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Microprogramming is an inherently elegant method 
for implementing many digital systems. It is a 
mixture of hardware and software techniques with the 
logic subsystems controlled by "instructions" stored 
in a memory. In the past, designing microprogrammed 
systems was difficult, tedious, and expensive because 

the available components were capable of only limited 
number of functions. Today, however, large blocks of 
microprogramsmd systems have been incorporated into a 
single I.C., thus microprograsuning has become a 
simple, practical method. 

1. INTRODUCTION 

1.1 BRIEF HIS'IORY OF MICROCIRCUITS --- 

The first question which arises when one talks 
about microcircuits is: Wnat is a microcircuit? The 
answer is simple: a complete circuit within a single 
integrated-circuit (I.C.) package or chip. The next 

question one might ask is: What circuits are 
available? The answer to this question is also 
simple: it depends. It depends on the economics of 
the circuit for the semiconductor manufacturer, which 
depends on the technology he uses, which in turn 
changes as a function of time. Thus to understand 
what microcircuits are available today and what makes 
them different from those of yesterday it is 
interesting to look into the economics of producing 
microcircuits. 

The basic element in a logic circuit is a gate, 
which is a circuit with a number of inputs and one 
output and it performs a basic logical function such 
as AND, OR, or NOT. Figure 1 shows the basic gate 
used in the popular TTL technology. It perforzms the 
NAXD function that is only when both inputs are TRUE 
does the outpit .&come FALSE. The truLLh table which 
describes the operation of the gate would then look 
like that shown in figure 2 . From this basic gate 
one can form other logical functions. For example, 
the NZT function can be generated by tying the two 
inputs toge'her as shown on the left of figure 3 . 
It is usually represented by the INVEKIER symbol as 
shown on the right of the figure. Another example is 
the OR function which may be generated from the NAND 
gates as shown on the left of figure 4 and usually 
represented by the symbol shown on the right of this 
figure. It can be shown that all the Boolean 
operations can be generated with combinations of the 
basic NAND gate. 

The cost of a integrated circuit depends on the 
number of gates required to perform the desired 
function, but the cost of a gate depends on the 
number of gates in the chip. Figure 5 is a plot of 

Figure 1: Basic !I% Gate 

A input B input 

false false 
false true 
true false 
true true 

c output 

true 

l--l true 
true 
false 

Figure 2: Truth Table for NAND Gate. 

Figure 3: Logical NOT Circuit. 

Figure 4: Logical OR Circuit. 
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Figure 5: Integrated Circuit Cost Curve. 
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the cost per gate versus the number of gates per 
chip. There are three distinct regions on this 
curve. The labor intensive region is where the labor 
of assembly, testing, and processing the order, as 
well as the fixed company overhead dominate the costs 
of the chip. In this region the manufacturer can 
double the number of gates on the circuit without 
changing its cost, thus the cost per gate would drop 

- a factor of two. The silicon intensive region is the 
technically di?ficult region, where the manufacturer 
produces a small percentage of functioning circuits 
for his effort and hence the cost per circuit begins 
to rise rapidly. The flat central region is the 
region, where the cost of the circuit is proportional 
to the number of gates on the circuit. It is the 
optimal region for producing circuits. 

As the technology of producing circuits improved, 
what was technically difficult at one time became 
standard practice at a later time. Figure 6 shows 
the cost curve for three periods of time. These 
periods COKKeSpOnd roughly to three generations of 
microcircuit manufacturing. The optimal region in 
the first generation, Small Scale Integration (SSI), 
had three to six gates per circuit. The circuits 
that were prcduced were simple logic functions and 
the technically difficult was a flip-flop. An 
example of an SSI integrated circuit package is the 
7400 as shm in figure 7 . It is simply fOUK 
independent NAND gates requiring 3 pins each. With 
the supply voltage and ground pins it makes the 
standard 14 pin package still in use today. . 
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counters, multiplexers, decoders, registers, etc., 
which were of general enough use that the manu- 
facturer could sell them in large enough quantities 
to make a profit. An example of an MS1 integrated 
circuit package is the 74157 as shown in figure 8 
(a). It is called a Quad 2-Input Multiplexer since 
it multiplexs one of two inputs to.one output four 
times over. A single Select input controls all four 
channels. With one pin left over to make it an even 
number, the manufacturers have added a Gate to fcrce 
the outputs to Zero and one has a standard 16 pin 
package. The conventional symbol for this circuit is 
also shown in figure 8 (b). 

EXAMPLE OF MS INTEGRATED CIRCUIT PACKAGE 
74157 WAD 2 INPUT MULTIPLEXOR 
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Figure 6: I.C. Cost Curve versus Time. e-1, (b) >.>..I. 

Figure 8: Example of MS1 Integrated Circuit Package, 
(a) Circuit, (b) Symbol. 

Figure 7: 7400 Integrated Circuit Package 

When the optimal region for manufacture became 20 
to 50 gates per circuit, the second .generation of 
microcircuits was born: Medium Scale Integration 
@ISI) . The semiconductor manufacturers faced a 
problem as to what circuits to produce, since the 
simple extrapolation of more simple logic functions 
per circuit runs into some problems such as too man!7 
pins per package. The problem was solved b:l 
producing larger blocks of digital systems such as 

A few years ago, the optimal region of manufacture 
became 200 to 500 gates per circuit, Large Scale 
Integration (LSI), and the semiconductor manu- 
facturers were again faced with the problem of what 
circuits to provide with these many gates. The 
problem was solved by producing an even larger block 
of digital systems so that we now find that 
microcircuits are arithmetic/logical processor 
elements, microprogram sequencers, direct memory 
access controllers, etc. 

The LSI microcircuits will be the topic of these 
lectures. They offer the best economy because large 
subsystems of digital circuits are available on a 
single I.C. package. Within a given type of tech- 
nology (e.g. Tl!L, ECL, MOS, etc.) they often produce 
faster systems because there is less lost of speed 
with interconnection between packages. They also 
reduce the amount of circuit board real estate 
required for a given logic system and large Systems 
are less expensive to make. 
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With ISI microcircuits, the semiconductor manu- 

facturers have made available large digital sub- 
systems within a single I.C. But they still had to 
provide a means by which the circuit was flexible in 
its use in order to be able to sell enough of them to 
make a profit. The flexibility of these circuits was 
obtained in part by designing them to be used in a 
microprogramd type of architecture. That is to 
WY t that the function a circuit performs is con- 
trolled by an n&r of input signals which form an 
instruction word. The instruction word is assumed to 
coma from the microprogram memory. The manufacturer 
also is making circuits for use where there is 
potentially the largest volume of users, which for 
digital systems is probably the computer and computer 
peripheral manufacturers. In this market, the micro- 
programmed technique of logic design offers many 
advantages as we will see in these lectures. 

High Energy Physics is not a high volume user for 
semiconductor manufacturers. If we are to make use 
of LSI, we must, in general, bend our needs to those 
circuits which are already commercially available. 
In addition, in order to profit from the LSI micro- 
circuits, we must learn the microprogram method of 
implementing digital systems, and we must be able to 
understand the digital subsystems that are available 
as a single I.C. In the following sections, we will 
first study the basics of microprogramming from a 
point of view which is biassed by the microcircuits 
that are commercially available. Then we will study 
in some detail a microprogrammed controller with a 
High Energy Physics application. Finally we will 
study two of the most important LSI circuits which 
have become available. 

2. ,BASICS OFMIC~PKXZAMMING 

2.1 COFFEE VENDING MACHINE --- 

To understand the basics of microprogramming let 
us take a simple example: an automatic coffee 
vending machine. Figure 9 is a block diagram of such 
a machine which has two basic parts; the machine 
hardware and the sequential control logic. The 
coffee machine hardware is the system to be con- 
trolled. It contains the values and solenoids that 
release the water, coffee, sugar, etc. which are 
needed to produce the desired result: a cup of 
coffee. The sequential control logic is the system 
controller. It sends signals to the hardware in the 
correct order and timing. It starts the hardware 
into operation when it receives a signal from the 
coin detection logic and alters the sequence 
according to what kind of coffee has been requested 
via the front panel push buttons. 

The seguence control can be imagined as a series 
of steps, each lasting a fixed length of time, say 
l/2 second. The list of steps might be as shown in 
figure 10 . The coffee machine sequence controller 
could be implemented using combinations of flip-flops 
and one-shots as shown in figure 11 . This approach 
is commonly called hard wired or random logic, and is 
typical of how designs have been done in the past. 
The advantage of this approach is that it uses the 
minimum number of logic gates and it is relatively 
simple for a given sequence. 

The coffee machine sequence control may also be 
implemented with a binary counter and a read only 
memory (ml) as shown in figure 12 . In this figure, 
only one of the sequences has been implemented. The 
binary counter serves to count the steps and the w3M 
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CREAM RELEASE 

Figure 9: Block Diagram of Coffee Vending Machine 
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Figure 10: Coffee Machine Combined Sequence List. 

serves as a programmable decoder to produce the 
required signals at each step. Note that the input 
address of the memory is the output of the counter 
and that each bit of the memory's output is used 
directly as one of the signals for the hardware under 
control. In order to do the black coffee sequence, 
one would want the contents of the memory to be as 
shown in figure 13 . A binary '1' corresponds to 
sending a signal, while a binary ‘0’ corresponds to 
not sending a signal. A coffee machine sequence 
controller implemented in this way is said to be 
microprogrammed. 

In order to include the other kinds of coffee one 
could increase the size of the counter from 5 bits to 
7 bits and the size of the memory from 32 locations 
to 128 locations as shown in figure 14 . The encoder 
circuit generates a binary code from 0 to 3 depending 
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ONE SHOT CUP 

RELEASE 
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Figure 11: Random Logic Implementation of Coffee Vending Machine. 

SIMPLE SEOUENCER 

CLOCK 

COIN 
- 

I READ ONLY 
MEMORY I 

CUP RELEASE - 
WATER ON L 
COFFEE RELEASE - 
SUGAR RELEASE - 
CREAM RELEASE - 
BUSY LIGHT - 

Figure 12: Microprogrammed Coffee Vending Machine. 

on which of the push buttons was activated. This 
code is then used as the two high order bits to the 
collnter when it is loaded. The loading of the 
counter is under control by one additional bit of 
output from the memory. Thus, for example, at memory 
address 1 the load bit may be turned on so that the 
next address of the sequence will be either 2, 34, 

66, or 98 depending on the output of the encoder. 

BIT 
NUMBER 

~123456 
IDLE 
STAFT 

;A, = SIGNAL ON 
= SIGNAL OFF 

'X' = DON'T CARE 

E%~NS 25-31 
ARE NOT USED 

Figure 13: Memory Contents of Coffee Vending Machine 
for Black Only. 
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Figure 14: Microprogrammed Coffee Vending Machine 
with Multiple Sequences. 

2.2 MICRoSEQUENCERS GENERAL 

The coffee machine sequence controller is an 
example of a microprogrammed processor. The 
processor's memory contains two fields; the load 
control bit and the other bits to control the 
hardware signals. A generalized version of this 
processor is shown in figure 15, where the encoder 
has baen replaced by an instruction register. The 
OP-COCE field of the instruction register contains 
the high order bits of the starting address of a 
sequence. The push buttons of the coffee machine 
hz?e been replaced by the machine instruction. 

I r t 

Figure 15: Basic Microsequencer. 

In a more general processor, one may have 
sequences of widely different length and the circuit 
shown in figure 15 will lead to large areas of unused 
memory. The introduction of another memory, the 
MAPPING m+l, between the OP-CODE and the program 
counter will allow the flexibility of starting a 
squence at any arbitrary address. The OP-CODE is 
used as the address of the iWPING ROM and the output 
of the MAPPING ROM becomes the starting address for 
the program counter. This MAPPING ROY is shown in 
figure 16 and it is another example of using memory 
as a programmable decoder. 
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CLK 

Lzr---J CiNTROL SIGNALS - 

Figure 16: Microsequencer with MAPPING FUXl. 

With the microsequencer shown in figures 15 or 16, 
the flow of the program can only be the next 
sequential address until another sequence is started 
when the LOAD bit is present. This sort of flow is 
show schematically in figure 17 . At instruction 50 
of the figure, for example, the next instruction can 
only be instruction 51. In this sequential flow the 
processor is said to execute the CONTINUE (CONT) 
instruction. 

50 

51 

52 
i 

53 

9-n t 3.58*4, 

Figure 17: Continue Instruction. 

One useful way to add flexibility to the micro- 
processor would be to allow the program the jump to 
an address which is contained in the microprogram. A 
method of doing this is shown in figure 18 . A 
multiplexer has been added between the output of the 
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Figure 18: Microsequencer with JUMP logic. 

MAPPING ROM and the input of the counter. One input 
of the multiplexer is the MAPPING Rcx4 while the other 
comes from a part of the output of the microprogram 
memory. The latter is called the BRANCH ADDRESS 
field of the microprogram memory. One additional bit 
from the microprogram memory is routed to the SELECT 
input of the multiplexer so that when the bit is in 
one level the output of the Mapping ROM is routed to 
the input of the counter and when the bit is in the 
other level the BRANCH ADDRESS field of the micro- 
program memory is routed to the input of the counter. 
This bit is called the ADDRESS SELECT (ADR-SEL) field 
of the microprogram memory. The flow of the micro- 
program can now be altered as shown in figure 19 . 
After execution of instruction 53, the next 
instruction is 90. The processor is said to execute 
a JUiQ (JMP) instruction at location 53. 

Figure 19: JUMP instruction. 

A very important feature to add to this basic 
processor would be the ability to alter the flow of 
the program depending on the results of a previous 
operation. This is called CONDITIONAL BRANCHING and 
it can be implemented as shown in figure 20 . The 
LOAD input to the program counter is now taken from 
the output of multiplexer which is called the 
CONDITION CODE MULTIPLEXER. One of its inputs is 
selected by part of the output of the microprogram 
called the CONDITION CODE field. Note that one of 
the inputs to the multiplexer is a logic '0'. When 
this input is selected, the LOAD input to the counter 
is always '0' so that the counter goes to the next 
sequential address. Another input to the multiplexer 
is a logic '1'. When this input is selected, the 
counter will always be loaded. These two inputs are - 
necessary in order that this processor can execute 
the CONTINUE and Ju;4P instructions, respectively. 
When the third input to the CONDITION CODE MULTI- 
PLEXER is selected, the counter will either go to the 
next sequential instruction if the conditional input 
is '0' or be loaded if the conditional input is '1'. 
Thus we have added the CONDITIONAL BRANCH instruction 
to the processor. An example of this flm is shown 
in figure 21 at instruction 53. 
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Figure 20: Microsequencer with Conditional 
Branching. 
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Figure 21: Conditional Branch Instruction. 
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At this point it is appropriate to take a look at 

the timing of the processor. Figure 22 shows the 
time sequence of the signals within the processor. 
Each microinstruction starts with the leading edge 
(i.e. the '0' to '1' transition) of the clock 
signal. When this signal is received by the micro- 
program counter, it increments its contents by one. 
The change of its output does not occur instan- 

-taneously, however. Each logic gate within the 
counter circuit has a response time called its 
"propagation delay". Thus it is only some time after 
the counter receives the clock signal that its output 
switches to the next address. For example, with a 
standard Schottky !J.TL counter the delay from clock to 
output is 13 nsec. 

The microprogram memory also has a delay between 
the time an address is presented to its input and 
valid data is available at its output. This delay is 
called the "access time" of the memory and for 
Schottky 'ITL memories it is on the order of 50 nsec. 
The period of time from the generation of a new 
address until the output of a memory is steady is 
called the "fetch" time. Note that for the micro- 
processor we are studying, the total fetch time is 
equal to the sum of the propagation time of the 
counter and the access time of the microprogram 
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I t U-CYCLE - 
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memory. 

After the fetch time, the process under control of 
the microprogram memory starts its execution. Again 
this process is only finished after a delay called 
the "execute time" which may be on the order of ljti 
nsec depending on what is being done. At the end of 
this period we have the results which may now be 
saved at the leading edge of the next clock signal in 
say an accumulator. Thus the minimum crcle time of 
the microprocessor is determined by the sum of the 
fetch and execute times. With the next edge of the 
clock signal the processor starts the next 
instruction. 

Let us consider the microprocessor timing when a 
conditional branch instruction is executed. In the 
timing shown in figure 23 microinstruction i 
generates a result upon which we wish to 
conditionally branch. The result of this instructicn 
is available during execution oE microinstruction 
i+1, thus we should make microinstruction i+l the 
conditional branch instruction. At the time of the 
third microcycle, we can start microinstruction i+2 
or the instruction of the'branch address depending on 
which path the result has taken us. 

1 
--I 

u-INST i 
ADR 
FETCH 
u-INST i 

RESULT OF 
u-INST i- I RESULT OF 

I 

RESULT OF 
1 u-INST i u-INST i+l 

u-INST i+1 u-INST i+2 
ADR ADR 
FETCH FETCH 
u-INST i+l u-INST-i+2 

EXECUTE EXECUTE EXECUTE 
u-INST i u-INST i+l u-INST i+2 

Figure 22: Sequential Timing with Program Counter. 
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u-INST i+l 
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FETCH 
next u-INST 

EXECUTE 
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Figure 23: Conditional Branch with Program Counter. 
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One of the frequent requirements of logic systems the execute. The condition upon which we want to 
in High Energy Physics is speed. With speed in mind, branch would not be ready until the end of the 
one could ask why do we use up a whole microcycle to execute time. It would be at that time that the 
do a branch instruction ? So let us consider for a condition would begin to propagate through the 
moment how the timing would change if we attempted to CONDITION CODE MULTIPLEXER and be presented to the 
do the conditional branch in the same microcycle as LOAD input of the counter. Before the clock signal 
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can be asserted at the counter, we must wait a period 
of time called the "set-up" time so that the counter 
can do the LOAD or COUNT function correctly. Using 
standard Schottky TTL ,circuits, the sum of the 
multiplexer propagation delay and the counter set-up 
time would add another 35 nsec to the minimum micro- 
cycle time. If the microcycle time is constant, then 
this additional time would be added to all micro- 

- instructions ether they contained a branch or not. 
Thus depending on the number of branches in a program 
and the execute time, program execution time may be 
faster with the separate branch and execute 
instructions. 

A much more important improvement can be made in 
program execution speed by using the technique of 
"pipelining". Note that in figure 22 that during the 
FETCH time the process under control is effectively 
idle since it is waiting for the output of the 
microprogram memory to become steady. Also during 
the execute time, the microprogram memory is 
effectively idle since it is merely holding its 
output steady for the execution. By inserting a 
register at the output of the microprogram memory as 
shown in figure 24, one can overlap or "pipeline" the 
fetch and execute times. One can see how this works 
by looking at the timing in figure 25 . With the 
leading edge of the first clock signal, the 
microprogram counter advances to microinstruction i 
and after the FETCH time the output of the micro- 
program memory is presented to the input of the 
PIPELINE REGISTER. As with the counter, one must 
wait a set-up time before the clock can be asserted 
to the register. When the clock does arrive, the 
microprogram memory output is stored in the PIPELINE 
REGISTER and after its propagation delay, the micro- 
instruction i is presented at the output of the 
register so that the execution of that instruction 
can begin. With this same clock edge, the micro- 
prcqram counter advances to microinstruction i+l and 

I 
<-- u-CYCLE -> 

I 

the FETCH of this instruction begins. Thus the FETCH 
of one instruction is done simultaneously with the 
EXECUTE of the previous instruction. The minimum 
microcvcle time is now determined by the longer of 
theFtiH or EXECUTE times rather then the sum of 

r 

Figure 24: Microsequencer with Pipeline Register. 
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Figure 25: Sequential Control with Program Counter and Pipeline Register. 

The circuit shown in figure 24 leads to faster 
program execution. It has one difficulty with 
conditional branch instructions however. Consider a 
conditional branch on the results of instruction i as 
shown in the timing diagram in figure 26 . With the 
first microcycle we have the FETCH of micro- 
instruction i and with the second, we have the FETCH 
of microinstruction i+l and the EXECUTE of micro- 
instruction i. The results of this instruction are 
ready to be tested in the third microcycle so clearly 
microinstruction i+l should be the conditional branch 
instruction. At the end of the third cycle we begin 

the FETCH of the next microinstruction which is 
either microinstruction i+3 or the microinstruction 
located at the BRANCH ADDRESS. The problem is: what 
can the execution unit do during the fourth micro- 
cycle? The answer is that it can only do something 
which does not depend on which path the procjram has 
taken after the branch instruction. In most cases, 
nothing useful can be done by the execution unit 
during this cycle so that the microinstruction after 
the branch instruction (microinstruction i+2 in this 
case) becomes a NO OPERATION (NOP), which is a waste 
of execution time. 
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Figure 26: Condition Branch with Program Counter and Pipeline Register. 

The circuit of the processor can be changed to fix 
this branching problem without slowing down the 
program execution as is shown in figure 27 . The 
microprogram counter has been replaced by an 
incrementer and a register, whose output is routed to 
an additional input to the address multiplexer, and 
the CGNDITION CODE MULTIPLEXER has been replaced by 
some combinational logic. The address multiplexer is 
now routed directly to the address inputs of the 
microprogram memory. This multiplexer is called the 
NEXT ADDRESS MULTIPLEXER. An incrementer is a 
circuit whose output is equal to its input plus one. 
The new register is called the MICROPROGRAM COUNTER 
even though it is no longer a counter. In the 
circuit shown the current microprogram address plus 
one is stored into the MICw)PRxR%l COUNTER with each 
clock edge. Thus when the MICROPmRAM COUNTER is 
selected as the output of $he NEXT ADDRESS 
MULTIPLEXER, one has the CONTINUE instruction in 
effectively the same way as when we forced a COUNT of 
the counter in figures 15, 16, 18, 20, and 24 . A 
jump instruction is accomplished by selecting the 
BPANCH ADDRESS as the output of the NEXT ADDRESS 
MgLTIPLEXER and a conditional branch instruction is 
accomplished by selecting either the BRANCH ADDRESS 
or the MICROPRXRAM COUNTER depending on the state of 
the CONDITION input. 

The timing of this circuit for non branching 
instructions appears to be the same as the previous 
one as is shown in figure 28 . The minimum 
microcycle time is still determined by the longer of 
the FETCH or EXECUTE times. But the conditional 
branch timing is math improved as is shown in figure 
29 . With the first microcycle in figure 29 we have 
the FETCH of microinstruction i and with the second 
we have the FETCH of microinstruction i+l and the 
EXECUTE of microinstruction i as before. With the 
third microcycle we begin to test the results of 
microinstruction i so clearly microinstruction i+l is 
the branch instruction. The condition input selects 
the next address during the third microcycle so that 
the FETCH of the next microinstruction begins and 
ends during this cycle. Thus with the leading edge 
of the clock of the fourth microcycle, the next 
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next u-INST 

L 
L 

t . 
MICROPROGRAM 

ElEWRY 

NEXT 
ADR 

BRANCH 

SELECT 
ADR OTHER 

1 I I - 

PIPELINE REG 
I / I 
I I i 

J C3NTROL' 
SIGNALS 

:LOCK 

CLOCK 

Figure 27: Microsequencer with Microprogram Counter 
and Incrementer. 

microinstruction is stored into the PIPELINE REGISTER 
and the EXECUTE of this instruction begins. At the 
same time the next+1 instruction address is stored 
into the MICROPflCGRAM COUNTER so that the FBICH of 
this instruction can begin. Thus even with a 
conditional branch instruction, this circuit for a 
microprocessor makes efficient use of microcycle 
time. It is this type of circuit that we will find 
to be commercially available as a LSI microcircuit 

when we study microsequencers. 
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Figure 28: Sequential Control with Program Counter Register. 
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Figure 29: Conditional Branching with Program Counter Register. 

3. AN ?ZXMlPLE:ASIMPLE SCANNER 

With the next address instructions we have defined 
so far it is already possible to look at a practical 
example. Suppose one had a large set of devices 
which potentially contain a data point on a given 
event, but for a given event let us say that only a 
small fraction of the devices have any valid data. 
Let us design a controller which would scan the 
devices for data and store the data into a buffer 

memory along with the address of the devices with 
data. Figure 30 shows a block diagram of the 
proposed scanning set-up. For simplicity let each 
device be interrogated (or addressed) by a signal 
sent on a cable which we will call the NEXT signal. 
If the device had data it would send back the data on 
a bus along with a response signal which we will call 
DATA-VALID. If the device did not have data it would 
send a '0' on the DATA-VALID bus. The NEXT signal 
would be daisy chained from device to device so that 
after each device received one NEXT signal it would 
pass the next NEXT signal to the next device until 
the system was reset for another scan. The NEXT 
signal from the last device on the chain is routed 

back to the scanner where it is called the DONE 
signal so the scanner knows when to stop. 

DONE ___ 

--N h NEX>-M 
__* /-- 

SCANNER 

DATA VALID 1 --- 
DATA BUS :~~~- i? --- 

a-71 
,‘,M. 

Figure 30: Block Diagram of Scanner Set-up. 
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For the moment we shall ignore all details on how 
the data is read into the devices, read out of the 
buffer memory, etc. The scanning processor should 
have two internal counters, a DEVICE COUWER (D.C.) 
to keep track of which device has valid data, if any, 
and an ADDRESS COUNTER (A.C.) to point to the next 
buffer memory address to be filled. The sequence of 

_ events the scanning processor should follow is shown 
in the .flow cWart given in figure 31 . Wnen the 
pKOCeSSOK StaKtS, it should first reset the DEVICE 
COUNTER, reset the ADDRESS COUNTER, and send the 
first NEXT signal as shown in step 0. In the next 
step, it can test the DATA VALID signal to see if any 
data was found in the first device. If it is false, 
it should then test the CONE signal (step 2). If 
this signal is also false, it can proceed to the next 
device by incrementing the DEVICE COUNTER and sending 
another NEXT signal. The processor continues by 
going back to step 1, in OKdeK to see if any data is 
found in that device. If data is found, it can write 
the data along with the contents of the DEVICE 
COURIER into the buffer memory (step 4). Then it may 
increment the ADDRESS COUNTER (step 5) and try the 
next device by going to step 3. The sequence 
continues until the CONE signal is detected at step 
2, in which case the process goes into a STOP state 
at step 6. 

Figure 32 shows a possible implementation of a 
IniCKOpKogKammed PKOCeSSOK t0 peKfOKm this task. The 
micKopKcgKam memory contains five fields as shown in 
figure 33 . Let us examine each field in order to 
understand how the processor works. The first two 

r 

6 
55 -_ 

Figure 31: Flow Chart Of SCaMing PKOCeSSOK. 

r START 

> NEXT 

DATA 

MEMORY 

WRITE ADDRESS 

t 

Figure 32: Block Diagram Of 
Simple Scanner 

fields control the next address of the processor. next address instructions may be executed. That is, 
The first field is the BRANCH ADDRESS field (bits when the ADDRESS SELECT field is '00', the '0' input 
Q-31, which is four bits wide. These four bits are is selected and the next address will always CON 
routed from the output of the PIPELINE REGISTER to from the NICROPRCGPAM CWNTBR. When the ADDRESS 
the '1' input of the NEXT ADDRESS MULTIPLEXER as SELECT field is Ill', the '1' input is selected and 
snown in figure 32 . Whenever the SELECT input of the next address will always come from the BRANCH 
this multiplexer is a logic 'l', the BRANCH ADDRESS ADDRESS field of the PIPELINE REGISTER. The two 
becomes the address input to the microprogram memory. conditions which must be tested to control the 
The next field is the ADDRESS SELECT field which is program flow, DATA VALID and !XNE, are also inpUtS to 

tdo bits wide and it controls the CCNDITION CODE this multiplexer. When the ADDRESS SELECT field is 
MJLTIPLEXER. The conditions '0' and '1' are inputs '011, the DATA VALID signal is selected and the state 
to this multiplexer in order that CONTINUE and JUMP of this signal will determine whether the 
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I Bits I 
o-3 4-5 6-8 9-11 12 
Branch Cc&ition Buffer Device End 
Address 

Multiplexer 
Memory 
Control E%::i 

The fields have the following meaning 
Bits O-3: BRANCFADDRESS for Branch or Jump 

instruction. 

Bits 4-5: CONDITION CODE MULTIPLEXER Control 
00 CONTinue next address is PROGRAM 

COURTER REGISTEK. 
01 BRDV If DATA-VALID is '1'. 

next address is from 
BRANCH ADDRESS. 

00 BRDONB If DONE is 'l', 
next address is from 
BRANCH ADDKESS. 

11 JUMP next address is from 
BRANCH ADDRESS. 

Bit 6: Resets buffer memory ADDRESS COUNTER. 

Bit 7: Er&reeFts buffer memory ADDRESS 
. 

Bit 8: Sends WRITE to buffer memory. 
Bit 9: Generates NEXT signal. 

Bit 10: Increments DEVICE COUNTER. 

Bit 11: Resets DEVICE COUNTER. 

Bit 12: Stops Scanner. 

Figure 33: Definition of Simple Scanner 
Microinstructions. 

MICRCPROZRZQj COUNTER or the BRANCH ADDRESS field is 
used as the next microprogram address. The same 
holds true when the IXINE signal is selected when the 
ADDRESS SELECT field is '10'. 

The next 3 bits (bits 6-8) is the BUFFER MEMORY 
CONTROL field. Each bit of the field is wired to a 
control point of the buffer memory: if bit 6 is '1' 

the ADDRESS CiNiVER is reset to zero; if bit 7 is '1' 

the ADDRESS COUNTER is incremented; and if bit 8 is 
'1' the contents of the DEVICE COUNTER and the DATA 
lines are written into the buffer memory. 

The next 3 bits (bits 9-11) is the DEVICE CONTROL 
field. Again each bit of this field is wired to a 
control point dealing with the devices: if bit 9 is 
'1' a NEXT signal is sent out; if bit 10 is '1' the 
DFJICE MUMTER is incremented; and if bit 11 is '1' 
the DEVICE COUNTER is reset to zero. The last field 
contains only one bit (bit 12), when it is '1' the 
PKOCeSSOK Stops. 

The program can now be written to perform the scan 
operation. Let us go through the flow chart shown in 
figure 31 again. At step 0, we want to reset the 
ADDRESS COUNIYER SO bit 6 should be '1'. We don't 
want to increment this counter OK write to the memory 

so bits 7 and 8 should be '0'. Thus the BUFFER 
ME%XY CONTROL field should be set to '100'. The 
DEVICE COUNTER should be reset and a NEXT signal sent 
out, so the DEVICE CONTROL field should.be set to 
'101'; i.e. bits 9 and 11 should be set to '1' and 
bit 10 to '0'. The next microprogram address can be 
the next sequential instruction, so the ADDRESS 
SELECT field should be set to '00' in OKdeK to 
execute the CONTINUE next address instruction. It 
doesn't matter what the BRANCH ADDRESS field is set 

to since they are not USed fOK the CONTINUE 
instruction, so we set it to '0000'. Thus the 
Contents Of the first miCKOpKOgraJII location (address 
0000) should be as shown in figure 34 . 

micro 
prog. addr. 

%I: 
ii! 

0 100 0 0 0 101 0 0 0 

%Y 2 KG 000 110 iii 

oo%! 3 001 010 000 : 
0000 11 000 i% ': 

unused 

Figure 34: PKCCJKSII of Simple Scanner. 

The next step tests the DATA VALID signal and 
leaves the buffer memory and device control alone. 
Thus both the BUFFER MEMORY CONTROL and DEVICE 
CONTROL fields both contain '000'. The ADDRESS 
SELECT field is set to '01' to route the state of the 
DATA VALID signal to the NEXT ADDRESS FFJLTIPLFXER. 
The BRANCH ADDRESS field is set to the next micrc- 

PKO~K~II? address if DATA VALID signal is present which 
we will set to '0100', i.e. step 4. Thus the 
contents of microprogram memory at location 0001 
should be as show in figure 34 . 

At microprogram location 0010, which will be the 
instruction if the DATA VALID tests fails, we should 
test the state of the DONE signal. The only changes 
from the previous instruction is that the ADDRESS 
SELECT field needs to be set to '10' and another 
BRANCH ADDRESS needs to be chosen. Thus, if location 
0110 is to COKKeSpond to step 6 on the flow chart 
(figure 311, the contents of the miCKOpKqKam mell-0Ky 

at location 0010 should be as shown in figure 34 . 

At microprogram location 0011, which will be the 
next instruction if the DONE test fails, we should 
increment the DEVICE COUflPER, send a NEXT signal, and 
go back to the DATA VALID test at location 1. Thus 
we set bits 9 and 10 to 'l', the ADDRESS SELECT field 
to '11' and the BRANCH ADDRESS field to '0001' as 
shown in figure 34 . 

The remaining steps are programmed in a Similar 
fashion. The whole PKO~KELITI is summarized in figure 

.34 . Only six microprogram instructions were needed 
to program this processor to control the simple 
scanning operation. Locations 7 through 15 of the 
microprogram memory are unused. 

4. WHY MICROPRO%@! 

Up to this point, we have studied the basics of 
microprogranrming and a simple ezcmple. We are now 
ready to evaluate whether we should OK should not 
build our logic subsystems using the microprogramming 
tec'hnigue. Keep in mind that most logic subsystems 

have two parts: one is the part under control and 
the other is the part which generates the timing 
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sequences. One can identify these parts in logic 
systems as small as the simple scanner or as large 
the central processing unit of a major computer 
system. 

An advantage in a microprogrammed system is its 
very clean and orderly structure. The simple scanner 
described in the previous section is an example. All 
control points Zithin the processor are controlled by 
the microprogram memory. All registers, counters 
etc., can be synchronized by the same clock which 
makes it much easier to find faults in the circuit. 
The system is very easy to describe and document. 

There are still other advantages, especially for 
larger, more complex logic systems. One advantage is 
the ease in which changes can be made. Suppose, for 
example, that one wanted to change the simple scanner 
so that it would stop scanning if the buffer memory, 
became full. From the ADDRESS COUNTER one could 
obtain a signal indicating that the maximum buffer 
memory address had been attained. This signal could 
be routed to an additional input to the CONDITION 
CODE MULTIPLEXER and the program could be changed so 
that the buffer full condition would be tested after 
the ADDRESS COUNTER was incremented. Although this 
change would require changing some circuits such as 
the CONDITION CODE MULTIPLEXER, the change is quite 
simple to understand and implement compared to 
changing a hard wired or random logic design for the 
simple scanner. The more complex a logic subsystem, 
the easier it is to change a microprogrammed circuit 
compared to its random logic counterpart. 

It is also much easier to add special features to 
a microprogrananed logic system. One desirable 
feature, for example, would be self diagnostic 
programs in the microprogram memory. These features 
probably require only additional memory space and a 
few extra circuits. But for a random logic design, 
the additional logic required to perform diagnostics 
may be as complex or difficult as the original logic 
itself. 

There will be cases, however, where the random 
logic design is more suitable for a logic subsystem. 

The microprogrammed system may be slower, for 
exayle. The random logic design avoids the 
difficulty of progra..ming the RoI\I. But if one is to 
use the LSI microcircuits, which we will be studying 
in the following sections, one must use the 
microprogramming technique. 

5. LSI MIcROCIRCuITS 

There is an increasing number of LSI microcircuits 
becoming available. They all fit very well into a 
microprogra%Ted architecture. This is clearly 
becoming the "nouveaux vague" in bipolar technology. 
Most of these components are intended to be used in 
building computers and computer peripherals where the 
s,peed of biplar circuits is necessary. In our field 
of High Energy Physics, we are not in the business of 
building computers but these microcircuits can 
nevertheless simplify ho-4 we build many of our logic 
systems. 

The circuits can be classified by what part of a 
co.rputer they are intended to be used. The following 
list shows some of the computer parts that currently 
available as LSI microcircuits: 

Arithmetic/Logical Elements 
Microprogram Control 
c2;m1r2r ,4on.nrv 

Interrupt Control 
Input/Output Elements 
Direct Memory Access Control 
Timing Control 
Shifting Elements 
Status Storage and Multiplexing 
Memory Address Control 
Program Logic Arrays 

For the logic designer in High Energy Physics, one 
would layout a sketch of the control task he wants to 
build. Then scan through the semiconductor catalogs 
to find which circuits have the capabilities of parts 
of his logic diagram. Frequently, one would find 
that only a fraction of an LSI circuit is needed to 
implement his circuit and it would seem wasteful to 
use it. On the other hand the cost of implementing 
the logic in traditional SSI and MS1 may exceed the 
cost of this LSI circuit and the amount of space 
required on the circuit board may be reduced by using 
the LSI microcircuit. 

There is clearly not enough time in these lectures 
to cover all of the above kinds of LSI microcircuits. 
We will therefore study only two of them, the 
microprocessor slice and the microsequencer. These 
two in some ways are the most interesting and the 
most different from the older SSI and MS1 circuits. 

5.1 THE BIPOLAR MICROPROCESSOR SLICE -___ 

The microprocessor slice is designed to be the 
principal arithmetic/logic element within the central 
processing unit of a computer or peripheral 
controller. The most widely used microcircuit of 
this type is the 295lA. It was introduced by 
Advanced Micro Devices in the summer of 1975 and has 
since been manufactured by most of the bipolar semi- 
conductor manufacturers. Figure 35 shows a block 
diagram of this circuit. All the data paths shown 
are four bits wide. To form a processing unit with a 
larger number of data path bits, the circuit has 
appropriate inputs and outputs to allowed it to be 
cascaded with other slices. Thus four such slices 
can form a unit with 16 bits of data path and eight 
slices forms a unit with 32 bits of data path. 

Let us start studying this microcircuit with its 
arithmetic logic unit (ALU). An ALU performs 
arithmetic and logical operations on two inputs, 
called R and S in figure 35, and produces an output 
which is called F. The ALU of the 2951 can perform 
one of eight functions on the operands R and S. The 
function is selected by three input signals which 
form a three bit function code which is part of the 
microinstruction of the circuit. That is, the user 
provides a three bit binary number, from 5 through 7, 
on three input pins of the circuit to control which 
function is to be performed. There are three 
arithmetic functions: 

R PLUS S, 
S MINUS R, and 
R MINUS S; 

and five logical functions: 

R OR S, 
RAND S, 
NOTRANDS, 
R FXLUSIVE-OR S, and 
R EXCLUSIVE-NOR S. 

The R and S operands are each outputs of separate 
multiplexers. The R MULTIPLEXER has as inputs the 
DIRECT DATA inputs (D), the output of the A-LATCH, or 
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a binary '0'. The D input allows the user to bring 
in data from outside the circuit, say from memory, SO 
four pins of the circuit is used for this purpose. 
The significance of the A-LATCH and the usefulness of 
providing a '0' as one of the inputs will be seen in 
the following paragraphs. The S-MULTIPLEXER has for 
its input also a binary '0' and the A-LATCH as well 
as the output of a B-LATCH and the contents of a 
@-,REGISTER. With these inputs there are twelve 
combinations possible for the R and S operands. 
Twelve is not a nice number, so the manufacturer has 
chosen eight of these twelve that he feels are the 
most useful. That is, three bits of the micrp 
instruction are used to select which combination of 
the R and S inputs are used as operands to the ALU. 
These three bits is called the Source Code of the 
microinstruction. 

The Source Codes can be best seen in a matrix of 
the Source Code versus the Function Code as is shown 
in figure 36 . Note that the entries of this matrix, 
look very much like computer operations, i.e. 
A PLUS B, A OR B, D MINUS A, B PLUS 1, etc. It is 
essentially a sufficient set to allow the user to do 
any operation on two binary or logical quantities. 
Note also that some of the elements of 'this matrix 
have two entries. The difference between these 
entries is whether the CARRY-IN to the least 
significant bit of the ALU is '1' or '0'. For the 
addition of two numbers the CARRY-IN should be '0', 
but for subtraction in 2's complement form, the 
CARRY-IN to the least significant bit should be '1'. 

Thus we realize that in order to control this 
microcircuit we must provide every small detail to 
get what we want. We are truly programming at the 
microinstruction level. 

Let us now return to the A- and B-IATCHes. Within 
the 2YOl.A there are 16 registers which are organized 
as a "dual port memory". That is, two addresses can 
be read from the memory simultaneously. The 16 word 
memory is called a register file and the user 

provides a four bit address to select one of 16 words 
in the register file for each port of the memory. 
These are called the A and.B addresses. The clock 
signal input to the circuit is used to hold the 
outputs from these two ports in a special kind of 
register called a latch. Thus the output of the A- 
and B-LATCHes are the contents of the register at the 
A and B addresses when the clock signal makes the 
transition from low to high. 

The are two sets of results from the ALU. The 
first is called F in the figure 35 and it is the 
result of the function on the two operands. The 
other is a set of status conditions indicating if the 
operation resulted in a carry out of the most 
significant bit, a 2's complement arithmetic 
overflow, a zero result, or a negative result. In 
addition to these status signals the ALU incorporates 
the standard Carry-Look-Ahead techniques to speed up 
operations over many slices which requires the 
generation of the Carry Generate (G) and Carry 
Propagate (P) signals. . 
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Figure 36: Source Operand and 
ALU Function Matrix. 

Figure 37~. 290lA Destination Codes. 

Generally, one would like to do something with the 
results of the ALU operation. The data paths within 
tile 2901 provide us with many possibilities. First, 
the results may be written back into the register 
file. At this point we start running out of pins 
available on the circuit package, so the manufacturer 
has made a cor;promise in that when results are 
written to the register file they are written into 
the register oE the B address. But before writing 
into the B address the 290lA has the capability of 
shir'ting the results to the right or to the left. It 
can also write the results to the O-REGISTER. Ke can 
also output the results on four pins of the package 
or we can use these output pins to output the 
contents of the A-LATCH. Of all the possibilities 
the iranufacturer has again used 3 pins on the package 
to allow us to select one of eight &possibilities. 
These 3 bits are called the Destination Code of the 
m,icroinstruction and these codes are shown in figure 
37 . Note that one of the Destination Codes doesn't 
write the results anywhere (Code 1). It is a 
No-Operation code (NOP) and is useful when we want to 
do a CCWARE operation without destroying the 
contents of any register. Note also that there are 
Gestination Codes where the ~REGISTER is shifted 
while shifting the results written into the register 
file. The purpose oE this code is to allow the user 
to program the circuit to do multiplication, 
division, and double length shifts and rotates. 

In summary, a microprocessor slice can form the 
core of a central processor unit within a computer. 

It is controlled by providing it with a micro- 
instruction which it uses internally. In the case of 
the 290lA, the microinstruction must be at least 18 
bits in length: 3 bits for the Source Code, 3 bits 
for the Function Code, 3 bits for the Destination 
Code, 1 bit for the CARRY-IN to the least significant 
bit and four bits each for the A and B addresses. 
Although the 2YOl.A is the most widely used micro- 
processor slice today, there are others on the market 
which may be more suitable in certain applications. 
Table 1 lists all the microprocessor slices currently 
available with a few comments on their individual 
features. For more details, the reader is referred 
to the specification data sheets from the various 
manufacturers, or to some of the numerous articles in 
some of the journals[l,2]. 

5.2 AN EXAMPLE WITH THE 2901A ---- 

An example of the use of the 290l.A is a micro- 
processor called the 168/E which was developed by my 
colleagues and me at S.L.A.C. Figure 38 is a block 
diagram of the processor. As with other designs 
using it, the 2901 forms the core of the data 
processing and there are circuits around it to form a 
complete microprocessor. For the 168/E, the choice 
of the circuits around the 2901 was based on what 
would be easy to program. For this purpose some 
assembly code written for the IBM 370 computer was 
used as a model for the kind of operations that would 
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TABLE 1 
List of Microprocessor Slices Currently Available. 

Part no. Originated by Second Source (bits) Tech. Comments 

4 S-TTL 2901A Advanced 
Micro Devices 

Fairchild, 
Monolithic 
Memories, 
National, 
Raytheon, 
Motorola, and 
Signetics. 

most popular slice, dual-port 
architecture 

4r 

4 S-TTL 

4 S-TTL 

2 

4 

'4 

4 
4 

S-TTL 

S-TTL 
C-MOS 

S-TTL 

ECL 
IIL 

2903 Advanced 
Micro Devices. 

National. Improved version on 2901A, 
~~r~~",~",~ed5:f~~~e~t~~le, built-in 

similar to 2901A 

accumulator orientated 

smaller package 

similar to 2903, but has no 
register file 
has no register file 
very slow 

6701 Monolithic 
Memories. 

3002 Intel 

9405 Fairchild 

ITT 

Signetics 

Signetics 

74S481 Texas Inst. none 

10800 Motorola Fairchild 
SBP0400 Texas Inst. none 
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Figure.38: 

Block Diagram of 168/E Microprocessor. 
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be necessary to have a useful processor. An example 
of a typical Co LOOP found in many of the programs we 
wished the microprocessor to be able to handle is 
shown below. 

LOOP C 0,ED(9,10) 
BL GOTE 
m 9,1 
BNM KOP 

Let us consider how this piece of code is executed 
on the 168/E in order to understand the functions of 
the circuits around the 2901.A microprocessor slices. 
The first IBM instruction is a memory to register 
comparison. The memory address is calculated as a 

. sum of the contents of registers 9 and 10 plus the 
contents of a 12 bit displacement field (ED) which is 
part of the instruction. The IBlY 370 has 16 
registers and so does the 2901A. Thus a one to one 
identification of the registers in the 370 with those 
of the 168/E was inade. We have already studied the 
2901.A well enough to see how one can add the contents 
of two registers together and output the sum. This 
would be the first step the 168/E should do in order 
to follow the example of the IW 370 program. That 
is, a 168/E microinstruction with the 290lA Source 
Codel, Function Code 0, and Destination Code 1 as 
can be seen from figures 36 and 37 . 
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The next step would be to add to this sum the 12 
bits of the displacement field. The 168/E performs 
this operation in a separate microinstruction with an 
additional Adder circuit. In this microinstruction, 
12 bits of the microprogram memory are routed to one 
input to the adder. The other half of the adder is 
connected to the output of the 290lA. The sum of 
this addition is strobed into a MEMORY ADDRESS 
REGISTER whose output is connected to the address 
inputs of the data memory. The access time of the 
data memory is fast enough for the data memory output 
to be strobed into the D-REGISTER at the end of the 
microcycle. 

Tne last step of the CCt4iARE instruction is to 
make the comparison between memory, which has now 
been strobed into the D--REGISTER of the 168/E, and 
the contents of register 0. This step is performed 
by another microinstruction in which the instruction 
for the 290lA uses its D input as one of the ALU 
solurce o,perands, i.e. Source Code 5, Function Code 1, 
and Destinaticn Code 1. 

The next IBN 370 instruction is a conditional 
branch in which the next instruction is to be taken 
from an address labeled 'GOTE', if the result of the 
comparison was negative. Thus to the 168/E micro- 
instructions we have already defined, we must add 
conditional branch microinstructions. The 168/E uses 
a binary counter to control the next microinstruction 
instruction address. As in figu:e 20, the flow of 
the prcqram execution can be altered by asserting a 
signal on the LOAD pin of the counter circuit. To 
coi1tro1 the conditions with which one wants to 
branch, the IBi4 370 is again used as a model. The 
conditional branch instruction of the I&Y 370 has a 4 
bit field called the mask which specifies what 
conditions are required to force a branch. The 
conditions after arithmetic operations are a zero 
result, a negative result, a positive result, and a 
arithcetic overflow result. The arithmetic 
instructions sets one of these conditions to be true 
after the operation. If the condition which was set 
matches with a set bit in the mask of the conditional 
branch instruction, then the branch is taken, 
otherwise the next sequential instruction is 
executed. 

The status outputs of the 2901A do not exactly 
correspond to those of the I@4 370 but wi+h a few 
logic circuits one can produce identical codes. Thus 
the 168/E conditional branch microinstruction has 
been set up with the s&me 4 bit mask as the IE:4 372. 
If there is a match between the 4 bit mask and the 
modified 290lA status bits then the program coilnter 
is put into the LOAD state. Fifteen bits from the 
microprogram memory contain the branch address ,;;hich 
is routed to the parallel load inputs of the prorjram 
counter. 

The rest of the instructions of the IX LCCP can be 
emulated by the 168/E with the microinstructizns 
already described. The structure of the 168/E is 
typical of structures in which the 29aLq forms tne 
core of data processing. iie can identify the parts 
which are under control and the part which pror;idcs 
the timing sequences. The result of tha struct-to 
chosen among the many that were possible is +&it it 
easy to translate the IaM 376 instructions into t?.e 
microinstructions of the 168/E. In fact if one nsr~ 
looks at the list of the primary I%1 360/373 
instructions, as shown in table 2, one sees thet an 
impressive number of the. instructions can be exactly 
emulated by the 168/E. These instructions turn out 
to be about the same subset of the instructions that 
the IBN FORTRAN H complier generates when deling 
with 2 or 4 byte integer or 4 byte logical varlzbies. 
The Floating Point instructions are executed in a 
separate processing unit not show in figure 38 . 
Thus the 168/E microprocessor can be proqrax;:ed in 
FORTRAN by using the IBY E'OKX?A!~ compiler to generate 
machine instructions, then using a program wnicn runs 
on a I&l computer to translate these machine 
instructions into the microinstructions of the 168/E. 
This is possible because the 29Ql.A has the s&me 
number of registers a's the IF&l 360/379 and it can 
perform all the integer arithmetic and logical 
operations of the I&U 360/370 (in fact, it can do 
some operations that the IBM computer can not). 
Also, the circuitry around the 290lA makes a 
processor with the same form of memory addressing and 
conditional branching. Thus either the 2901.A with 
some circuitry around it forms a very powerful 
microprocessor or the IBM 360/370 is a very simple 
computer depending on your point of view. 

We have already mentioned speed of execution as 
one of the frequent requirements for logic systems in 
High Energy Physics. So one can ask what is the 
speed of the 168/E? The 168/E was implemented with 
mostly Low Power Schottky circuits which have a 
typical gate propagation delay of 5 nsec, yet the 
speed of execution of a program is only between 1.3 
and 1.8 times slower than the IBY 370/16d. Compared 
with typical minicomputers, the 168/E speed is about 
3 to 10 times faster. And what about the cost? The 
main cost of the 168/E processor is the eight 29QlAs 
which is about 150 US$. The other circuits, circuit 
board, sockets, and power supply add less than 
another 300 US$. Thus the user of these LSI 
microcircuits can build for himself very powerful and 
fast processors with standard "off the shelf" 
components at a price he can afford. 

5.3 THE MICROPRCGRAM CONTROLLER CIRCUIT 

Let us now take a look at another LSI micro- 
circuit. Another important circuit which has 
recently &come available is the microprogram 
sequencer. These circuits are designed to serve as 
the next address control of the microprogram memory. 
They incorporate most the circuitry we discussed in 
section 2.2. Essentially every bipolar semi- 
conductor manufacturer has a circuit of this type. 
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TABLE 2 

Partial List of IBM 360/370 Instructions 

Type of Second Data Operand* 
REG HW FW MUL 

KR LCR 
LPR LNR 

DR 
NR 

2 
SD. SRDA 
SLA SLDA 
SKL SRDL 
SLL SLDL 

BALR 
BCTR 
BCR 

LER' LDK" 
LTER' LTDR" 
LCEK' LCDR" 
LPER' LPDR" 
LNEK' LNDR" 

AER' ADR" 
AUK' AWR" 
SER: SDR" 
g;;. SWK" 

CDR" 
MER' 
DER' "dg:: 
HER' HDR" 

LH 

STH 
AH 
SH 
CH 
MH 

BAL 
BCT 

%H 
BXLE 

LE' 

LM 

LD" 

STD" 
AD" 
AW" 
;w":: 
CD" 

IMD CHR 

STCt 

NC i/ 
oc II 
XCSL 

DEC 

*Type of Secorld 
REG 
H !J 

KL 
IElD 
CHR 
DEC 

!/ fjot implemented in 168/E 
' Implemented with optional Floating Point Processor 
11 In lemented with optional Floating Point Processor as 

R E.f ~"6 rather than REAL*4 

It is interesting to study one of them in detail in 
order to both have a basic understanding of their 
features and to illustrate some of the techniques 
used in microprogramming. A list of the currently 
available microsequencers is shown in table 3 . 
Unlike the case of the microprocessor slice, none of 
these circuits seems to have taken a clear lead in 
,popJlarity. As an example of a microsequencer to 
study, I have taken the newest and probably the most 
interesting one: the 2910. 

Figure 39 is a block diagram of the AM2910 made by 
Advanced I4iCrO DPJiCeS. From this Eigure one 
recognizes the same basic structure that we used in 
the figure 27; i.e., the NEXT ADDRESS MULTIPLEXER, 
the incrementer, the I'IICRoPRcX;R?!M COUNTER register, 
and the condition cede input (CC). To the basic 
structure of figure 27 some additional features have 
been added in order to make the circuit of more 
general utility. The NEXT ADDRESS MULTIPLEXER, for 
example has two additional inputs: one from a 5 word 
last-in first-out program counter STACK and the other 
from a register which can also be used as a counter. 

The D input to the multiplexer come directly from 
the data inputs pins on the chip. They are intended 
to be used for both the BRANCH ADDRESS field of the 

PIPELINE REGISTER and the output of the MAPPING ROM 
as is shown in figure 40 . In order to chose be 
tween these two possibilities the 2910 provides two 
outputs, PL and MAP which enable the outputs of the 
PIPELINE REGISTER or the NAPPING IXXl respectfully. 
An additional OUTPUT-ENABLE signal is available for 
another register and/or R@l called VECT. The 2910 
will generate a signal on.only one of the OUTPUT- 
ENABLE (OE) signals at a time, thus the three sources 
for the D inputs are effectively multiplexed. In the 
2910 the NEXT ADDRESS MULTIPLEXER is really a six 
input circuit, with 3 internal and 3 external 
sources. 

Let us consider each of the NEXT ADDRESS 
MULTIPLEXER's inputs. First the MICROPROGRAM COUNTER 
input is identical to the one we studied in figure 
27 . The Carry-In (CI) should be set to '1' to make 
the incrementer add one to the current microprogram 
address. 

A new feature is the R REGISTER/COUNTER. It has 
several uses which illustrate some of the other 
techniques one can use with the microprogramming. As 
a register, it is an auxiliary storage location to 
the BRANCH ADDRESS field of the program memory 
PIPELINE REGISTER. It is be loaded from the Direct 
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TABLE 3 

List of Available Microprogram Sequencers. 

Part no. Originated by Second Source (bits) Tech. Comments 

2909 

2?11 

2910 

3001 

67110 

74s4a2 

8X02 

9406 

9408 

Advanced Raytheon, 
Micro Devices. National. 

Advanced Raytheon, 
Micro Devices. National. 

Advanced 
Micro Devices. 

Intel 

Monolithic 
Hemories 

Texas Inst. 

Signetics. 

Fairchild 

Fairchild 

none 

Signetics 

none 

none 4 S-TTL Slice, simple 

none 10 S-TTL Very simple 

none 4 S-TTL Slice 

none 10 IIL Condition Code Register 

4 S-TTL Slice 

4 S-TTL 

12 

9 

9 

S-TTL 

S-TTL 

S-TTL 

CLOCK /=’ 9 u 
I/ STACK 

POINTER 

n 
CCEN 

I 
1 

p PROGRAM 
MULTIPLEXER 

) 12 BIT DATA PATH 

---+ CONTROL PATH 

Figure 39: Block Diagram of 2918 
Microsequencer 

OZPTT 
ENA3LES 

Slice, similar to above 
with additional features 

With Condition Code logic 

Complex but saves 
memory space 
With ALU shift matrix 

Data (D) inputs whenever the LOAD signal is received. an alternative branch to the normal one. This 
At a later time in the program one could execute a structure may be used for example in certain 
conditional two way branch or subroutine CALL, to iterative instructions such as multiplication and 
either the D input or the R RKZSTER. division. 

The R REGISTER can also be used as a counter. As with ordinary programming, there are advantages 
This allows one to repeat an instruction or a series in using subroutines for certain sections of the 
of instr'lctions in the following way. The counter is program so that they need not repeated in the memory 
initially loaded with a value. During certain as many times as they are used. In order to make a 
microinstructions the counter is decremented by one. subroutine CALL one needs to add two capabilities to 
'r?hen the value of the counter reaches zero, a ZERO the hardware structure we have already studied. 
DETECT signal is generated. Other microinstructions First, when we make a BRANCH to the subroutine, we 
can use this signal in place or in conjunction with must have the capability of storing the address to 
the CC input of the circuit in order to select the which we should return after the subroutine execution 
next address. Thus when the counter has been is completed, and second, we must be able to return 
decremented to zero one can have an instruction take to that stored address. 
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MACRO 
INSTRUCTION 

2910 
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n+lO CONTROL n TO 
- PIPELINE 74 SYSTEM 

REGISTER ? CONTROL 

The 5 word STACK in the 2910 with its connection 
to the MICROPROGRAM COUNTER and to the NEXT ADD,RESS 
MULTIPLEXER gives us both capabilities. It is used 
in conjunction with the STACK POINTER which is a 
up/down counter that always points to the last data 
entered into the STACK file. When the counter is 
incremented it is called a PUSH and conversely when 
it is decremented it is called a POP. A subroutine 
CALL is executed in the following way. The sub- 

= .routine address is selected as the next microprogram 
address from either the D input or the R REGISTER. 
The :~lICROPRCEP&l COUNTER will thus be address of the 
subroutine CALL plus 1. The STAG< POIKTER is first 
PUSHed and then the MICROPROGRAX COUNTER is stored 
into the top of the STACK. The next cycle will be 
fro-i the first location of the subroutine. The 
subroutine ,RETiJRi? is executed by selecting with the 
NEXT ADDRSSS M!!LTIPLEXER the output of the STACK. 
Thus the next instruction to be executed will be one 
instruction beyond the instruction which made the 
subroutine CALL. At the end of the RETURN cycle the 
STACK is POPed to complete the linkage. Since the 
STACK contains 5 words, the subroutine CALLS can go 
to 5 deep; beyond that the highest level subroutine 
return address will be lost. 

Tne circuit has a number of parts which need to be 
controlled. The output of the NEXT ADDRESS 
MULTIPLEXER must be selected from one of the four 
inputs or forced to zero; the STACK must be PUSHed, 
FQ,led ( HELD, or ZEROed; the R REGISTER must be 
L,&?J Cdc! , DECRemented, or HELD; and one of the OUTPUT- 
EiXXES may generated. Of all the combinations 
possible, the manufacturer has selected 16 and he 
provides a four bit input so the user can provide a 
binary code for which possibility he wants. These 
four bits are called the 'microprogram controller 
inst-uctio,l' L . In most applications, four bits of 
output from the microprogram memory are used to 
provide tnis instruction in the same way that bits 4 
and 5 were used in tine simple scanner example. Some 
of the instructions use the CC input for.conditional 
branching. In When the CC input is 'true' it is 
called the PASS state and when it is 'false', it is 
called the FAIL state. In addition the CONDITION 
CODE EKA3LE (CCEN) input can be used to force the 
internal condition code (TEST) to PASS. Finally, the 
LoAD input of the R REGISTER can be independently 

Figure 40: Typical Control Uni 
with 2910 Microsequencer 

.t 

controlled. Thus we have really 6 bits of 
instruction input, although sorne of the ~64 
combinations are redundant. 

We will now go through all 16 of the 2910's micro- 
instructions. This exercise will serve to illustrate 
the special techniques cne can use in micropro- 
gramming. It is also rather interesting and run. 
For each instruction we shall consider the state of 
the TEST input and the contents of the R REGISTER/ 
COUNTER since they may alter the resultant operation 
of the microinstruction. When their states do not 
affect the operation, it is called a "Don't Care0 
condition which is indicated by an "X" in the figures 
that are to follow. The microinstruction may affect 
the contents or status of the STACK, next address 
source, the R REGISTER/COUNTER, and/or the OUTPUT- 
ENASLES. If the operation does not affect any one of 
them it is called a “No Change" condition which is 
indicated by “NC” in the figures. As we study the 
2910's microinstructions, one can try to imagine an 
analogy with FORTRAN statements that control the 
program flow. 

5.3.1 Continue. 

Instruction 14 is a Continue (CONT) which is the 
simplest instruction. The next address source is 
always the contents of the MICROPRCGRAX COUNTER. One 
should recall that the MICROPRCGRXM COUNTER is always 
the current address output of the 2910 plus one. As 
show in figure 41, the status of the TEST input and R 
REGISTER don't influence the operation, the STACK and 
R REGISTER don't change their value and the PIPELINE 
REGISTER is enabled. The Continue instruction is 
probably the most frequently used instruction since 
it is used when a series of microinstructions are 
executed. 

5.3.2 Jump Map. -- 

Instruction 2 is a unconditional branch 
instruction in which the Mapping RCM OUTPUT ENABLE is 
turned on. It is called a JUMP MAP (JMAP). The 
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14 CONTINUE (CONT) 3 COND JUMP PL (CJP) 

Figure 41: 2910 Instruction 14 . Figure 43: 2910 Instruction 3 . 

status of the TEST input and the R REGISTER are Don't 
Care. The next address source is always taken from 
the D input. In the example given in figure 42, 
microinstruction 53 has the JMW instruction. When 
it appears in the PIPELINE REGISTER, the MAPPI% ROM 
is enabled and its output is routed through the 2910 
to the address input of the microprogram memory. If 
the contents of the MAPPING F&M were 90, then the 
program flow would jump from 53 to 90 as shown. In 
FORTRAN the JMAP instruction is analogous to the GO 
TO statement. 

force the internal condition to ?ass. Doing this 
changes the CJP instruction into a unconditional jump 
to the contents of the PIPELINE RFGISTZR. The CJP 
instruction corresponds to the FORTRAN statement 
"IF(... ) Go To". 

5.3.4 Conditional jump Vector. 

An almost identical instruction is instruction 6 
which is illustrated in figure 44 . The only 
difference is that the VECT OUTPUT-FNAELS is turned 
on instead of the PIPELINE OUTPUT--LE. 

2 JUMP MAP (JMAP) 

CONT 50 

CONT 51 

CONT 52 

JMAP 53 90 CONT 

91 CONT 

6 CON0 JUMP VECTOR (CJV) 

CONT 50 

CONT 51 

CJV 52 

CONS 53 

CONT 54 t-----7 

20 CONT 

21 CONT 

REGICNTR ADDRESS 
TEST DATA STACK SOURCE REG/CNTA E a. .I v,,.,. 

PASS x 

FAIL 
NO - 

D __--- --___- NC VECT 

Figure 42: 2910 Instruction 2 . PC 

..I. ,.,a.:, 

Figure 44: 2910 Instruction 6 . 
5.3.3 Conditional Jullrp Pipeline. 

Instruction 3 is a conditional branch instruction 
in which the PIPELINE REGISTER OUTPIJT-FNABLE is 
turned on. It is called Conditional Jump Pipeline 
(CJP) ano it is illustrated in the example given in 
figure 43 . If the status of the TEST input is Fail, 
then the next address source is taken from the 
MICROPR~RM COLWIER. So in the example, the program 
flow would be from instruction 52 to instruction 53. 
On the other hand, if the status of the TEST input is 
Pass, then the next address source is the D inputs. 
Thus the program flow in the example goes from 
instruction 52 to instruction 30. The contents of 
the R REGISTER are Don't Care and the STACK and R 
REGISTER are unaffected. One should recall that one 
can use the Condition Code Enable (CCEN) , input to 

5.3.5 Jump Zero. 

A very special instruction is instruction 0. In 
this instruction the output of to 2910 is forced to a 
binary zero, thus it is called the Jump Zero (JZ) 
instruction. In the same instruction the STACK is 
cleared and the PIPELINE REGISTER is enabled. The 
intention behind this instruction is to put the 
microseguencer into a well defined state when the 
power is first turned on. It is easy for the user to 
add circuits so that on power up the microinstruction 
0 is issued to the 2910. Figure 45 illustrates this 
instruction. 
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I COND 88 PL (CJS) 

0 JUMP ZERO (JZI 

CONT 0 

CONT 1 

I------ 

93 JZ 

CONT 2 

RE;WC&TT ADDRESS 
TEST ,STACK SOURCE REGICNTR E 

X X CLEAR 0’ NC PL 
../I 1.3.41. 

Figure 45: 2910 Instruction 0 . 

5.3.6 Conditional Jump R/PL. 

Instruction 7 is the first example which uses the 
R REGISTER. It is a Conditional Jump R OK PIPELINE 
REGISTER (JRP) and is illustrated in figure 46 . 
When the TEST input is PASS, the next address source 
is from the D inputs with the PIPELINE REGISTER 
enabled. When the TEST input is FAIL, the next 
address source is from the contents of the R 
REGISTER. One should recall that the R REGISTER may 
be loaded in any instruction by generating the LOAD 
signal. This instruction is effectively a two way 
Jump, since the next sequential address is never the 
next address source. In FORIRAN it would correspond 
to two statements: an "IF(...) GO To" followed by 
"Go To" . In a microprogram with the 2910, the two 
way branch is only one instruction. 

7 COND JUMP R/PL (JRP) 

CONT 50 

CONT 51 

CONT 52 t 

CONT 70 @O CONT 

CONT71 ) + 81 CONT 

Figure 46: 2910 Instruction 7 . 

5.3.7 Conditional Jump Subroutine Pipeline. 

Subroutine CALLS can be made with instruction 1. 
AS shu+m in figure 47, the Conditional Jump 
Subroutine (CJS) instruction is actuallqr a 
ccnditionil subroutine CALL. If the TEST input is 
FAIL, the next address source is the contents of the 
Li Y.OPRXR&l COUKTER which is the next sequential 
instruction. If TEST input is PASS, then the next 
?!-lfiKeSS source is the D input with the PIPELIPjE 
PXISTER enabled. The STACK COUNTER is PUS:ied and 
the current contents of the MICROPRXFWI COUXTER are 
stored in the STACK, thus saving the address to which 
the subroutine return should be made. The CJS 
instruztion can be modified to a unconditional 
subroutine jump by using the CCEN input to force the 

CON7 50 

CONT 5f 

CJS 52 

CONT 53 

CONT 54 

CONT 55 

Figure 47: 2910 Instruction 1 . 

TEST input to the PASS state. The FORTRAN equivalent 
of this microinstruction would be "IF(...) CALL". 

5.3.8 Conditional Return. . . 
The return from subroutine is executed by 

instruction 1Q. As shown in figure 43, it is also a 
conditional instruction. If the TEST input is FAIL, 
the next address source is taken from the 
MICROPROGW.1 COUNTER with no other change. If the 
TEST input is PASS, then the next address source is 
the contents of the top of the STACK and at the end 
of the microcycle the STACK POINTER is POPed. Again 
this instruction can be modified to a unconditional 
return by using the CCRN input. The FORTRAN 
equivalent would be "IF(...) RETURN". 

!O COND RETURN (CRTN) 

90 CONT 

91 CONT 

92 CONT 

93 CRTN 

34 CONT 

95 CONT 

96 CONT 

97 CRTN 

Figure 48: 2910 Instruction 10 . 

5.3.9 Conditional Jump Subroutine R/PL. 

Another method for making subroutine CALLS is the 
Conditional Jump Subroutine Register/Pipeline (JSRP) 
as shown in figure 49 . If the TEST input is FAIL, 
then the next address source is taken from the 
contents of the R REGISTER. If the TEST input is 
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12 LO CNTR 8 CONTINUE (LDCT) 

5 cow JS~ R/PL ( JSRP) 

CONT 50 

CONT 51 t 

CONT 

CONT 

CONT 

CONT 

CRTN 

CONT 

- CONT 

JSRP 

52 I 
STACK 

80 CONT 

81 CONT 

82 CONT 

83 CONT 

84 CRTN 

COhT 50 

LDCT 51 N COUNTER 

CONT 52 

CONT 53 t 

Figure 50: 2910 Instruction 12 . 

Figure 49: 2910 Instruction 5 . 
9 REPEAT PL CNTR f 0 (RPCT) 

PASS, then the next address source is taken from the 
D inputs with the PIPELINE REGISTER enabled. In 
either case the STACK POINTER is PUSHed and the 
contents of the MICKOPRCGIRW COUNTER is stored at the 
top of the STACK. Thus the TEST input determines 
which subroutine is CALLed and not whether one CALLS 
a subroutine or not. The FORTRAN equivalent is 
somewhat more complex then the ones we have seen so 
far. It might be written as "IF(...) CALL X" 
followed by "IF(.NCYT.(...)) CALL Y". In some other 
high level programming languages this micro- 

.instruction might be expressed as a "IF(... 1 THEN 
CALL X ELSE CALL Y". Again we see that in the 
microprqram it is only one instruction. 

5.3.10 Load Counter and Continue. -~- 

The "Load Counter and Continue" (LDCT) instruction 
provides an aiternate method of loading the R 
REGISTER. As shown in figure 50, the next address 
source is always the MICROPROGRAM COUNTER just like 
tiqe Continue instruction. The R REGISTER is loaded 
from the D inputs with the PIPELINE: RHGISTER enabied. 
Xany microprocessors could use this instruction as 
the only method of loading the R REGISTER thus 
eiirTi;latinCJ the need to control separately the LOAD 
input to the 2910. In FORTRA?J, this microinstruction 
might be equivalent to setting the end point of a Co 
LOOP as will be seen below. 

5.3.11 Repeat Pipeline Counter Not m to Zero ~- -- 

The next instruction is the first example of using 
the R REGISTER as a counter. It is called "Repeat 
Pipeline Counter Not Equal To Zero" @XT). If the 
contents of the R CORNIER are not equal to zero then 
the next address source is taken from the D inputs 
with the PIPELINE REGISTER enabled. At the end of 
the cycle, the R COUNTER is also decremented by one. 
If the contents of the R COUNTER is zero, then the 
next address source is taken from the MICROPRXIWI 
CCWTER and the R COUNTER is left unchanged. As 
illustrated in figure 51, the RPCT instruction can be 
used to force execution of the same micro- 
instruction many times by letting the contents of the 
PIPELIME EGISTER be equal to the address of the 
instruction. This may be used, for example, to do 

CONT 50 

LDCT 51 

RPCT 52 

CONT 53 

REGICNTR ADDRESS ; I 
TEST DATA STACK SOURCE REGICNTR c?i -.-----.A- _._. - 

=o X -------- NC - --P-C_-- 
#O D 

1.1 ,ll..,l 

Figure 51: 2910 Instruction 9 . 

iterative multiplication or division micro- 
instructions. The combination of 2910 micro- 
instructions 12 and 9 look very much like the FORTRAN 
statenents 

Do 10 I=l,N 
(one or more statements) 

10 CONTINUE 

5.3.12 Push/Conditional Load Counter. -- 

Another instruction which loads the R RFGISTER/ 
COUNTER is show in figure 52 . It is in fact a 
conditional load of the counter and it is called 
*Push and Conditional Load Counter" (PUSH). If the 
TEST input is FAIL, then the R P.EGISTER/COUNTER is 
not loaded while if it is PASS then it is loaded from 
the D inputs with the PIPELINE REGISTER enabled. In 
either case the next address source is from the 
MICROPRCGRAM COUNTER, the STACK COUNTER is PUSHed and 
the MICKOPRCGRAM COUNTER is stored at the top of the 
STACK. The purpose of this instruction will not be 
clear until we study the next and last 4 micrc- 
instructions. 
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5.3.14 Test End of Loop. --- 

REGICNTR ADDRESS 
TEST DATA STACK SOURCE REGICNTR ti.i 

?!-% x 
FAIL 

PUSH PC ---$$J~--PL 

1 I. Y,..l. 

Figure 52: 2910 Instruction 4 . 

5.3.13 Repeat Loop, Counter Not Eaual 0. 

The next instruction works with the PUSH to 
perform a microprogram IX-LOOP as is shown in figure 
53 . It is called "Repeat Loop for Counter not equal 
to Zero" (RFCT). The instruction is a conditional 
jump using the contents of the R REGISTER/COUNTER as 
the TEST input. If the contents are not equal to 
zero, then the next address source is taken from the 
top of the STACK and the R COUNTER is decremented. 
In other words the program branches back to the 
beginning of the loop. When the contents of the 
COUNTER becomes zero, then the next address source is 
taken from the MICROPFUXRAM COmER and the STACK is 
POPed while the COUNTER is left unchanged. In other 

I .WOKdS th2 Program drops through the bottom of the 
loop. Thus we see that the R REGISTER/COUNTER is 
used like the running index of the Do LOOP. The 
S1:CK is used in this case to save the beginning of 
the Leo? rather then for saving the subroutine return 
&.jyyS . In fact the STACK can be used as a 
co,;oination of both up to 5 levels of loops and 
szbroutincs. The combination of the PUSH and RFCT 
microinstructions looks very much like the FORTRAN 
statements: 

W 10 I=l,N 
(one or more statements) 

10 COtNTINUE 

8 REPEAT LOOP, CNTRfO (RFCT) 

PUSH 50 

CONT 51 

CONT 52 

CONT 53 

RFCT 54 

CONT 55 
i 

REGICNTR ADDRESS 
TEST DATA STACK SOURCE REGXNTR E 

x - 
=o POP PC NC ---------------------------PL 
#O NC STACK DEC 

I.” ,ll.YI 

Figure 53: 2910 Instruction 8 . 

Another example of looping is an instruction 
called "Test End of Loop" (ICOP). It operates the 
same way as the RFCT instruction except tnat the 
Condition Code input is used as the TEST input rather 
than the contents of the R REGISTER/COtiXTER and the 
counter is not affected. Note that in the exaiiple 
shown in figure 54 if one never got a 'TEST input PASS 
status one would have an infinite loop. Note also 
that although the PUSH instruction was used at 
instruction 51 in order to save the beginning address 
of the loop, the R REGISTER/CO~VTER is not used in 
the loop. In FORTRAN, the LOOP microinstruction 
looks like a simple "IF(...) CO 'IO". 

13 TEST END LOOP (LOOP) 

CONT 50 

PUSH 51 

CONT 52 

CONT 53 

CONT 54 

CONT 55 

LOOP 56 

CONT 57 

Figure 54: 2910 Instruction 13 . 

5.3.15 Conditional Jump PL and POP. --- 

Each PUSH of the STACK must be followed somewhere 
by a FOP in order to not to lose the subroutine 
linkage. Instruction 11 has been designed to enable 
one to conditionally jump out of a loop and restore 
the STACK at the same time. It is called the 
"Conditional Jump Pipeline and POP" (CJPP) and it is 
illustrated in figure 55 . If the TEST input is FAIL 
the next address source is the MICROPROGRAM COUNTER 
and the STACK is left unchanged. If the TEST input 
is PASS, then the next address source is taken from 
the D input with the PIPELINE REGISTER enabled and at 
the same time the STACK is WPed. 

5.3.16 Three-Way Branch 

The next and last instruction is the most complex 
of all. It uses both the TEST input and the contents 
of the R COUNTER to determine one of three next 
address sources. It is appropriately called "Three 
Way Branch" (?wa). It is also used with the PUSH 
instruction as shown in figure 56 . As long as the 
TEST input is FAIL, the instruction operates like the 
RFCT , that is, it the microprogram branches back to 
the address contained at the top of the STACK as long 
as the R COUNTER is non-zero. When the RCOLJNTER 
reaches zero, however, tne next address source is 
taken from the D inputs with the PIPELINE REGISTER 
enabled. If the TEST input is PASS, then the program 
drops out of the loop by taking the next address 
source from the MICROPROGRAM COUNTER and the STACK 
POINTER is POPed. In this case the R COUNTER is 
decremented or unchanged depending on its value. 
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II COND JUMP PL 8 POP (CJPP) 

PUSH 50 

CONT 51 

CefNT 52 

CONT 53 

CJPP 54 

LOOP 55 

CONT 56 
b----l 

80 CONT 

61 CONT 

62 CONT 

Figure 55: 2910 Instruction 11 . 

15 THREE WAY BRANCH ITWE) 

CONT 62 

PUSH 63 

CONT 64 

TWB 65 

CONT 66 

STACK 

REGISTER/ 
COUNTER 

72 CONT 

73 CONT 

This strange instruction turns out to be quite 
useful. If in a loop one were searching for a data 
point in memory, for example, then the loop could end 
when either the data point is found (TEST input 
becomes PASS) OK by reaching a certain limit (R 
COUNTER becomes zero). Note that the in the two 
ending conditions the program goes to two different 
locations. Thus when compared to a FORTRAN program, 
this instruction is like having an "IF(...)GO To" 
statement as the last statement in a DC+LCCP. 

5.3.17 SUIiXXIKy Of 2910. 

This completes the study of the microinstruction 
of the 2910. To the MRTPAN pKograTmer these 
instructions should not seem too strange at all. 
There is a big difference, however, in the mannet in 
which the instructions are executed. With a FORTRAN 
program running on a normal computer the compiler has 
generated various machine instructions to get the 
desir'ed program flow. With the miCKOpKOgKam 
sequencer, the program flow is controlled within one 
microinstruction. Hence we see that microse;luenceKs 
are designed to make microprogram fast and efficient 
is memory space by minimizing the number of 
instruction steps to control the program flow. One 
must remember that besides the PIPELINE REGISTER bits 
which control the microsequencer, there other bits 
which control that which is being controlled. The 
sequencer does not do useful data manipulation 
itself. 
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Figure 56: 2910 Instruction 15 . 


