPUT
i L—cup ReLEASE ——

WATER ON ————>
COFFEE RELEASE —
SUGAR RELEASE —
CREAM RELEASE ——
BUSY LIGHT ——=

-7
3438817

Figure 12: Microprogrammed Coffee Vending Machine.

on which of the push buttons was activated.
code is then used as the two high order bits to the
counter when it is 1loaded. The loading of the
counter is under control by one additional bit of
output from the memory. Thus, for example, at memory
address 1 the load bit may be turned on so that the
next address of the sequence will be either 2, 34,
66, or 98 depending on the output of the encoder.

This

Figur

Jassats

Random Logic Implementation of Coffee Vending Machine.

C
0SsC
FUR
C FGE
U EAAB
P ERMU
W S
RARRRY
ETEEE
LELLLL
EREEEIS
A AAAGT
S0SSsSsHO
ENEEETP
PROGRAM N
ADDRESS
IDLE
START
‘1’ = SIGNAL ON
‘0’ = SIGNAL OFF
‘X’ = DON'T CARE

P‘U\J-\u-!NF‘O\OG)\IO\U\.L\LQNI—‘O\DOD\IO\UL\LA)ND—'O

[RT R Y YT Y Y el ad e e Y

e 13:

OOOOOOOOOOOOCOOOOOOOOOOr—-O (]

s bt st et et ot et ot et bt bt bt et bt et bt bt = = P S O O C O)
.. OOOOCOOOOOOOO’—"—‘P—‘D—"—‘OCOOOOO N%m
.. OOOOOOOOOOOOOOOOOOOOOOOOO wg';:
LY OOOOOOOOOOOOOOOOOOOOOOOOO 0

Memory

ot s s et o e bt [t ot bt Bt B bt B bt et s et et 2 O] AR
HCOOOOOOOOOOOOOOOOOOOOOOO (=)}

sTOP
LOCATIONS 25-31
ARE NOT USED

Contents of Coffee Vending Machine
for Black Only.

L1171
{ (((}pUSH BUTTONS

CLOCK [
ENCODER
COIN .
_'LoAD ‘0’
_ i r—- o
START -
7 BIiT COUNTER
RESET
STOP
4
READ ONLY
MEMORY
) TO COFFEE
MACHINE
HARDWARE
- 34dual8

Figure 14: Microprogrammed Coffee Vending Machine

with Multiple Segquences.

2.2 GENERAL MICROSEQUENCERS

The coffee machine sequence controller is an
~example of a microprogrammed processor. The
- processor's memory contains two fields; the load

control bit and the other bits to control the
hardware signals. A generalized version of this
processor is shown in figure 15, where the encoder
has been replaced by an instruction register. The
OP~COCE field of the instruction register contains
the high order bits of the starting address of a
sequence. The push buttons of the coffee machine
have been replaced by the machine instruction.

RCHIE
IRSTRUCTION

INSTRUCTIO! REG

0P (CZE { OTRER

gy

LOAD [:

COURTER

—}-—— €LOCK

FICROPROGRAI
KEMORY

LOAD
CORTROL OTHER
BIT

S

HARDWARE COMTROL
SIGRALS sim

Figure 15: Basic Microsequencer.

In a more general processor, one may have
sequences of widely different length and the circuit
shown in figure 15 will lead to large areas of unused
memory. The introduction of another memory, the
MAPPING ROM, between the OP~CODE and the program
counter will allow the flexibility of starting a
sequence at any arbitrary address. The OP-CODE is
used as the address of the MAPPING ROM and the output
of the MAPPING ROM becomes the starting address for
the program counter. This MAPPING ROM is shown in
figure 16 and it is another example of using memory
as a programmable decoder.

MACHINE
THSTRUCTION

|

THSTRUCTION REG
0P CODE | OTHER

WAPPING

PROK
COUNTER
MICROPROGRAM

HEMORY
LoD
CONTROL OTHER
BIT

CONTROL SIGNALS
s

on

Figure 16: Microsequencer with MAPPING ROM.

With the microsequencer shown in figures 15 or 16,
the flow of the program can only be the next
sequential address until another sequence is started
when the LOAD bit is present. This sort of flow is
show schematically in figure 17 . At instruction 58
of the figure, for example, the next instruction can
only be instruction 51. In this sequential flow the
processor is said to execute the CONTINUE (CONT)
instruction,

50

52

53

§~78 3458A45

Figure 17: Continue Instruction.

One useful way to add flexibility to the micro-
processor would be to allow the program the jump to
an address which is contained in the microprogram. A
method of doing this is shown in figure 18 . A
multiplexer has been added between the output of the

INSTRUCTION REG
[e]

MuX |

MICROPROGRAM
FEMORY

LoAD ADR BRANCH | grien
CTRL SEL ADR
CONTROL

= |
SIGNALS

’-n Yagmars

Figure 18: Microsequencer with JUMP logic.

MAPPING ROM and the input of the counter. One input
of the multiplexer is the MAPPING ROM while the other
comes from a part of the output of the microprogram
memory. The latter is called the BRANCH ADDRESS
field of the microprogram memory. One additional bit
from the microprogram memory is routed to the SELECT
input of the multiplexer so that when the bit is in
“one level the output of the Mapping ROM is routed to
the input of the counter and when the bit is in the
other level the BRANCH ADDRESS field of the micro—
program memory is routed to the input of the counter.
This bit is called the ADDRESS SELECT (ADR-SEL) field
of the microprogram memory. The £low of the micro-
program can now be altered as shown in figure 19 .
After execution of instruction 53, the next
instruction is 99. The processor is said to execute
a JUMP (JMP) instruction at location 53.

49

50

51

52

53 (@ -9 90
9l

978 92

3458 A48

Figure 19: JUMP instruction.

-6—

A very important feature to add to this basic
processor would be the ability to alter the flow of
the program depending on the results of a previous
operation. This is called CONDITIONAL BRANCHING and
it can be implemented as shown in figure 28 . The
LOAD input to the program counter is now taken from
the output of multiplexer which is called the
CONDITION CODE MULTIPLEXER. One of its inputs is
selected by part of the output of the microprogram
called the CONDITION CODE field. Note that one of
the inputs to the multiplexer is a logic '8'. When
this input is selected, the LOAD input to the counter
is always '@' so that the counter goes to the next
sequential address. Another input to the multiplexer
is a logic 'l'. When this input is selected, the
counter will always be loaded. These two inputs are
necessary in order that this processor can execute
the CONTINUE and JUMP instructions, respectively.
when the third input to the CONDITION CODE MULTII~
PLEXER is selected, the counter will either go to the
next sequential instruction if the conditional input
is '@' or be loaded if the conditional input is '1°,
Thus we have added the CONDITIONAL BRANCH instruction
to the processor. An example of this flow is shown
in figure 21 at instruction 53.

INSTRUCTION REG
b
[e]

"1 COND

COND WX

[—

MICROPROGRAM
MEMORY
COND { ADR | BRANCH OTHER
CODE | SEL ADR
— |
CONTROL
SIGNALS
Figure 28: Microseguencer with Conditional
Branching.
50
51
52
53 a9 85
54 86
55 87
56 88

9-78 3458448

Figure 21: Conditional Branch Instruction.

At this point it i1s appropriate to take a look at
the timing of the processor. Figure 22 shows the
time sequence of the signals within the processor.
Each microinstruction starts with the leading edge
(i.e. the '8' to 'l1' transition) of the clock
signal, When this signal is received by the micro~
program counter, it increments its contents by one.
The change of its output does not occur instan—
" taneously, haqwever. Each logic gate within the
counter circuit has a response time called its
"propagation delay". Thus it is only some time after
the counter receives the clock signal that its output
switches to the next address. For example, with a
standard Schottky TTL counter the delay from clock to
output is 13 nsec.

The microprogram memory alsc has a delay between
the time an address is presented to its input and
valid data is available at its output, This delay is
called the "access time" of the memory and for
Schottky TTL memories it is on the order of 53 nsec.
The period of time from the generation of a new
address until the ocutput of a memory is steady is
called the "fetch" time. Note that for the micro-
processor we are studying, the total fetch time is
equal to the sum of the propagation time of the
counter and the access time of the microprogram

‘(——-— u~-CYCLE ——él

memory.

After the fetch time, the process under control of
the microprogram memory starts its execution. Again
this process is only finished after a delay called
the "execute time" which may be on the order of 140
nsec depending on what is being done. At the end of
this period we have the results which ey now be
saved at the leading edge of the next clock signal in
say an accumulator. Thus the minimum cvcle time of
the microprocessor 1is determined by the sum of the
fetch and execute times. With the next edge of the
clock signal the processor starts the next
instruction.

Let us consider the microprocessor-timing when a

conditional branch instruction is executed. In the
timing shown in figure 23 microinstruction i
generates a result upon which we wish to

conditionally branch. The result of this instructicn
is available during execution of microinstruction
i+l, thus we should make microinstruction i+l the
conditional branch instruction. At the time of the
third microcycle, we can start microinstruction i+2
or the instruction of the branch address depending on
which path the result has taken us.

CLOCK | l I | l l_.l L-J
COUNTER u=INST i u=INST 1+1} next u=-INST -
ADR ADR ADR
PROGRAM FETCH FETCH FEICH ———
MEMORY u-INST 1 u=INST i+l next u-INST
PROCESS EXECUTE EXECUTE EXECUTE -
u=-INST i u=INST i+l next u-INST
ACCUMULATOR RESULT OF RESULT OF RESULT OF
u~INST i-1 u~INST i next u=INST
Figure 23: Conditional Branch with Program Counter.

One of the frequent requirements of logic systems
in High Energy Physics is speed.
one could ask why do we use up a whole microcycle to
So let us consider for a
moment how the timing would change if we attempted to
do the conditional branch in the same microcycle as

do a branch instruction ?

ié-—-— u~-CYCLE —-—)l

cLock _I = L [LI
COUNTER u-INST i u-INST i+l u=INST i+2 u=INST 1+3
ADR ADR ADR ADR

PROGRAM FETCH FETCH FETCH FETCH

. MEMORY u-INST i u-INST i+l u~INST=i+2 u~INST i+3
3 ECUTE EXECUTE EXECUTE EXECUTE
PROCESS WCINGT u-INST {+1 u-INST 142 u~INST i+3
SUMU RESULT OF RESULT OF RESULT OF RESULT OF
ACCUMULATOR GCINST 1-1 u~INST 1 u=~INST i+l u-INST i+2
Figure 22: Sequential Timing with Program Counter.

With speed in mind,

the execute.
branch would not be
execute time.
condition would begin to
CONDITION CODE MULTIPLEXER and be presented to the
LOAD input of the counter.

The condition upon which we want to
ready until the end of the
It would be at that time that the
propagate through the

Before the clock signal

-8-

can be asserted at the counter, we must wait a period the FETCH of this instruction begins. Thus the FETCH

of time called the "set—-up" time so that the counter of one instruction is done simultaneously with the
can do the LOAD or COUNT function correctly. Using EXECUTE of the previous instruction. The minimum
standard Schottky TIL circuits, the sum of the microcycle time is now determined by the longer of
multiplexer propagation delay and the counter set-up the FETCH or EXECUTE times rather then the sum of
time would add another 35 nsec to the minimum micro— them.

cycle time. If the microcycle time is constant, then
this additional time would be added to all micro-
instructions whether they contained a branch or not.
Thus depending on the number of branches in a program

and the execute time, program execution time may be [:jEEﬁEEﬁ@T::
faster with the separate branch and execute bbbl
instructions.

A much more important improvement can be made in [e

program execution speed by using the technique of
"pipelining”. Note that in figure 22 that during the
FEICH time the process under control is effectively A_FJ“‘
idle since it is waiting for the output of the X

microprogram memory to become steady. Also during -
the execute time, the microprogram memory 1s Hﬂl::{;%}uL_.[:Egﬁg"l_ ax

effectively idle since it is merely holding its “p
output steady for the execution. By inserting a B
register at the output of the microprogram memory as
shown in figure 24, one can overlap or "pipeline" the
fetch and execute times. One can see how this works
by looking at the timing in figure 25 . With the
leading edge of the first clock signal, the HBORY
microprogram counter advances to microinstruction i P R R
and after the FETCH time the output of the micro~ - o | s AR,
program memory is presented to the input of the i I i !
PIPELINE REGISTER. As with the counter, one must . . l

wait a set~up time before the clock can be asserted

to the register. when the clock does arrive, the
microprogram memory output is stored in the PIPELINE CONTROL
REGISTER and after its propagation delay, the micro— R SIGALS
instruction 1 is presented at the output of the :

register so that the execution of that instruction

can begin. With this same clock edge, the micro- Figure 24: Microsequencer with Pipeline Register.
© program counter advances to microinstruction i+l and

MICROPROGRAM

PIFLIE FEG e
|

|<—— u~CYCLE —>l

oo | L] . L =) L1 LI

COUNTER u=-INST { u~INST 1+1 u-INST i+2 u=INST i+3 u~INST 1i+4 u=INST i+5
ADR ADR ADR ADR ADR ADR
PROCRAM FETCH FETCH FETCH FETCH FETCH FETCH
u-INST i u-INST i+1 u-INST 1+2 u~INST 143 u-INST i+4 u=INST 1+5
PIPELINE REG u~-INST i-1 u~INST i u=INST i+l u~INST i+2 u~INST i+3 u-INST i+4
PROCESS EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
u~INST i-1 u=INST i u~-INST i+l u=INST i+2 u~INST 1i+3 u-INST i+4
ACCUMULATOR RESULT OF RESULT OF RESULT OF RESULT OF RESULT OF RESULT OF
u~-INST i-2 u~INST i-1 u-INST -1 u-INST i+1 u-INST i+2 u-INST i+3

Figure 25: 3eqguential Control with Program Counter and Pipeline Register.

The circuit shown in figure 24 leads to faster the FETCH of the next microinstruction which |is
program execution. It has one difficulty with either microinstruction i+3 or the microinstruction
conditional branch instructions however. Consider a located at the BRANCH ADDRESS. The problem is: what
conditional branch on the results of instruction i as can the execution unit do during the fourth micro-
shown in the timing diagram in figure 26 . With the cycle? The answer is that it can only do something
first microcycle we have the FETCH of micro- which does not depend on which path the program has

instruction i and with the second, we have the FETCH taken after the branch instruction. In most cases,
of microinstruction i+l and the EXECUTE of micro— nothing useful can be done by the execution unit
instruction i. The results of this instruction are during this cycle so that the microinstruction after
ready to be tested in the third microcycle so clearly the branch instruction (microinstruction 1i+2 in this

microins;ruction i+l should be the conditional branch. case) becomes a NO OPERATICN (NOP), which is a waste
instruction. At the end of the third cycle we begin of execution time.

l<—— u-CYCLE ->'

-9~

CLOCK | l__r u

COUNTER u-INST i u~INST i+l u=-INST i+2 next u-INST —— —_—
ADR ADR ADR ADR

‘PROGRAM FETCH FETCH FETCH FETCH — —

MEMORY T u-INST i u~INST i+l u~INST i+2 next u-INST

PIPELINE REG u-INST i-1 u-INST 1 u~-INST i+1 u-INST i+2 next u~INST —

PROCESS EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE —
‘u~-INST 1-1 u-INST i u-INST i+l u-INST i+2 next u-INST

(BRANCH) (NOP)

ACCUMULATOR RESULT OF RESULT OF RESULT OF RESULT OF

u-INST i-2 u=INST i-1 u-INST i next u-INST

-

Figure 26: Condition Branch with Program Counter and Pipeline Register.

The circuit of the processor can be changed to fix
this branching problem without slowing down the
program execution as is shown in figure 27 . The
microprogram counter has been replaced by an
incrementer and a register, whose output is routed to
an additional input to the address multiplexer, and
the CONDITION CODE MULTIPLEXER has been replaced by
some combinational logic. The address multiplexer is
now routed directly to the address inputs of the
microprogram memory. This multiplexer is called the
NEXT ADDRESS MULTIPLEXER. An incrementer is a
circuit whose output is equal to its input plus one.
The new register is called the MICROPROGRAM COUNTER
even though it is no longer a counter. In the
circuit shown the current microprogram address plus
- one is stored into the MICROPROGRAM COUNTER with each

clock edge. Thus when the MICROPROGRAM COUNTER is
selected as the output of the NEXT ADDRESS
MULTIPLEXER, one has the CONTINUE instruction in

effectively the same way as when we forced a COUNT of
the counter in figqures 15, 16, 18, 20, and 24 . A
jump instruction is accomplished by selecting the
BRANCH ADDRESS as the output of the NEXT ADDRES3
MULTIPLEXER and a conditional branch instruction is
accomplished by selecting either the BRANCH ADDRESS
or the MICROPROGRAM COUNTER depending on the state of
the CONDITION input.

The tiining of this circuit for
instructions appears to be the same as the previous
one as 1s shown in figure 28 . The minimum
microcycle time is still determined by the longer of
the FETCH or EXECUTE times. But the conditional
branch timing is much improved as is shown in figure
29 . With the first microcycle in figure 29 we have
the FETCH of microinstruction i and with the second
we have the FETCH of microinstruction i+l and the
EXECUTE of microinstruction i as before. With the
third microcycle we begin to test the results of
microinstruction i so clearly microinstruction i+l is
the branch instruction. The condition input selects
the next address during the third microcycle so that
the FETCH of the next microinstruction begins and
ends during this cycle. Thus with the leading edge
of the clock of the fourth microcycle, the next

non branching

INSTRUCTION REG

| e Res oy cLock
IRCREPENTER

MICROPROGRAM

HEMORY
Rt o
ADR g OTHER
SELECT
l l 1 CLOCK
L PIPELINE REG J‘-
CoNTROL

SIGRALS sevare

Figure 27: Microseguencer with Microprogram Counter

and Incrementer.

microinstruction is stored into the PIPELINE REGISTER
and the EXECUTE of this instruction begins. At the
same time the next+l instruction address is stored
into the MICROPROGRAM COUNTER so that the FETCH of
this instruction can begin. Thus even with a
conditional branch instruction, this circuit for a
microprocessor makes efficient use of microcycle
time. It is this type of circuit that we will find
to be commercially available as a LSI microcircuit
when we study microseguencers.

CLOCK l l l I l | I L__l I—I l———]
FEICH FETCH FETCH FEICH FETCH FETCH
ﬁ%ﬁg%@“ u-INST i u-INST i+l u-INST i+2 u-INST i+3 u=-INST i+4 u—INST i+5
PIPELINE REG F u~INST i-l u~INST 1 u~-INST i+l u~INST i+2 u=INST i+3 u~-INST i+4
T EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
PROCESS Ef-(%%gTEi—l u~INST 1 u-INST i+l u-INST i+2 u-INST i+3 u~-INST i+4
' ESULT OF RESULT OF RESULT OF RESULT OF RESULT OF RESULT OF
ACCUMULATOR §_§NST i-2 u-INST i-1 u-INST 1 u-INST i+l u~INST i+2 u-INST i+3
Figure 28: Sequential Control with Program Counter Register.
Ié—- u-CYCLE —>|
1 L I N [L] LI
PROGRAM FETCH FETCH FETCH — —— —
MEMORY u~INST 1 u-INST i+} next u-INST
PIPELINE REG u=INST i-1 u-INST 1 u=-INST i+l next u-INST — -
PROCESS EXECUTE EXECUTE EXECUTE EXECUTE —_— —_—
u-INST i~-1 u-INST 1 u-INST i+l next u-INST
(BRANCH)
ACCUMULATOR RESULT OF RESULT OF RESULT OF RESULT OF -
u-INST i-2 u-INST i-1 u=INST 1 next u-INST

l(—- u-CYCLE ->l

-10-

Figure 29: Conditional Branching with Program Counter Register.

3. AN EXAMPLE: A SIMPLE SCANNER

With the next address instructions we have defined
so far it is already possible to look at a practical
example. Suppose one had a large set of devices
which potentially contain a data point on a given
event, but for a given event let us say that only a
small fraction of the devices have any valid data.
Let us design a controller which would scan the
devices for data and store the data into a buffer

DONE

memory along with the address of the devices with
data, Figure 3% shows a block diagram of the
proposed scanning set-up. For simplicity let each
device be interrogated (or addressed) by a signal
sent on a cable which we will call the NEXT signal.
If the device had data it would send back the data on
a bus along with a response signal which we will call
DATA-VALID. If the device did not have data it would
send a '@' on the DATA-VALID bus. The NEXT signal
would be daisy chained from device to device so that
after each device received one NEXT signal it would
pass the next NEXT signal to the next device until
the system was reset for another scan. The NEXT
signal from the last device on the chain 1is routed
back to the scanner where it 1is called the DONE
signal so the scanner knows when to stop.

SCANNER g o
f’ DATA VALID Al 1 _____J
DATA BUS .
g-78
J45BA4
Figure 3@: Block Diagram of Scanner Set-up.

~11~

For the moment we shall ignore all details on how
the data is read into the devices, read out of the
buffer memory, etc. The scanning processor should
have two internal counters, a DEVICE COUNTER (D.C.)
to keep track of which device has valid data, if any,
and an ADDRESS COUNTER (A.C.) to point to the next }
buffer memory address to be filled. The sequence of 0

- events the scanning processor should follow is shown RESET O.C
in the -flow ctart given in figure 31 . When the : ggﬁSTNégf
processor starts, it should first reset the DEVICE »
COUNTER, reset the ADDRESS COUNTER, and send the
first NEXT signal as shown in step 4. In the next |
step, it can test the DATA VALID signal to see if any SATANL YES 4
data was found in the first device. If it is false, VALID?] WRITE
it should then test the DONE signal (step 2). If
this signal is also false, it can proceed to the next
device by incrementing the DEVICE COUNTER and sending
another NEXT signal. The processor continues by
going back to step 1, in order to see if any data is Y
found in that device. If data is found, it can write 3 5
the data along with the contents of the DEVICE STOP DONE? INCR. AL
COUNTER into the buffer memory (step 4). Then it may
increment the ADDRESS COUNTER (step 5) and try the
next device by going to step 3. The sequence NO
continues until the DONE signal is detected at step o
2, 1in which case the process goes into a STOP state 3
at step 6. INCR. O.C.
SEND NEXT
Figure 32 shows a possible implementation of a 578 L
microprogrammed processor to perform this task. The T > T~
microprogram memory contains five fields as shown in
figure 33 ., Let us examine each field in order to .
understand how the processor works. The first two Figure 31: Flow Chart of Scanning Processor.

START

EE4 4£
| 3 i)
 DONE » CONDITION NEXT } pPC REG j}}
CATA VALID]| cooe 1S ADDRFSS ‘
o . MULTIPLEXOR MULNP_EXORJ Pe——
r' Y

S

ap]

. PROGRAM
MEMORY

PIPE-LINE ' .

REGISTER Figure 32: quck Diagram of

4}243*3T | sToP Simple Scanner
NEXT

NEXT

RESET

DEVICE

\ DATA
tCEb_N__T_:;COUNTER

RESET ADDRESS CATA-IN DATA- 1IN

COUNT > COUNTER BUFFER

MEMORY
ADDRESS

START

CLocK
LCGIC

CLOCK

WRITE

1438a8

fields control the next address of the processor. next address instructions may be executed. That is,
The first field is the BRANCH ADDRESS field (bits when the ADDRESS SELECT field is '08', the '8' input
@3-3), which is four bits wide. These four bits are is selected and the next address will always come

routed from the output of the PIPELINE REGISTER to from the MICROPROGRAM COUNTER. When the ADDRESS
the 'l' input of the NEXT ADDRESS MULTIPLEXER as SELECT field is '1l', the 'l' input is selected and
shown in figure 32 . Whenever the SELECT input of the next address will always come from the BRANCH
tnis multiplexer is a logic '1', the BRANCH ADDRESS ADDRESS field of the PIPELINE REGISTER. The two
becomes the address input to the microprogram memory. conditions which must be tested to control the
The next field is the ADDRESS SELECT field which is program flow, DATA VALID and DONE, are also inputs to
two bits wide and it controls the CONDITION CODE this multiplexer. When the ADDRESS SELECT field is
MULTIPLEXER. The conditions '8' and 'l' are inputs 'gl', the DATA VALID signal is selected and the state
to this multiplexer in order that CONTINUE and JUMP of this signal will determine whether the

Bits
0-3 45 6~8 9-11 12
Branch Condition Buffer Device End
Address Code Memory Counter
Multiplexer | Control Control

The fields have the following meaning
Bits 0~3: BRANCH~ADDRESS for Branch or Jump

instruction.
Bits 4-5: CONDITION CODE MULTIPLEXER Control
00 CONIinue next address is PROGRAM
COUNTER REGISTER.
01 BRDV 1f DATA-VALID is "1°,
next address is from
BRANCH ADDRESS.
00 BRDONE If DONE is “1°,
next address is from
BRANCH ADDRESS.
11 JuMp next address is from
BRANCH ADDRESS.
Bit 6: Resets buffer memory ADDRESS COUNTER.
Bit 7: Increments buffer memory ADDRESS
COUNTER.
Bit 8: Sends WRITE to buffer memory.
Bit 9: Generates NEXT signal.
Bit 10: Increments DEVICE COUNTER.
Bit 11: Resets DEVICE COUNTER.
Bit 12: Stops Scanner.
Figure 33: Definition of Simple Scanner

Microinstructions.

MICROPROGRAM COUNTER or the BRANCH ADDRESS field is
used as the next microprogram address. The same
holds true when the DONE signal is selected when the
ADDRESS SELECT field is '18'.

The next 3 bits (bits 6-8) 1is the BUFFER MEMORY
CONTROL field. Each bit of the field is wired to a
control point of the buffer memory: if bit 6 is '1’
the ADDRESS COUNTER is reset to zero; if bit 7 is '1'
the ADDRESS COUNTER is incremented; and if bit 8 is
'1' the contents of the DEVICE COUNTER and the DATA
lines are written into the buffer memory.

The next 3 bits (bits 9-11) is the DEVICE CONTROL
field. BAgain each bit of this field is wired to a
control point dealing with the devices: if bit 9 is
'1' a NEXT signal is sent out; if bit 10 is '1l' the
DEVICE COUNTER is incremented; and if bit 11 is 'l’
the DEVICE COUNTER is reset to zero. The last field
contains only one bit (bit 12), when it is ‘1’ the
processor stops.

The program can now be written to perform the scan
operation., Let us go through the flow chart shown in
figure 31 again. At step @, we want to reset the
ADDRESS COUNTER so bit 6 should be '1'. We don't
want to increment this counter or write to the memory
so bits 7 and 8 should be 'B'. Thus the BUFFER
MEMORY CONTROL field should be set to '109'. The
DEVICE COUNTER should be reset and a NEXT signal sent
out, so the DEVICE CONTROL field should be set to
'181'; i.e. bits 9 and 11 should be set to 'l' and
bit 12 to ‘@', The next microprogram address can be
the next sequential instruction, so the ADDRESS
SELECT field should be set to '@8' in order to
execute the CONTINUE next address instruction. It
doesn’t matter what the BRANCH ADDRESS field 1is set

-12-

to since they are not used for the CONTINUE
instruction, so we set it to '98808'. Thus the
contents of the first microprogram location (address
£080) should be as shown in figure 34 .

0-3 4-5 6-8 9-11 12
micro Branch Cond. Buffer Device End
prog. Address Code Memory counter
addr Mult. control control
0000 0000 00 100 101 [¢]
0001 0100 0l 000 000 0
0010 0110 10 000 000 0
0011 0001 11 000 110 0
0100 0000 00 001 000 0
0101 0oLl 11 010 000 0
0110 0000 11 000 000 1
gl1l

: unused
11i1

FPigure 34: Program of Simple Scanner.

The next step tests the DATA VALID signal and
leaves the buffer memory and device control alone.
Thus both the BUFFER MEMORY CONTROL and DEVICE
CONTROL fields both contain '06d°'. The ADDRESS
SELECT field is set to '8l1' to route the state of the
DATA VALID signal to the NEXT ADDRESS MULTIPLEXER.
The BRANCH ADDRESS field is set to the next micro-
program address if DATA VALID signal is present which
we will set to ‘8102°, i.e. step 4. Thus the
contents of microprogram memory at location @821
should be as show in figure 34 .

At microprogram location 991d, which will be the
instruction if the DATA VALID tests fails, we should
test the state of the DONE signal. The only changes
from the previous instruction is that the ADDRESS
SELECT field needs to be set to 'l@' and another
BRANCH ADDRESS needs to be chosen. Thus, if location
9119 is to correspond to step 6 on the flow chart
(figure 31), the contents of the microprogram memory
at location 0818 should be as shown in figure 34 .

At microprogram location @911, which will be the
next instruction if the DONE test fails, we should
increment the DEVICE COUNTER, send a NEXT signal, and
go back to the DATA VALID test at location 1. Thus
we set bits 9 and 18 to 'l', the ADDRESS SELECT field
to '11' and the BRANCH ADDRESS field to '8601°' as
shown in figure 34 .,

The remaining steps are programed in a similar
fashion. The whole program is summarized in figure

.34, Only six microprogram instructions were needed

to program this processor to control the simple
scanning operation. Locations 7 through 15 of the
microprogram memory are unused.

4. WHY MICROPROGRAM

Up to this point, we have studied the basics of
microprogramming and a simple excmple. We are now
ready to evaluate whether we should or should not
build our logic subsystems using the microprogramming
technique. Keep in mind that most logic subsystems
have two parts: one is the part under control and
the other is the part which generates the timing

-13-

sequences. One can identify these parts in logic
systems as small as the simple scanner or as large
the central processing unit of a major computer

system.

An advantage 1in a microprogrammed system is its
very clean and orderly structure. The simple scanner
described in the previous section is an example. All
control points within the processor are controlled by
the microprogram memory. All registers, counters
etc., can be synchronized by the same clock which
makes it much easier to find faults in the circuit.
The system is very easy to describe and document.

There are still other advantages, especially for
larger, more complex logic systems. One advantage is
the ease in which changes can be made. Suppose, for
example, that one wanted to change the simple scanner
so that it would stop scanning if the buffer memory
became full. From the ADDRESS COUNTER one could
obtain a signal indicating that the maximum buffer
memory address had been attained. This signal could
be routed to an additional input to the CONDITION
CODE MULTIPLEXER and the program could be changed so
that the buffer full condition would be tested after
the ADDRESS COUNTER was incremented. Although this
change would require changing some circuits such as
the CONDITION CODE MULTIPLEXER, the change is quite
simple to understand and implement compared to
changing a hard wired or random logic design for the
simple scanner. The more complex a logic subsystem,
the easier it is to change a microprogrammed circuit
compared to its random logic counterpart.

It is also much easier to add special features to
a microprogrammed logic system, One desirable
feature, for example, would be self diagnostic
programs in the microprogram memory. These features
probably require only additional memory space and a
few extra circuits. But for a random logic design,
the additional logic required to perform diagnostics
may be as complex or difficult as the original logic
itself.

There will be cases, however, where the random
logic design is more suitable for a logic subsystem.
The microprogrammed system may be slower, for
example. The random logic design avoids the
difficulty of programming the ROM. But if one is to
use tne LSI microcircuits, which we will be studying
in the following sections, one must use the
microprogramming technique.

5. LSI MICROCIRCUITS

There is an increasing number of LSI microcircuits
becoming available. They all fit very well into a
microprogrammed architecture. This is clearly
becoming the "nouveaux vague" in bipolar technology.
Most of these components are intended to be used in
building computers and computer peripherals where the
speed of bipolar circuits is necessary. In our field
of High Energy Physics, we are not in the business of
puilding computers but these microcircuits can
nevertheless simplify how we build many of our logic
systemrs.

The circuits can be classified by what part of a
conputer they are intended to be used. The following
list shows some of the computer parts that currently
available as LSI microcircuits:

Arithmetic/Logical Elements
HMicroprogram Control

Rirnlar MamAarsy

Interrupt Control

Input/Output Elements

Direct Memory Access Control
Timing Control

Shifting Elements

Status Storage and Multiplexing
Memory Address Control

Program Logic Arrays

For the logic designer in High Energy Physics, one
would layout a sketch of the control task he wants to
build. Then scan through the semiconductor catalogs
to find which circuits have the capabilities of parts
of his logic diagram. Frequently, one would find
that only a fraction of an LSI circuit is needed to
implement his circuit and it would seem wasteful to
use it. On the other hand the cost of implementing
the logic in traditional SSI and MSI may exceed the
cost of this LSI circuit and the amount of space
required on the circuit board may be reduced by using
the LSI microcircuit.

There is clearly not enough time in these lectures
to cover all of the above kinds of LSI microcircuits.
We will therefore study only two of them, the
microprocessor slice and the microsequencer. These
two in some ways are the most interesting and the
most different from the older SSI and MSI circuits.

5.1 THE BIPOLAR MICROPROCESSOR SLICE

The microprocessor slice 1is designed to be the
principal arithmetic/logic element within the central
processing unit of a computer or peripheral
controller. The most widely wused microcircuit of
this type is the 2981a. It was introduced by
Advanced Micro Devices in the summer of 1975 and has
since been manufactured by most of the bipolar semi-
conductor manufacturers. Figure 35 shows a block
diagram of this circuit. All the data paths shown
are four bits wide. To form a processing unit with a
larger number of data path bits, the circuit has
appropriate inputs and outputs to allowed it to be
cascaded with other slices. Thus four such slices
can form a unit with 16 bits of data path and eight
slices forms a unit with 32 bits of data path.

Let us start studying this microcircuit with its
arithmetic logic unit (ALU). An ALU performs
arithmetic and logical operations on two inputs,
called R and S in figure 35, and produces an output
which is called F. The ALU of the 2901 can perform
one of eight functions on the operands R and S. The
function is selected by three input signals which
form a three bit function code which is part of the
microinstruction of the circuit. That is, the user
provides a three bit binary number, from @ through 7,
on three input pins of the circuit to control which
function 1is to be performed. There are three
arithmetic functions: -

R PLUS S,
S MINUS R, and
R MINUS S;

and five logical functions:

R OR S,

R AND S,

NOT R AND S,

R EXCLUSIVE-OR S, and
R EXCLUSIVE~-NOR S.

The R and S operands are each outputs of separate
multiplexers. The R MULTIPLEXER has as inputs the
DIRECT DATA inputs (D), the output of the A~LATCH, or

—14~

I
MICROINSTRUCTION
DECODE

RAM 3 RAMg l l l l I l l l i
‘1 N
S I [

Q3 ¢+ Qo
SHIFTER
| F[a
A ADDR A = L

{READ) 16 SHIFTER-
8 ADDR — REGISTERS SELECTOR

hapepa 4 Y
(READ/WRITE) MA «UB
1
CLOCK ——] LATCH |—é—sf LaTCH | »| Q-REGISTER
LOGIC
'@ Figure 35: Block Diagram of 2981A

[] Microprocessor Slice.

I1
DIRECT
DATA ————]
INPUT D A 2 'z & s |la

- > = < > <

[MULTIPLEXER] [MULTIPLEXERT

115 ik

N 1" 8- FUNCTION ALU

::r

OUTPUT
ENABLE

MULTIPLEXER

DATA QUT FLAGS

CARRY - OUT, OVERFLOW
ZERO, NEGATIVE, G, P

287982

a binary '8'. The D input allows the user to bring Thus we realize that in order to control this
in data from outside the circuit, say from memory, so microcircuit we must provide every small detail to
four pins of the circuit is used for this purpose. get what we want. We are truly programming at the
The significance of the A-LATCH and the usefulness of microinstruction level.

providing a '@’ as one of the inputs will be seen in

the following paragraphs. The S-MULTIPLEXER has for Let us now return to the A~ and B-LATCHes. Within
its input also a binary '@' and the A~LATCH as well the 2981A there are 16 registers which are organized
as the output of a B~-LATCH and the contents of a as a "dual port memory". That is, two addresses can
O~REGISTER. With these inputs there are twelve be read from the memory simultaneously. The 16 word

combinations possible for the R and S operands. memory is called a register file and the user
Twelve is not a nice number, so the manufacturer has provides a four bit address to select one of 16 words
chosen eight of these twelve that he feels are the in the register file for each port of the memory.
most useful. That is, three bits of the micro- These are called the A and B addresses. The clock

instruction are used to select which combination of signal input to the circuit is used to hold the
the R and S inputs are used as operands to the ALU. outputs from these two ports in a special kind of
These three bits is called the Source Code of the register called a latch. Thus the output of the A-

microinstruction. and B~LATCHes are the contents of the register at the
A and B addresses when the clock signal makes the
The Source Codes can be best seen in a matrix of transition from low to high.
the Source Code versus the Function Code as is shown .
in figure 36 . Note that the entries of this matrix, " The are two sets of results from the ALU. The
look very much 1like computer operations, i.e. first is called F in the figure 35 and it is the

A PLUS B, A ORB, DMINUS A, BPLUS 1, etc. It is result of the function on the two operands. The
essentially a sufficient set to allow the user to do other is a set of status conditions indicating if the

any operation on two binary or logical guantities. operation resulted in a carry out of the most
Note also that some of the elements of ~this matrix significant bit, a 2's complement arithmetic
have two entries. The difference between these overflow, a zero result, or a negative result. In

entries 1is whether the CARRY-IN to the least addition to these status signals the ALU incorporates
significant bit of the ALU is '1' or '@'. For the the standard Carry-Look-Ahead techniques to speed up
addition of two numbers the CARRY-IN should be '8', operations over many slices which requires the
but for subtraction in 2's complerment form, the generation of the Carry Generate (G) and Carry
CARRY~IN to the least significant bit should be '1'. Propagate (P) signals.

-15~-

12,1,0 Octal] 1 2 3 4 6 7
ALU
Source
A Q A. B 0,Q O.B 0, A D, A D.Q D.O
Octal | ALY
54,3 | Function
Ch=L A+Q A+8 Q B A O+A D+Q ¢ D
-l 0 R Plus § i
Ch=H ™Q+1 |A+B+1] Q+!1 B+1 At1l 'D+A+1/D+Q+1! D+1
Ch=L Q-A-1{B-A-1 Q-1 8 -1 A-1 A-D-1/Q-D-1 -D-1
1 S Minus R
Ch= Q-A B-A Q 8 A A-D ! Q-0 -D
JE R : —]
Cp= A-a-1|a-8-1! -a-1 ! -8-1 1] -A-1 |D-A-1:D-Q-1| D-1
2 R Minus §
Cp= A-Q A-8 -Q i -8 -A D-A D-Q D
3 RORS AVQ AVE Q 8 A DVA bDva D Flgure 36: Sogrce Operand and
L o ALU Function Matrix.
4 R AND S AANQ AANB 0 0 o} DAA DAQ 0
5 RANDS AAQ ANAB Q 8 A oAA oAQ]
6 R EX-OR S ANMQ ANB Q B A OVA DwQ D
7 |REX-NORS| AwQ AY8 Q 8 A O¥A D vQ B
. 8—~78
+ = PLUS; - =MINUS; V=0R; A=AND; ¥=EX-OR. 345843
] RAW Q-REG. AAM Q
MicRO CODEr 1 FUNCT!ION I FUNCTION i Y SHIFTER SHIFTER
]
[P PR PR g:;‘ 5 stk Losd | Shin Loed GuTPUT Ramg | Ramy| Qg | a3
+
L L L o I x NONE NONE F=Q F x x x x
L i L] T l[X NONE x NONE F x x x X
L H L 2 1 NONE F—8 x NONE A X x x X
LoHow 3 NONE fep B NONE . R Figure 37: 2901A Destination Codes.
H L L ! 4 E OOWN Fiz-@ DOWN az—q F Fa INg Qo N3
mowoom s oowe £128 x NONE 4 Fo | ™Ny | Q9 | X
HoOH L L 6 ! up 2F —8 ue 20~0 3 Ng | Fy Ny | Q3
[] H M l 7 l 814 2F-8 X NONE £ Ng F3 x Q3
9-78 3458A42
Generally, one would like to do something with the It is controlled by providing it with a micro-

results of the ALU operation. The data paths within
the 2901 provide us with many possibilities. First,
the results may be written back into the register
file. At this point we start running out of pins
available on the circuit package, so the manufacturer
has made a compromise in that when results are
written to the register file they are written into
he register of the B address. But before writing
into the B address the 2991A has the capability of

shifting the results to the right or to the left. It
can also write the results to the Q—~REGISTER. We can

also output the results on four pins of the package
or we can use these output pins to output toe
contents of the A~LATCH. Of all the possibilities
the manufacturer has again used 3 pins on the package
to allow us to select one of eight possibilities.
These 3 bits are called the Destination Code of the
microinstruction and these codes are shown in figure
37 . Note that one of the Destination Codes doesn't
write the results anywhere (Code 1). It is a
No-Operation code (NOP) and is useful when we want to
do a COMPARE operation without destroying the
contents of any register. Note also that there are
Destination Codes where the Q-REGISTER is shifted
while shifting the results written into the register
file. The purpose of this code is to allow the user
to program the circuit to do multiplication,
division, and double length shifts and rotates.

In sumary, a microprocessor slice can form the
core of a central processor unit within a computer.

instruction which it uses internally. In the case of
the 2991A, the microinstruction must be at least 18
bits in length: 3 bits for the Source Code, 3 bits
for the Function Code, 3 bits for the Destination
Code, 1 bit for the CARRY-IN to the least significant
bit and four bits each for the A and B addresses.
Although the 2991A is the most widely used micro-
processor slice today, there are others on the market
which may be more suitable in certain applications.
Table 1 lists all the microprocessor slices currently
available with a few comments on their individual
features. For more details, the reader is referred
to the specification data sheets from the various
manufacturers, or to some of the numerous articles in
some of the journals(l,2].

5.2 AN EXAMPLE WITH THE 2901A

An example of the use of the 2991A is a micro-
processor called the 168/E which was developed by my
colleagues and me at S.L.A.C. Figure 38 is a block
diagram of the processor. As with other designs
using it, the 29¢1. forms the core of the data
processing and there are circuits around it to form a
complete microprocessor. For the 168/E, the choice
of the circuits around the 2981 was based on what
would be easy to program. For this purpose some
assembly code written for the IBM 378 computer was
used as a model for the kind of operations that would

L 4

£

16—

TABLE 1
List of Microprocessor Slices Currently Available.
Part no. Originated by Second Source (bits) Tech. Comments
2901A Advanced Fairchild, 4 S-TTL most popular slice, dual-port
Micro Devices Monolithic architecture
Memories,
National,
Raytheon,
- Motorola, and
Signetics.
2903 Advanced National. 4 S-ITL Improved version on 290lA,
Micro Devices. eanndable register file, built-in
multiply, divide, etc.
6701 Monolithic ITT 4 S-TTL similar to 2901A
Memories.
3002 Intel Signetics 2 S-ITL accumulator orientated
9405 Fairchild Signetics 4 S-TTL smaller package
C-MOS
745481 Texas Inst. none 4 S-TTL similar to 2903, but has no
register file
10800 Motorola Fairchild 4 ECL has no register file
SBP0400 Texas Inst. none 4 IIL very slow
. B] [% MUX
D-MUX CLOCK [TABE 3 CTRL.
AR I
PROGRAM INSTRUCTION 8-290!A's
DECODE / REGISTER WITH CL.A. AND | | D-REGISTER
CONTROL . Ags |SHIFT CONTROL 3 7y
O 16 15
BRANCH TMsHw
-
MEMORY 184 HALF/FULL
WORD
PROGRAM DATA BUS | I MULTIPLEXOR
16
15 Y BUS A 6 J 32 MAR
< CTRL,
PROGRAM —Z }2
COUNTER ADDER /¢
MULTIPLEXOR 4 4 /
1S r
y MEMORY
JoLock | STATUS 32 P
PROGRAM <[, |REGISTER| ,fBRANCH S—
COUNTER i~ BRANCH [Z1CTRL 6
LOGIC X .
bs Figure 38:
Y v 3Ys Block Diagram of 168/E Microprocessor.
3— 3-5 MEMORY 4 _|
BUFFER BUFFEEI ADDRESS |
[REGISTER
32
ﬂ_—_‘
PROGRAM DATA
24 16 MEMORY MEMORY 16 32 3
- BUS BUS
MSHW LSHW
A I
-1
MULTIPLEXOR [‘r
16 {16 £16 ¥ig
v W¢ 4 w h 4
DATA ADDRESS DATA
4 IN IN
ADDRESS
24 BIT MEMORY 32 BIT MEMORY
DATA QUT .
DATA DATA
ouT ouT

435987

_17-

be necessary to have a useful processor. An example
of a typical DO LOOP found in many of the programs we
wished the microprocessor to be able to handle is
shown below.

LOOP C @,ED(9,18)
BL GOTE
- R 9,1
BNM LOCP

Let us consider how this piece of code is executed
on the 168/E in order to understand the functions of
the circuits around the 2991A microprocessor slices.
The first IBM instruction is a memory to register
comparison. The memory address is calculated as a
sum of the contents of registers 9 and 18 plus the
contents of a 12 bit displacement field (ED) which is
part of the instruction. The IBM 378 has 16
registers and so does the 2941A. Thus a one to one
identification of the registers in the 370 with those
of the 168/E was made. We have already studied the
2901A well enough to see how one can add the contents
of two registers together and output the sum. This
would be the first step the 168/E should do in order
to follow the example of the IBM 370 program, That
is, a 168/E microinstruction with the 2981A Source
Code 1, Function Code 8, and Destination Code 1 as
can be seen from figures 36 and 37 .

The next step would be to add to this sum the 12
bits of the displacement field, The 168/E performs
this operation in a separate microinstruction with an
additional Adder circuit. In this microinstructiocn,
12 bits of the microprogram memory are routed to one
input to the adder. The other half of the adder is
connected to the output of the 2961A. The sum of
this addition is strobed into a MEMORY ADDRESS
REGISTER whose output is connected to the address
inputs of the data memory. The access time of the
data memory is fast enough for the data memory output
to be strobed into the D~REGISTER at the end of the
microcycle.

Tne last step of the COMPARE instruction is to
make the comparison between merory, which has now
teen strobed into the D~REGISTER of the 168/E, and
the contents of register @. This step is performed
by another microinstruction in which the instruction
for the 2901A uses its D input as one of the ALU
source operands, i.e. Source Code 5, Function Code 1,
and Destinaticn Code 1.

The next IBM 370 instruction 1is a conditional
branch in which the next instruction is to be taken
from an eddress labeled 'GOTE', if the result of the
comparison was negative. Thus to the 168/E micro—
instructions we have already defined, we must add
conditional branch microinstructions. The 168/E uses
a binary counter to control the next microinstruction
instruction address. As in figure 208, the flow of
the pregram execution can be altered by asserting a
signal on the LOAD pin of the counter circuit. To
control the conditions with which one wants to
branch, the IBY 378 is again used as a model. The
conditional branch instruction of the IBM 370 has a 4
bit field called the mask which specifies what
conditions are reguired to force a branch. The
conditions after arithmetic operations are a zero
result, a negative result, a positive result, and a
arithmetic overflow result. The arithmetic
instructions sets one of these conditions to be true
after the operation. If the condition which was set
matches with a set bit in the mask of the conditional

branch instruction, then the branch 1is taken,
otherwise the next sequential instruction is
executed. ’

The status outputs of the 2981A do not exactly
correspond to those of the IBY 378 but with a few
logic circuits one can produce identical codes. Thus
the 168/E conditional branch micreinstruction has
been set up with the same 4 bit mask as the IBY 373.
If there 1is a match between the 4 bit mask and the
modified 29¢1Aa status bits then the program counter
is put into the LOAD state. Fifteen bits from the
microprogramn memory contain the branch address which
is routed to the parallel load inputs of the program
counter.,

The rest of the instructions of the DO LOCP can be
emulated by the 168/E with the microinstructicns
already described, The structure of the 168/Z is
typical of structures in which the 29¢1A forms the
core of data processing., We can identify the parts
which are under control and the part which provides
the timing sequences. The result of the structire
chosen among the many that were possible is that it
easy to translate the IBM 370 instructions into the
microinstructions of the 168/E. In fact if one now
looks at the 1list of the primary IBM 340/370
instructions, as shown in table 2, one sees that an
impressive number of the ' instructions can be exactly
emulated by the 168/E. These instructions turn out
to be about the same subset of the instructions that
the IBM FORTRAN H complier generates when dealing
with 2 or 4 byte integer or 4 byte logical variables.
The Floating Point instructions are executed in a
separate processing unit not show in figure 33 .
Thus the 168/E microprocessor can be programned in
FORIRAN by using the IBM FORTRAN compiller to generate
machine instructions, then using a program which runs
on a IBM computer to translate these machine
instructions into the microinstructions of the 168/E.
This is possible because the 2901A has the same
number of registers as the IBM 360/379 and it can
perform all the integer arithmetic and 1logical
operations of the IBM 360/37¢ (in fact, it can do
some operations that the IBM computer can not).
Also, the circuitry around the 2921A makes a
processor with the same form of memory addressing and
conditional branching. Thus either the 29¢1A with
some circuitry around it forms a very powerful
microprocessor or the IBM 368/37¢ is a very simple
computer depending on your point of view.

We have already mentioned speed of execution as
one of the frequent requirements for logic systems in
High Energy Physics. So one can ask what 1is the
speed of the 168/E? The 168/E was implemented with
mostly Low Power Schottky circuits whichi have a
typical gate propagation delay of 5 nsec, yet the
speed of execution of a program is only between 1.3
and 1.8 times slower than the IBM 370/163. Compared
with typical minicomputers, the 168/E speed is about
3 to 12 times faster. And what about the cost? The
main cost of the 168/E processor is the eight 2901As
which is about 150 US$S. The other circuits, circuit
board, sockets, and power supply add less than
another 3068 USS. Thus the user of these LSI
microcircuits can build for himself very powerful and
fast processors with standard "off the shelf"
components at a price he can afford.

5.3 THE MICROPROGRAM CONTROLLER CIRCUIT

Let us now take a look at another LSI micre—

circuit. Another important circuit which has
recently become available is the microprogram
sequencer. These circuits are designed to serve as

the next address control of the microprogram memory.
They incorporate most the circuitry we discussed in
section 2.2. Essentially every bipolar semi-
conductor manufacturer has a circuit of this type.

~18-~

Partial List of IBM 360/370 Instructions

Type of Second Data Operand*
Operation REG HW FW MUL IMD CHR DEC
Fixed LOAD LR LH L LM
- Point LTIR LCR LA red
Aréthmecic LPR LANR
an STORE STH ST ™
Logical ADD AR 4 AH A s stc# AP#
ALR AL# Z
SUBTRACT SR 4 SH S 1 5%5#
SLR SL#
COMPARE CR CH cpi#
CLR# CL# CLI# CLCH#
MULTIPLY MR MH M MP#
9]\'&1 DE DR D DP#
o]
EX-OR XR X X1¢ Xxc#
SHIFT SRA SRDA
SLA SLDA
SRL SRDL
SLL SLDL
Braaching BALR BAL
BCIR BCT
BCR BC
BXH
BXLE
Floating LOAD LER’ LDR" LE’ LD"
Peint LTER’ LTDR"
LCER’ LCDR"
LPER”’ LPDR"
LNER LNDR"
STORE STE’ STD"
ADD AER” ADR" AE” AD"
AUR’ AWR" AU’ AW
SUBTRACT SER’ SDR" SE’ Sp"
SUR’ SWR" Sy’ SW"
COMPARE CER” CDR" CE’ cp"
MULTIPLY MER’ MDR" ME’ MD"
DIVIDE DER’ DDR" DE” DD"
HALF HER" HDR"

*Type of Secqu Data Operand:

RE Register (4 byte)
0w Half Word EZ yte)
W Full Word (4 Byte)

MUL

CHR Character

1 Byte)
DEC Decimal

4 Not implemented in 168/E

Multiple Words (4 or more Bytes)
IMD Immediate §operand from instruction word)

, lmplemented with optional Floating Point Processor
! Igglemented with optional Floating Point Processor as
R

L*6 rather than REAL¥%4

It is interesting to study one of them in detail in
order to both have a basic understanding of their
features and to illustrate some of the techniques
used in microprogramming. A list of the currently
available microsequencers 1is shown in table 3 .
Unlike the case of the microprocessor slice, none of
these circuits seems to have taken a clear lead in
popularity. As an example of a microsequencer to
study, I have taken the newest and probably the most
interesting one: the 2919.

Figure 39 is a block diagram of the AM2918 made by
Advanced Micro Devices. From this £figure one
recognizes the same basic structure that we used in
the figure 27; 1i.e., the NEXT ADDRESS MULTIPLEXER,
the incrementer, the MICROPROGRAM COUNTER register,
and the condition cede input (CC). To the basic
structure of figure 27 some additional features have
peen added in order to make the circuit of more
general utility. The NEXT ADDRESS MULTIPLEXER, for
example has two additional inputs: one from a 5 word
last~in first-out program counter STACK and the other
from a register which can also be used as a counter.

The D input to the multiplexer come directly from
the data inputs pins on the chip., They are intended
to be used for both the BRANCH ADDRESS field of the

PIPELINE REGISTER and the output of the MAPPING ROM
as is shown in figure 48 . In order to chose be-
tween these two possibilities the 2918 provides two
outputs, PL and MAP which enable the outputs of the
PIPELINE REGISTER or the MAPPING ROM respectfully.
An additional OUTPUT-ENABLE signal is available for
another register and/or ROM called VECT. The 2910
will generate a signal on only one of the OUTPUT-
ENABLE (OE) signals at a time, thus the three sources
for the D inputs are effectively multiplexed. 1In the
2919 the NEXT ADDRESS MULTIPLEXER is really-a six

input circuit, with 3 internal and 3 external
sources.
Let us consider each of the NEXT ADDRESS

MULTIPLEXER's inputs. First the MICROPROGRAM COUNIER
input is identical to the one we studied in figure
27 . The Carry~In (CI) should be set to 'l' to make
the incrementer add one to the current microprogram
address.

A new feature is the R REGISTER/COUNTER. It has
several uses which illustrate some of the other
techniques one can use with the microprogramming. As
a register, it is an auxiliary storage location to
the BRANCH ADDRESS field of the program memory
PIPELINE REGISTER. It is be loaded from the Direct

-19-

TABLE 3

List of Available Microprogram Sequencers.

Part no. Originated by Second Source (bits) Tech. Comments
2909 Advanced Raytheon, 4 S~TTL Slice
Micro Devices. National.
-
2911 Advanced Raytheon, 4 S-TTL Slice, similar to above
Micro Devices. National. with additional features
2910 Advanced none 12 S-TTL With Condition Code logic
Micro Devices.
3001 Intel Signetics 9 S-TTL Complex but saves
memory space
67110 Monolithic none 9 S-TTL With ALU shift matrix
Memories
745482 Texas Inst, none 4 S-TTL Slice, simple
8X02 Signetics. none 10 S-TTL Very simple
9406 Fairchild none 4 S-TTL Slice
9408 Fairchild none 10 IIL Condition Code Register
D
2
CLOCK
L REGISTER
I / =
COUNTER STACK FuLL
POINTER
ZERO
DETECTOR 5 WORD
x 12 BIT
| E— STACK
—louT
IN
_ S e | Figure 39: Block Diagram of 2910
___Egi:j:::>TEST i L} # PROGRAM Microsequencer
CTEN MULTIPLEXER COUNTER -REGISTER

INCREMENTER

INSTRUCTION
PLA

> 12 BIT DATA PATH
——» CONTROL PATH

OE
600 7
%G
5B

N oUTPUT
ENABLES

2a38A8

Cata (D) inputs whenever the LOAD signal is received.
At a later time in the program one could execute a
corditional two way branch or subroutine CALL to
either the D input or the R REGISTER.

an alternative branch to the normal one. This
structure may be used for example in certain
iterative instructions such as multiplication and
division.

The R REGISTER can also be used as a counter.
This allows one to repeat an instruction or a series
of instructions in the following way. The counter is
initially loaded with a value. During certain
microinstructions the counter is decremented by one.
When the value of the counter reaches zero, a ZERO
DETECT signal is generated. Other microinstructions
can use this signal in place or in conjunction with

in order to select the

the CC input of the circuit
next address. Thus when the counter has been

decremented to zero one can have an instruction take

As with ordinary programming, there are advantages
in using subroutines for certain sections of the
program so that they need not repeated in the memory
as many times as they are used. In order to make a
subroutine CALL one needs to add two capabilities to
the hardware structure we have already studied.
First, when we make a BRANCH to the subroutine, we
must have the capability of storing the address to
which we should return after the subroutine execution
is completed, and second, we must be able to return
to that stored address.

-20~

MACRO
INSTRUCTION
2910
ol lerEN _‘;_]
MAPPING| 12 Lo RTB n+0|CONTROLI R TO
ROM [Al PIPELINE = SYSTEM
— 72 | o3 i2 REGISTER|4 CONTROL
OE < o B y
pa vy o-n o1 MICRO~ cP
PL PROGRAM
_ VECT MEMORY
cc MAP 12
- L cp —l A+~ paTA
! PIPELINE| |0 To
0l REGISTER| ¢ SYSTEM
{ 7 cp_ Ot CONTROL
-O—E ILl . .
VECTOR|!2 il Figure 48: Typical Control Unit
M%&%yﬁ ? with 2912 Microsequencer
A
CONDITION 3
+~CP CODE
INTERRUPT jt{wi? f
CLK CP REGISTER EN [
?-78 I l T 3458A41
The 5 word STACK in the 2919 with its connection controlled. Thus we have really 6 Dbits of
to the MICROPROGRAM COUNTER and to the NEXT ADDRESS instruction input, although some of the 64

MULTIPLEXER gives us both capabilities. It is used
in conjunction with the STACK POINTER which is a
up/down counter that always points to the last data
entered into the STACK file, When the counter is
incremented it is called a PUSH and conversely when
it is decremented it is called a POP. A subroutine
CALL is executed in the following way. The sub-
routine address is selected as the next microprogram
address from either the D input or the R REGISTER.
The MICROPROGRAM COUNTER will thus be address of the
subroutine CALL plus 1. The STACK POINTER is first
PUSHed and then the MICROPROGRAM COUNTER is stored
into the top of the STACK. The next cycle will be
from the first location of the subroutine. The
subroutine RETURN 1is executed by selecting with the
NEXT ADDRESS MULTIPLEXER the output of the STACK.
Thus the next instruction to be executed will be one
instruction beyond the instruction which made the
subroutine CALL. At the end of the RETURN cycle the
STACK is POPed to complete the linkage. Since the
STACK contains 5 words, the subroutine CALLS can go
£o 5 deep; beyond that the highest level subroutine
return address will be lost.

The circuit has a number of parts which need to be
controlled. The output of the NEXT ADDRESS
MULTIPLEXER must be selected from one of the four
inputs or forced to zero; the STACK must be PUSHed,
PCred, HELD, or ZERCed; the R REGISTER must be
LCZDed, DECRemented, or HELD; and one of the OUTPUT-
ENAZLES may generated. Of all the combinations
possible, the manufacturer has selected 16 and he
provides a four bit input so the user can provide a
binary code for which possibility he wants, These
four bits are called the 'microprogram controller
instructioa’. In most applications, four bits of
outgut from the microprogram memory are used to
provide tais instruction in the same way that bits 4
and 5 were used in the simple scanner example. Some
of the instructions use the CC input for.conditional
branching., In When the CC input 1is 'true' it is
called the PASS state and when it is ‘'false', it is
called the FAIL state. In addition the CONDITION
CCDE ENABLE (CCEN) input can be used to force the
internal condition code (TEST) to PASS. Finally, the
LOAD input of the R REGISTER can be independently

combinations are redundant.

We will now go through all 16 of the
instructions. This exercise will se2rve
the special technigues cne can use in micropro-
gramming. It 1is also rather interesting and fun.
For each instruction weé shall consider the state of
the TEST input and the contents of the R REGISTER/
COUNTER since they may alter the resultant operation
of the microinstruction. When their states do not
affect the operation, it is called a "Don't Care"
condition which is indicated by an "X" in the figures
that are to follow. The microinstruction may affect
the contents or status of the STACK, next address

2912's micro-
to illustrate

source, the R REGISTER/COUNTER, and/or the OUTPUT-
ENABLES. If the operation does not affect any one of
them it is called a "No Change" condition which is

indicated by "NC" in the figures. As we study the
2910's microinstructions, one can try to imagine an
analogy with FORTRAN statements that control the
program flow,

5.3.1 Continue.

Instruction 14 is a Continue (CONT) which is the

simplest instruction. The next address source 1s
always the contents of the MICROPROGRAM COUNTER. One

should recall that the MICROPROGRAM COUNTER is always
the current address output of the 2918 plus one. As
show in figure 41, the status of the TEST input and R
REGISTER don't influence the operation, the STACK and
R REGISTER den't change their value and the PIPELINE
REGISTER is enabled. The Continue instruction is
probably the most frequently used instruction since
it is used when a series of microinstructions are
executed.

5.3.2 Jump Map.

Instruction 2 is a unconditional branch
instruction in which the Mapping ROM OUTPUT ENABLE is
turned on. It is called a JUMP MAP (JMAP). The

~21~

14 CONTINUE {CONT) 3 COND JUMP PL (CJP)
CONT 50 CONT 50
CONT 59 CONT 511
CONT 52 CJP 52
CONT 53 CONT 53
- CONT 54 30 CONT
31 CONT
REG/CNTR ADDRESS _ REG/CNTR ADDRESS (-
TEST| DATA |STACK | SOURCE |REG/CNTR |OE TEST| OATA |STACK | SOURCE |REG/CNTR |OE
PASS D :
_____ e g
X X NC PC NC PL AL X NC P3¢ NC PL
~-n “-n L
Figure 41: 2918 Instruction 14 . Figure 43: 2914 Instruction 3 .

status of the TEST input and the R REGISTER are Don't force the internal condition to Pass. Doing this

Care, The next address source is always taken from changes the CJP instruction into a unconditional jumg

the D input. In the example given in figure 42, to the contents of the PIPELINE REGISTER. The CJIP

microinstruction 53 has the JMAP instruction. When instruction corresponds to the FORTRAN statement

it appears in the PIPELINE REGISTER, the MAPPING ROM "IF(...) GO TO".

is enabled and its output is routed through the 2914

to the address input of the microprogram memory. If

the contents of the MAPPING ROM were 90, then the

program flow would jump from 53 to 99 as shown. In 5.3.4 Conditional Jump Vector.

FORTRAN the JMAP instruction is analogous to the GO

TO statement. An almost identical instruction is instruction 6
which 1is illustrated in £figure 44 . The only
difference is that the VECT OUTPUT-ENABLE 1is turned
on instead of the PIPELINE OUTPUT-ENABLE.

2 JUMP MAP (JMAP)

6 COND JUMP VECTOR (CJV)

CONT 50
CONT 51
CONT 52
JMAP 53 90 CONT CONT 50
91 CONT CONT 5t
CIV 52
CONT 53 20 CONT
CONT 54 21 CONT

TREG/CNTR ADDRESS | r__
EST; DATA |STACK | SOURCE |REG/CNTR | OF

X X N
¢ 0 NC o Map REG/CNTR ADDRESS __
L TEST| DATA |STACK | SOURCE |REG/CNTR | OE
%ﬁ%? X NG "?%f‘_ NC VECT
Figure 42: 291% Instruction 2 .

10ea1

Figure 44: 2912 Instruction 6 .
5.3.3 Conditional Jump Pipeline.

Instruction 3 is a conditional branch instruction
in which the PIPELINE REGISTER OUTPUT-ENABLE is 5.3.5 Jump Zero.
turned on. It is called Conditional Jump Pipeline
(CIP) ana it is illustrated in the example given in A very special instruc¢tion is instruction 8. In
figure 43 ., 1If the status of the TEST input is Fail, this instruction the output of to 2918 is forced to a
then the next address source 1is taken from the binary zero, thus it is called the Jump Zero (J2)
MICROPROGRAM COUNTER. S0 in the example, the program instruction. In the same instruction the STACK is
flow would be from instruction 52 to instruction 53. cleared and the PIPELINE REGISTER is enabled. The
On the other hand, if the status of the TEST input is intention behind this instruction is to put the

Pass, then the next address source is the D inputs. microsequencer into a well defined state when the
Thus the program flow in the example goes from power is first turned on. It is easy for the user to
instruction 52 to instruction 3¢. The contents of add circuits so that on power up the microinstruction
the R REGISTER are Don't Care and the STACK and R @ is issued to the 2914. Figure 45 illustrates this
REGISTER are unaffected. One should recall that one instruction.

can use the Condition Code Enable (CCEN) |, input to

O JUMP ZERO (J2)

CONT O
CONT 1 93 JZ
CONT 2
- REG/CNTR ADDRESS —
) TEST| DATA | STACK | SOURCE |REG/CNTR |OE
X X CLEAR o NC PL

Figure 45: 2918 Instruction @ .

5.3.6 Conditional Jump R/PL.

Instruction 7 is the first example which uses the
R REGISTER. It is a Conditional Jump R or PIPELINE
REGISTER (JRP) and 1is illustrated in figure 46 .
when the TEST input is PASS, the next address source
is from the D inputs with the PIPELINE REGISTER
enabled. When the TEST input is FAIL, the next
address source is from the <contents of the R
REGISTER. One should recall that the R REGISTER may
be loaded in any instruction by generating the LOAD
signal. This instruction is effectively a two way
Jump, since the next sequential address is never the
next address source. In FORTRAN it would correspond
to two statements: an "IF(...) GO TO" followed by
"GO TO". In a microprogram with the 2918, the two
way branch is only one instruction.

7 COND JUMP R/PL (JRP)

CONT 50
CONT 51
CONT 52
JRP 53
CONT 70 80 CONT
CONT 71 81 CONT
[REG/CNTR ADORESS |
{TEST| "DATA |STACK | SCURCE |REG/CNTR |{OF
&?6?& L__D___]
i X NC e NC O |PL

s1a20

Figure 46: 2918 Instruction 7 .

5.3.7 Conditional Jump Subroutine Pipeline.

Subroutine CALLs can be made with instruction 1.

As shown in figure 47, the Conditional Jump
Subroutine (CJSs) instruction is actually a
cenditional subroutine CALL. If the TEST input is
FAIL, the next address scurce is the contents of the

MIZR0PROGRAM COUNTER which is the next sequential
instruction. If TEST input is PASS, then the next
address source is the D input with the PIPELINE
REGISTER enabled. The STACK COUNTER is PUSHed and
the current contents of the MICROPROGRAM COUNTER are
stored in the STACK, thus saving the address to which

ratuirn chAan1A ha madn Mo~ fal f=}
instruction can be modified to a uncenditional
subroutine jump by using the CCEN input to force the

+ho calrmtkina

=22~

1 COND JSB PL {CuS)

CONT 50
CONT 5§ STACK
CJs 52 90 CONT
CONT 53 91 CONT
CONT 54 92 CONT
CONT 55 93 CRTN
i REG/CNTR] "ADDRESST T]
TEST| DATA STACK . SOURCE ;REG/CNTR O |
'PASS | PUSH | ; .
TFAIL [Ne T ‘»:Qé‘"'»L NE Ji”%

asean

Figure 47: 2918 Instruction 1 .

TEST input to the PASS state. The FORTRAN equivalen
of this microinstruction would be "IF(...) CALL".

5.3.8 Conditional Return.

The return from subroutine 1is executed by
instruction 10. As shown in figure 48, it is also a
conditional instruction. If the TEST input is FAIL,
the next address source 1is taken from the
MICROPROGRAM COUNTER with no other change. If the
TEST input is PASS, then the next address source is
the contents of the top of the STACK and at the end
of the microcycle the STACK POINTER is POPed. Again
this instruction can bé modified to a unconditional
return by using the CCEN input. The FORTRAN
equivalent would be "IF(...) RETURN".

10 COND RETURN (CRTN)

STACK
CONT 50
CONT 51 90 CONT
s 52 91 CONT
CONT 53 92 CONT
CONT 54 93 CRTN
CONT 55 ¢ 94 CONT
95 CONT
96 CONT
D 97 CRTN
REG/CNTR ADDRESS _
TEST| DATA | STACK | SOURCE |REG/CNTR |OE
PASS POP | STACK
e N e NG |PL
FAIL NC PC

Teseant

Figure 48: 2918 Instruction 10 .

5.3.9 Conditional Jump Subroutine R/PL.

Another method for making subroutine CALLs is the
Conditional Jump Subroutine Register/Pipeline (JSRP)

A~ ~heers i Figieea AQ TF +hAa MDOM Swmpaad 305 DATT
then the next address source is taken from the
contents of the R REGISTER. If the TEST input is

~23~

5 COND JSB R/PL (JSRP)

CONT 50
CONT 51
CONT 52
N -
CONT 53 STACK
JSRP_54
CONT 90 55 80 CONT
CONT 91 56 81 CONT
CONT 92 57 82 CONT
CONT 93 83 CONT
CRTN 94 84 CRTN
REG/CNTR ADORESS —
TEST| DATA | STACK | SOURCE |REG/CNTR |OE
PASS
----- X PUSHF--2--1 nC |eL
FAIL R

Figure 49: 2910 Instruction 5 .

PASS, then the next address source is taken from the
D inputs with the PIPELINE REGISTER enabled. In
either case the STACK POINTER is PUSHed and the
contents of the MICROPROGRAM COUNTER is stored at the
top of the STACK. Thus the TEST input determines
which subroutine is CALLed and not whether one CALLs
a subroutine or not. The FORTRAN equivalent 1is
somewhat more complex then the ones we have seen so
far. It might be written as "IF(...) CALL X"
followed by "IF(.NOT.(...)) CALL ¥Y". In some other
high level programming languages this micro—

" instruction might be expressed as a "IF(...) THEN

CALL X ELSE CALL Y". Again we see that in the
microprogram it is only one instruction.

5.3.128 Load Counter and Continue,

The "Load Counter and Continue" (LDCT) instruction
provides an alternate method of loading the R
REGISTER. As shown in figure 58, the next address
source is always the MICROPROGRAM COUNTER Jjust like
the Continue instruction. The R REGISTER is loaded
from the D inputs with the PIPELINE REGISTER enabled.
tlany microprocessors could use this instruction as
the only method of loading the R REGISTER thus
eliminating the need to control separately the LOAD
input to the 2918. In FORTRAN, this microinstruction
might be equivalent to setting the end point of a DO
LOOP as will be seen below.

5.3.11 Repeat Pipeline Counter Not Egual to Zero

The next instruction is the first example of using
the R REGISTER as a counter, It is called "Repeat
Pipeline Counter Not Equal To Zero" (RPCT). If the
contents of the R CCUNIER are not equal to zero then
the next address source is taken from the D inputs
with the PIPELINE REGISTER enabled. At the end of
the cycle, the R COUNTER is also decremented by one.
If the contents of the R COUNTER is 2zero, then the
next address source is taken from the MICROPROGRAM
CCUNTER and the R COUNTER is 1left unchanged. As
illustrated in figure 51, the RPCT instruction can be
used to force execution of the same micro—
instruction many times by letting the contents of the
PIPELINE REGISTER be egual to the address of the
instruction. This may be used, for example, to do

{2 LD CNTR & CONTINUE (LOCT)

CONT 50
LDCT 51 COUNTER
CONT 52
CONT 53

REG/CNTR ADDRESS P
TEST| DATA |STACK | SOURCE | REG/CNTR GOt
-~ AL A MEANICL

o
|

X X NC PC LOAD PL

i
|

1esas

Figure 5@: 2918 Instruction 12 .

9 REPEAT PL CNTR # O (RPCT)

CONT 50 f COUNTER
LoCT 51
RPCT 52
CONT 53
REG/CNTR ADDRESS | iy
TEST| DATA | STACK | SOURCE |REG/CNTR | GE |
L-=Q__ No b-4 PC____NC_ _
X #0 NC) oec "t

Figure 51: 2910 Instruction 9 .

iterative multiplication or division micro~
instructions. The combination of 2918 micro—
instructions 12 and 9 look very much like the FORTRAN
statements

DO 10 1=1,N

(one or more statements)
12 CONTINUE

5.3.12 Push/Conditional Load Counter.

Another instruction which loads the R REGISTER/
COUNTER is show in figure 52 . It is in fact a
conditional load of the counter and it is called
"Push and Conditional Load Counter" (PUSH). If the
TEST input is FAIL, then the R REGISTER/COUNTER is
not loaded while if it is PASS then it is loaded from
the D inputs with the PIPELINE REGISTER enabled. = In
either case the next address source is from the
MICROPROGRAM COUNTER, the STACK COUNTER is PUSHed and
the MICROPROGRAM COUNTER is stored at the top of the
STACK. The purpose of this instruction will not be
clear until we study the next and 1last 4 micro~
instructions.

4 PUSH/COND LD CNTR (PUSH)

CONT 50 STACK

CONT 51

PUSH 52

CONT 53 \\\“~\\~(:> REGISTER/

- COUNTER

REG/CNTR ADDRESS _
TEST| DATA |STACK | SOURCE |REG/CNTR |GE
PASS | |_1oan _|
Fa o x |eusi| pc -REPpL

ussaze

Figure 52: 2919 Instruction 4 .

5.3.13 Repeat Loop, Counter Not Equal 8.

The next instruction works with the PUSH to
perform a microprogram DO~LOOP as 1is shown in figure
53 . It is called "Repeat Loop for Counter not equal
to zZero" (RFCT). The instruction is a conditional
jump using the contents of the R REGISTER/COUNTER as
the TEST input. If the contents are not equal to
zero, then the next address source is taken from the
top of the STACK and the R COUNTER is decremented.
In other words the program branches back to the
beginning of the loop. When the contents of the
COUNTER becomes zero, then the next address source is
taken from the MICROPROGRAM COUNTER and the STACK is
POPed while the COUNTER is left unchanged. 1In other
‘words the program drops through the bottom of the
loop. Thus we see that the R REGISTER/COUNTER is
used like the running index of the DO LOOP. The
STACK is used in this case to save the beginning of
the LOO? rather then for saving the subroutine return
acdress. In fact the STACK can be used as a
corbination of both up to 5 levels of loops and
subroutines. The combination of the PUSH and RFCT
microinstructions looks very much like the FORTRAN
stataments:

Do 19 I=1,N

(one or more statements)
12 CONTINUE

8 REPEAT LOOP, CNTR#0 (RFCT)

STACK
PUSH 50
REGISTER/
CONT 51 COUNTER
CONT 52
CONT 53
RFCT 54
CONT 55
REG/CNTR ADDRESS _
TEST| DATA |STACK | SOURCE |REG/CNTR |OE
L _=0__1pPop ! PC__| _NC__|
X #0 [’NC STACK pEc ~ Pt
Figure 53: 2910 Instruction 8 .

24—

5.3.14 Test End of Loop.

Another example of looping is an instruction
called "Test End of Loop" (LOOP). It operates the
same way as the RFCT instruction except that the
Condition Code input is usad as the TZST ingut rather
than the contents of the R REGISTER/COUNTER and the
counter is not affected. ilote that in the exampl
shown in figure 54 if one never got a TEST input F&SS
status one would have an infinite loop. Note also
that although the PUSH instruction was used at
instruction 51 in order to save the beginning address
of the loop, the R REGISTER/COUNTER is not used in
the loop. In FORTRAN, the LOOP microinstruction
looks like a simple "IF(...) GO TO".

13 TEST END LOOP (LOCP)

CONT 50 /@ STACK

PUSH 51

CONT 52

CONT 53

CONT 54

CONT 55

LOQP 56

CONT 57

REG/CNTR agoress| 1
TEST DATA STACK | SOURCE |REG/CNTR jOE
Pass] leoe | ec | 1
FAIL NC STACK

= TR

Figure 54: 2918 Instruction 13 .

5.3.15 Conditional Jump PL and POP.

Each PUSH of the STACK must be followed somewhere
by a POP in order to not to lose the subroutine
linkage. Instruction 11 has been designed to enable
one to conditionally Jjump out of a loop and restore
the STACK at the same time. It is called the
"Conditional Jump Pipeline and POP" (CJPP) and it is
illustrated in figure 55 . If the TEST input is FAIL
the next address source is the MICROPROGRAM COUNTER
and the STACK is left unchanged. If the TEST input
is PASS, then the next address source is taken from
the D input with the PIPELINE REGISTER enabled and at
the same time the STACK is POPed.

5.3.16 Three-Way Branch

The next and last instruction is the most complex
of all. It uses both the TEST input and the contents
of the R COUNTER to determine one of three next
address sources. It is appropriately called "Three
Way Branch" (TWB). It is also used with the PUSH
instruction as shown in figure 56 . As long as the
TEST input is FAIL, the instruction operates like the
RFCT, that is, it the microprogram branches back to
the address contained at the top of the STACK as long
as the R COUNTER is non—zero. When the R COUNIER
reaches zero, however, the next address source is
taken from the D inputs with the PIPELINE REGISTER
enabled. If the TEST input is PASS, then the program
drops out of the loop by taking the next address
source from the MICROPROGRAM COUNTER and the STACK
POINTER is POPed. In this case the R COUNTER is
decremented or unchanged depending on its value.

11 COND JUMP PL 8 POP (CJPP)

PUSH 50
CONT 51
CONT 52
CONT 53
CJPP 54 80 CONT
LOOP 55 81 CONT
CONT 56 82 CONT
REG/CNTR ADDRESS _
TEST| DATA |STACK | SOURCE |REG/CNTR |OE
PASS POP. | D
e I R ety NC |PL
FalL NC PC

e

Figure 55: 2918 Instruction 11

15 THREE WAY BRANCH (TwB)

-

CONT 62 69 STACK
PUSH 63 REGISTER/
™ COUNTER
CONT 64
TWB 65 @ 72 CONT
CONT 66 73 CONT
REG/CNTR ADDRESS _
TEST| DATA |STACK | SOURCE |REG/CNTR |OE
=0 NC
PASS POP | PC p————— PL
#0 DEC
#0 NC STACK DEC
FAIL frm—— e 2o 2o PL
= POP D NC
Figure 56: 2918 Instruction 15 .

-25-

This strange instruction turns out to be quite
useful. If in a loop one were searching for a data
point in memory, for example, then the loop could end
when either the data point 1is found (TEST input
becomes PASS) or by reaching a certain limit (R
COUNTER becomes zero). Note that the in the two
ending conditions the program goes to two different
locations. Thus when compared to a FORTRAN program,
this instruction is 1like having an "IF(...)GO TO"
statement as the last statement in a DO-LOOP.

5.3.17 Summary of 2910.

This completes the study of the microinstruction
of the 2910. To the FORTRAN programmer these
instructions should not seem too strange at all.
There is a big difference, however, in the manner in
which the instructions are executed. With a FORTRAN
program running on a normal computer the compiler has
generated various machine instructions to get the
desired program flow. With the microprogram
sequencer, the program flow is controlled within one
microinstruction. Hence we see that microseguencers
are designed to make microprogram fast and efficient
is memory space by minimizing the number of
instruction steps to control the program flow. Cne
must remember that besides the PIPELINE REGISTER bits
which control the microsequencer, there other bits
which control that which is being controlled. The
sequencer does not do useful data manipulation
itself.

REFERENCES

1. [1] Martyn Edwards and Erik Dagless,
Microprocessors 1, 487 (1977).

2. [2] Phillip M. Adams, SIGMICRO Newsletter vol 9
no 1, 23(1978); and vol 9 no 2, 7(1978).

